Postural recovery following spaceflight

Scott Wood

Neuroscience Laboratory

NASA Johnson Space Center, Houston TX

Adaptation to altered gravity states

- The need to move and maintain awareness of spatial orientation in altered gravity environment drives sensorimotor adaptation and learning to acquire a new set of synergies optimized for the novel environment.
- The perceptual and motor coordination problems experienced postflight reflect the recalibration of predicted versus actual movement feedback that is required for readaptation back to the natural gravitational state.

Terrestrial readaptation motion sickness

STS post-flight neurological exams

Clark JB. J Vestib Res (2002) 11:321-322

	>5%	R+0				R+3			
		None/ Normal	Mild	Moderate	Severe	None/ Normal	Mild	Moderate	Severe
1	Headache	94%	3%	2%	1%	97%	3%	0%	0%
2	Dizziness/Faintness	83%	14%	3%	0%	98%	2%	0%	0%
3	Vertigo/Spinning	88%	9%	2%	1%	99%	1%	0%	0%
4	Gaze/Eye Movements (nystagmus)	45%	51%	4%	0%	93%	7%	0%	0%
5	Finger to Nose (close eyes touch nose, open eyes touch finger)	81%	19%	0%	1%	99%	1%	0%	0%
6	Drift (close eyes, extend arms, palms up)	90%	9%	0%	1%	99%	1%	0%	0%
7	Rising from Chair (w/o using arms)	86%	11%	1%	2%	99%	1%	0%	0%
8	Standing Romberg (feet together, extend arms, close eyes; 30 sec)	78%	21%	0%	1%	97%	3%	0%	0%
9	Hopping (close eyes, lift leg, hop 3 times, alternate)	60%	26%	9%	3%	99%	1%	0%	0%
10	Tandem Walk (heel-to-toe; 5 m)	43%	37%	18%	2%	98%	1%	0%	0%
11	Dynamic Equilibrium (close eyes, walk 9m, turn 180°, return)	53%	41%	3%	4%	93%	7%	0%	0%

Sensory Organization Tests

Nashner et al., J Neuroci (1982) 2:536-544

Supplement to Post-Shuttle Neuro Exam

Sharpen tests with head tilts

Wood et al., Aviat Space Environ Med (2015)

Short

SOT-5M Eyes Closed, Unstable support, Head moving

Long

Postflight dynamic posturography

Effect of inflight countermeasures

Head Moving, Eyes Closed, Unstable Support

Interim Resistive Exercise Device

Advanced Resistive Exercise Device

Self-ratings

Naïve versus repeat flyers - posture

Paloski et al., EDOMP Report, 1999

Inflight versus reentry: Functional impacts

Conclusions

- The duration of microgravity exposure has a significant effect on both the magnitude of the sensorimotor decrements and the time course of recovery to preflight performance levels.
- While there have been reports of otolith-mediated reflexes being modified by prior flight experience, the postflight functional performance as assessed by computerized dynamic posturography does not appear consistently altered with prior flight experience.
- The early sensorimotor decrements have implications for the completion of critical mission tasks during and following g-transitions. Interventions are necessary to optimize crew performance for success on upcoming exploration missions.

EXPLORE MONITORIANS

Motor control

