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Motivation: Early Failure Analysis
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FHA-Related Standards

History of early “functional” failure analysis

* MIL-P-1629: Original 1949 FMEA military standard

« ARP 4761: 1996 Civil aviation safety standard calls for FHA
« |ISO 26262: 2011 Automotive standard on “functional” safety
« MIL-STD-882E: 2012 military standard calls for FHA

Generally, modern standards
(1) Call for Functional Hazard Analysis
(2) Define the “what” of the FHA table
(3) Don't really define the process or how to generate it




FHA-Related Standards: ARP 926C

» Fault/Failure Analysis procedure
« Descendent of early civilian FMEA standards

» Gives recommendations on performing “Functional” F/FA, including diagrams:
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Our Motivation: Resilience in FHA

Development of Simulation- * Resilience/Simulation needs and
based Resilience Analysis tools lessons |learned:

* Need for propagation of hazardous
behavior between functions as well as
over time

« System behavior (and thus hazards) vary
significantly over control modes
~ * Importance of high-level Human, System,
Overview and Environmental interactions

Python 3.11 | pypi v1.3.3 | GitHub Release v1.3.3 j| tag v2.0-rc-6 | codefactor A | tests 301
coverage l;v;"';’-- 'NOSA | Software Class E

fmdtools (Fault Model Design tools) is a Python library for modelling, simulating, and
analyzing the resilience of complex systems. With fmdtools, you can (1) represent system
structure and behavior in a model, (2) simulate the dynamic effects of hazardous scenarios
on the system, and (3) analyze the results of simulations to understand and improve system
resilience.




FHA-Related Literature: STAMP/STPA

* Keytco?tr,itbu“?n: impo‘l:tan(;g Oft” Cor(;tglst:ﬁ;g emergent properties
con rO_ structures In acciaent - (e.g., enforcing safety constraints)
type fal I u_reS . — Individual component behavior

« Human interactions _ Component interactions
« Organizational influence f
« Control systems and automation Control Actions eodback

« Has achieved influence
* Buy-in and interest from industry

« Some talk about inco'rforating STAMP
Into standards for FH

A lot of guidance and resources!

« Gap: Only helpful for accident-type
failures, not a general language

Process

Process components interact in
direct and indirect ways

Leveson, N. (2011). Engineering a safer and more secure world. MIT. 6



FHA-Related Methods: Tumer et al.

« Key contribution: EMS functional

models for hazard analysis
» Descends from design literature

« Functions: tasks (noun-verb pairs)
performed by the system

* Flows: Energy, Material, and
Signals passed between functions

e Lots of variants in research area

« Gap: Doesn’t incorporate control
loops very well. Limited by
spacio-temporal flow
representation

Kurtoglu, T., & Tumer, I. Y. (2008). A graph-based fault identification and propagation fra7mework for

functional design of complex systems.
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Defining the Functional Reasoning
Design Language

Goals:

 Take lessons from simulation and outside research and use
them to improve FHA-supporting diagrams

* Create a way so that, in the future, we can define simulations
of systems resilience as diagrams rather than code

Major Elements:

* Blocks: e.g., functions
* Flows and Relationships: Connections between blocks

« Architectures: Overall diagrams




Behavioral Blocks

Main idea: Blocks represent behavior, of which there are three
types.
These blocks can be annotated with tags to better inform analysis

BehavioralBlock:
Behavioral element or phenomena.

|—specializes—z'\ 4 ﬁspec:ializes—l

specializes

Function: Action: Component:
Abstract functional Logical behavior or Physical hardware
t e

behavior embodied ask performed by th embodying function
by the system. system. or action behaviors.




Functions, Components, and Actions

Functions versus Components Functions versus Actions

Function: Overall Control Functionali
Functions: Overall System Behaviors unction: Overa ontrol Functionality

Affect Forward Support Frame Control Path of Travel Control Vehicle
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ST, =0 2F, =0 2Fp = ma Actions: Discrete Tasks Performed
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Components: System Hardware Embodying Behaviors \ J N\ J
. i : » Agents like operators, controllers, and
g%ltgr'ﬁ TSS t%rgr%hﬁogiha‘”ors the users are considered Functions
« Components realize these functions * Discrete tasks performed by these

- Mapping likely not be one-to-one functions are actions

.. : » Enables STAMP idea of the
« Similar to EMS/FBED idea of :
function/component mapping representing control structure
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Flows
Main Idea: Flows are nodes, not edges

Flows as Edges

Function A Flow 1—— Function B

Flows as Nodes

Function A S @ S Function B

* Flows represent shared variables which enable behavioral propagation

* Flows can be shared by more than one block, enabling efficient
representation of:
« Communications
« Multiple agents sharing and interacting in a joint environment
« Complex (more realistic) failure propagation between different functions
12




Relationships

Connection

Block <—— Connection Type ——Flow
(e.g., uses, percieves)
Activation

From ... Condition-------- > To
(e.g., x>10)
Propagation
Unidirectional Propagation
Condition » 10

To __Reverse Condition (r)—» From

N-Directional Propagation

[Block Condition]>o0
(Flow Condition)>o

Block €— Flow

Different ways of relating flows
and blocks with each other:

* Connection: is a flow in the
function(s)?
« Names/annotations tell us more
about what the function is doing

« Activation: how a condition in
one block changes another
block’s behavior

* Propagation: combination of
connection and activation

* Annotations tell us direction of
activation

13




Architectures: Functional

Overall Function Dlagram

* High-level interactions of system with its
environment
] * Includes sources for inputs/outputs as well
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Architectures: Component and Action
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Component Architectures Action Architectures represent
represent component behaviors sequences of tasks a function
In the scope of a given function performs and their inputs/outputs

 Similar to a state machine
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Demonstration—Fire Response UAV

» Goal: Qualitative demonstration/comparison between FRDL and
ARP-926C models

* Not a full analysis or FHA, just a look at what each diagram tells us

« UAV Is meant to semi-autonomously fly from a base, conduct
surveillance mitigate wildfires while communicating with
external operators

16



Demo — Survelllance UAV
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* |nputs/Outputs more abstract, but able

to be broken down elsewhere
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Demo—Survelllance UAV
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Function Block Diagram per ARP-926

« Spacio-temporal view makes it hard to trace
full propagation

Example: Electrical fault (short) in thrust/aviate function

 ARP-926 model: Unable to fly to fire area and thus
complete mission/mitigate fire

* FRDL model: Aviate fault causes adverse change in
position in the environment (i.e., a crash) as well as
adverse energy draw, and modified control feedback
propagating to other functions

changed
position |

s:dt:e -
erceive

environment
erceivel .
v an Lcnan ed
stae
T
case Retardant release. released
Control v |
10s:0
ontain and
ute
1SS

1
i:dt:o
\) Release Retardant
Aviate -
c)H ﬁ 1
:! lead / changed [retardant used]=o
upply level (retardant supplied)=0
@ \— Supplies
| EE Used (r) x
EE Supplied
I
E Used
st v
Store and Supply
c >Emergy WL [charge used]=o0

(charge supplied)=0

FRDL Functional Decomposition

* Much more specific about what flows are
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 Better for tracing failure propagation

+ Shows “how” the system would behave, not just that it fails),

\met®R
A -‘v ® "




Discussion/Conclusions

Very initial demonstration

 Didn’t go down to the level of component/action architectures
 Didn'’t provide FHA output

 \We will need to address this in future work
However:

 FRDL gives us a much more expressive means to represent
propagation of hazardous behaviors

* It Integrates multiple perspectives:

« STAMP/STPA control interactions between operator, system, and
environment

» Physical constraints defining failure propagation in the technical system
* It may also take more input effort from the analyst
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Questions?

Daniel Hulse daniel.e.hulse@nasa.gov
google scholar: scholar.google.com/citations?user=falS 74AAAAJ&hl=en
ResearchGate: researchgate.net/profile/Daniel-Hulse-4

Seydou Mbaye seydou.mbaye@nasa.gov
google scholar: https://scholar.google.com/citations?user=q7eCRgEAAAAJ&hl=en

ResearchGate: https://www.researchgate.net/profile/Seydou Mbaye
Lukman Irshad lukman.irshad@nasa.gov

google scholar: scholar.google.com/citations?user=u64zCIEAAAAJ&hl=en
ResearchGate: researchgate.net/profile/Lukman-Irshad

Fmdtools Simulation Package
repo: github.com/nasa/fmdtools
documentation:  nasa.github.io/fmdtools/

This material is declared a work of the U.S. Government and is not subject to copyright protection in the

United States. Approved for public release; distribution is unlimited. 20



mailto:daniel.e.hulse@nasa.gov
https://scholar.google.com/citations?user=fa1S_74AAAAJ&hl=en
https://www.researchgate.net/profile/Daniel-Hulse-4
mailto:seydou.mbaye@nasa.gov
https://scholar.google.com/citations?user=q7eCRgEAAAAJ&hl=en
https://www.researchgate.net/profile/Seydou_Mbaye
mailto:lukman.irshad@nasa.gov
https://scholar.google.com/citations?user=u64zCIEAAAAJ&hl=en
http://www.researchgate.net/profile/Lukman-Irshad
https://github.com/nasa/fmdtools
https://nasa.github.io/fmdtools/

	Slide 1: Defining a Modelling Language to Support Functional Hazard Assessment
	Slide 2: Motivation: Early Failure Analysis
	Slide 3: FHA-Related Standards
	Slide 4: FHA-Related Standards: ARP 926C
	Slide 5: Our Motivation: Resilience in FHA
	Slide 6: FHA-Related Literature: STAMP/STPA
	Slide 7: FHA-Related Methods: Tumer et al.
	Slide 8: Defining the Functional Reasoning Design Language
	Slide 9: Behavioral Blocks
	Slide 10: Functions, Components, and Actions
	Slide 12: Flows
	Slide 13: Relationships
	Slide 14: Architectures: Functional
	Slide 15: Architectures: Component and Action
	Slide 16: Demonstration—Fire Response UAV
	Slide 17: Demo – Surveillance UAV
	Slide 18: Demo—Surveillance UAV
	Slide 19: Discussion/Conclusions
	Slide 20: Questions?

