

Refined Predictions Compared with the Propulsion Airframe Aeroacoustics and Aircraft System Noise Flight Research Test Data ICAS Paper 2024_0069

Russell H. Thomas, Yueping Guo, Eric H. Nesbitt, Ian A. Clark and Jason C. June NASA Langley Research Center, Hampton, VA 23681, USA

Session 8.7 Airframe Aeroacoustics 34th Congress of the International Council of the Aeronautical Sciences Florence, Italy September 11, 2024

Latest in a Related Group of Publications

- NASA
- 1) Thomas, R.H., et al., "Propulsion Airframe Aeroacoustics and Aircraft System Noise Flight Research Test: NASA Overview," AIAA 2022-2993.
- 2) Czech, M.J., et al., "Propulsion Airframe Aeroacoustics and Aircraft System Noise Flight Test on the ecoDemonstrator 2020 Boeing 787 Testbed Aircraft," AIAA 2022-2994.
- 3) Guo, Y. and Thomas, R.H., "Assessment of Next Generation Airframe System Noise Prediction Methods with PAA & ASN Flight Test Data," AIAA 2022-2995.
- 4) Clark, I.A., et al., "Fan Acoustic Flight Effects on the PAA & ASN Flight Test," AIAA 2022-2996.
- 5) Thomas, R.H. and Guo, Y., "Systematic Validation of the PAAShA Shielding Prediction Method," International Journal of Aeroacoustics, 2022, Vol. 21(5-7), pp. 558-584.
- 6) Guo, Y. and Thomas, R.H., "Geometric Acoustics for Aircraft Noise Scattering," AIAA 2022-3077.
- 7) Clark, I.A., et al., "Turbofan Aft-Radiated Broadband Acoustic Flight Effects," AIAA Paper 2024-3225.
- 8) Nesbitt, E., et al., "Flight Effects on Turbofan Fan Tones," AIAA Paper 2024-3222.
- 9) Guo, Y., "Phased Microphone Array on Aircraft Fuselage," AIAA Paper 2024-3010.
- 10) June, J.C., et al., "Comparison of Inlet Broadband Acoustic Liner Predictions to Quiet Technology Demonstrator 3 Flight Data," AIAA Paper 2024-3399.

Acknowledgments

- Extraordinary support and funding of the Advanced Air Transport Technology Project
- Exceptional efforts of The Boeing Company and the Boeing ecoDemonstrator Program in executing the acoustic flight test

Outline

NASA

- Motivations
- Overview of the NASA/Boeing PAA & ASN 787 Flight Test
- ANOPP-Research Process and Method Improvements
- Aircraft-Level Comparisons
- Conclusions

Propulsion Airframe Aeroacoustics (PAA)

- Effects from integration of propulsion and airframe
- Both acoustic scattering and flow interaction types

Aircraft System Noise (ASN) is the total noise of the aircraft and is the combination of all noise sources and PAA integration effects

Motivations – from Current Aircraft

System noise must include all relevant sources and PAA effects, and accurate over:

- Range of operational conditions and maneuvers,
- 50 to 10000 Hz, and
- Polar (nose-to-tail) and azimuthal (wing tip-to-wing tip) angles

Motivations - from Current to Future Aircraft

- Equivalently modeled, future technology twin-aisle concepts
- Predicted noise reduction due to configuration change, largely from PAA scattering effects
- In general, many concepts under study with wide range of technologies to predict

Aircraft system prediction methods, noise reduction approaches, and technologies must ultimately be verified and perform confidently for flight conditions

NASA/Boeing PAA & ASN 787 Flight Test

- Four major sections of the test matrix
 - o engine powerline (and PAA) with hardwall aft duct
 - o engine powerline (and PAA) with aft duct liner
 - o airframe noise
 - $\circ~$ special PAA operations: banking, offset, spoiler
- Highly integrated plan, each test condition and system with multiple objectives
 - o 960-microphone phased array
 - o 214 on-aircraft microphones in four distinct arrays
 - o 31 far field microphones
- Data collection exceeded success criteria:
 - \circ 20 flight hours
 - o six flight days
 - o 50 unique test conditions
 - \circ 88 fully successful passes

Boeing Photo

Ground phased array

Example Key Technical Approach – PAA Effects on the Aircraft and in the Far Field

ANOPP-Research Overview

- 50-year ANOPP history
- ANOPP-Research is internal version for development
- Flexible to aircraft information
- Flexible in use of methods, full spectrum possible
- All while retaining fast setup, computational speed, wide applicability, and accuracy

Methods in ANOPP-Research prior to the current work

3rd Generation Airframe Noise Prediction Compared to PAA & ASN 787 Flight Test Data from 2022

Improved Predictions to ANOPP-Research AFTER 2022

Improved Prediction Methods

- Jet source with jet-flap interaction noise
- Scattering of fan broadband noise by the physics-based PAASc method
- Proposed fan source method for aft broadband (below) and both aft- and inlet-radiated fan tones

PAASc Prediction Compared with PAA & ASN 787 Flight Data

- Banking angle 34 degrees
- Altitude 800 feet
- Mach 0.3

 Δ SPL = North Sideline – South Sideline

Aircraft-Level EPNdB Comparisons

Aircraft-Level Spectral Comparisons

- 15-dB difference range in 2022 reduced to 8 dB
- Strong bias to overpredict has been improved to a slight bias to underpredict
- Very significant improvement in accuracy over entire spectral range

Conclusions

- PAA & ASN 787 is a NASA dataset of enduring value
- New ANOPP-Research prediction methods are in progress
 - o Guo Airframe methods
 - $\circ~$ proposed fan aft broadband, forward and aft tones
 - $\circ~$ jet source noise with jet-flap interaction
 - $\circ~$ PAASc for shielding, reflection, and diffraction
- Comparisons with flight data show greatly improved accuracy
 - $\circ~$ ability to predict PAA scattering effects for flyover and banking flight
 - $\circ~$ spectral differences typically ±4 dB, over power range
 - on an EPNdB level, predictions now within 2 EPNdB underneath the aircraft and at sidelines even with an intentional asymmetry from one engine at idle
- Future studies in progress using major parts of the dataset not included to date
- Above new methods will be completed, more methods are in progress

