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• Extraordinary support and funding of the Advanced Air Transport Technology Project

• Exceptional efforts of The Boeing Company and the Boeing ecoDemonstrator Program 

in executing the acoustic flight test
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Propulsion Airframe Aeroacoustics (PAA)

• Effects from integration of propulsion and airframe

• Both acoustic scattering and flow interaction types

Aircraft System Noise (ASN) is the total noise of the aircraft and is 

the combination of all noise sources and PAA integration effects



Motivations – from Current Aircraft 
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System noise must include all relevant sources and PAA effects, and accurate over:

• Range of operational conditions and maneuvers,

• 50 to 10000 Hz, and

• Polar (nose-to-tail) and azimuthal (wing tip-to-wing tip) angles



Motivations - from Current to Future Aircraft
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Boeing Photo

Aircraft system prediction methods, noise reduction approaches, and technologies 

must ultimately be verified and perform confidently for flight conditions

Hybrid Wing BodyMid-fuselage NacelleConventional Configuration

June et al., AIAA 2019-2428 Guo et al., J of Aircraft 

Vol. 56, No. 5, 2019
Thomas et al., AIAA 2017-3193

• Equivalently modeled, future technology twin-aisle concepts

• Predicted noise reduction due to configuration change, largely from PAA scattering effects

• In general, many concepts under study with wide range of technologies to predict

16 EPNdB Cumulative Quieter



NASA/Boeing PAA & ASN 787 Flight Test
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• Four major sections of the test matrix
o engine powerline (and PAA) with hardwall aft duct
o engine powerline (and PAA) with aft duct liner
o airframe noise
o special PAA operations: banking, offset, spoiler

• Highly integrated plan, each test condition and system with 
multiple objectives
o 960-microphone phased array
o 214 on-aircraft microphones in four distinct arrays
o 31 far field microphones

• Data collection exceeded success criteria:
o 20 flight hours
o six flight days
o 50 unique test conditions

o 88 fully successful passes

Ground phased array

On-aircraft arrays

Boeing Photo

Boeing Photo

Boeing Photo



Example Key Technical Approach – PAA Effects on the 
Aircraft and in the Far Field 
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ANOPP2
ANOPP-Research

Propagate Source to Observers

Noise Metrics

Jet
(ST2JET)

Core
(GECOR)

Flap
(GUO-FLAP)

Gear
(GUO-LG)

Trailing 
Edge

(FNKAFM)

Slat
(GUO-LE)

Propulsion Airframe Aeroacoustic Integration
(Shielding, Reflection, Diffraction, Boundary Layer Ingestion, Jet 

Trailing Edge Interaction, Jet-Pylon Interaction)

AoA 
Correction

Duct 
Liners 

(TREAT)

Noise Reduction Technologies

Aircraft Design Inputs

Airframe Geometry, Weight, 
Flight Path, Engine Cycle

Atmosphere

Flight Path

Observers

Environment
Definition

Acoustic Element Definition
Propulsion Airframe

Noise Reduction Technologies

Fan 
(HDNFAN)

Experimental and Computational Data Inputs

Flow Statistics, Source Noise, Propulsion 
Airframe Aeroacoustic Effects

ANOPP-Research Overview 
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• 50-year ANOPP history

• ANOPP-Research is internal 

version for development

• Flexible to aircraft information

• Flexible in use of methods, full 

spectrum possible 

• All while retaining fast setup, 

computational speed, wide 

applicability, and accuracy

Methods in ANOPP-Research 

prior to the current work



3rd Generation Airframe Noise Prediction Compared to 
PAA & ASN 787 Flight Test Data from 2022
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Error in EPNL

• Cruise wing: ΔEPNL = -0.5 dB

• Landing setting: ΔEPNL = -1.0 dB
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• Takeoff setting: ΔEPNL= -0.3 dB

• Landing setting: ΔEPNL = -0.8 dB
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Improved Predictions to ANOPP-Research AFTER 2022
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Improved Prediction Methods

• Jet source with jet-flap interaction noise 

• Scattering of fan broadband noise by the physics-based PAASc method

• Proposed fan source method for aft broadband (below) and both aft- and inlet-radiated fan tones 

Krejsa Prediction (used in 2022) Proposed Prediction (2024)

Aft Fan 

Broadband 

for Flyover

Ideal Prediction
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PAASc Prediction Compared with PAA & ASN 
787 Flight Data
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• Banking angle 34 degrees

• Altitude 800 feet

• Mach 0.3
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With Full PAASc Capability

ΔSPL = North Sideline – South Sideline

PAASc Prediction with 

and without Reflection

Extending Benchmark Validation 

of PAASc with Flight Data



Aircraft-Level EPNdB Comparisons
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Aircraft-Level Spectral Comparisons
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High Power, Flyover

ANOPP-Research 

Overprediction

Underprediction

• 15-dB difference range in 2022 reduced to 8 dB

• Strong bias to overpredict has been improved to a slight bias to underpredict

• Very significant improvement in accuracy over entire spectral range



Conclusions

• PAA & ASN 787 is a NASA dataset of enduring value

• New ANOPP-Research prediction methods are in progress
o Guo Airframe methods

o proposed fan aft broadband, forward and aft tones

o jet source noise with jet-flap interaction

o PAASc for shielding, reflection, and diffraction

• Comparisons with flight data show greatly improved accuracy
o ability to predict PAA scattering effects for flyover and banking flight

o spectral differences typically ±4 dB, over power range

o on an EPNdB level, predictions now within 2 EPNdB underneath the aircraft and at sidelines 
even with an intentional asymmetry from one engine at idle

• Future studies in progress using major parts of the dataset not included to date

• Above new methods will be completed, more methods are in progress
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