
Runtime Verification of Hard Realtime
Systems with Copilot: A Tutorial

Ivan Perez

KBR @ NASA Ames Research Center

Alwyn E. Goodloe

NASA Langley Research Center

Frank Dedden

System F Computing

RV Motivation

• Formal verification proves a correctness property for every execution
of a program correct
• Most software is too large and requires very specialized workforce

• Testing demonstrates correctness on specific test cases

• Runtime verification (RV) detects if a correctness property is violated
during execution and invokes procedures to steer the system into a
safe state
• A form of dynamic system verification

2

RV in Practice

3

Monitors

System

Environment

https://photojournal.jpl.nasa.gov/catalog/PIA04413

Foundations of RV

• Given a specification φ of the property we want to check
• Specification logics: linear temporal logics (LTL), regular expressions, …

• A trace τ of the execution capturing information about the state of a
system under observation (SUO)
• System must be instrumented to capture the trace

• An RV monitor checks for language inclusion τ ∊ 𝔏(φ)
• Accept all traces admitting φ

 RV frameworks synthesize monitors from specifications

4

RV Engineer Checklist

• Specify the property to be checked

• Identify the trace to be captured

• Synthesize a monitor that checks the property using an RV
framework

• Create handler that steers the system to a safe state when the
property is violated

• Install monitor

5

Copilot

• Copilot is a language and runtime verification framework targeting
hard real-time safety-critical systems

• Stream based specification language similar to Lustre and LOLA

• Employs sampling rather than extensive code instrumentation
• Appropriate for monitoring safety of CPS systems

• Copilot specifications are translated into MISRA C99 monitors or to
BlueSpec and Verilog for implementation in FPGAs

• Effort started in 2008 as a research program
• Galois and the National Institute of Aerospace (NIA)

• Copilot has evolved into a NASA software engineering tool
• Adapted NASA Software Engineering development processes
• Open source
• Monitors classified as “Mission Support Software” and flown on NASA flights

6

Copilot Language

• Copilot language implemented as a Haskell Embedded Domain
Specific Language (EDSL)

• Users can be productive in Copilot without having to learn Haskell

• Users can write many useful specifications/programs using only a
small set of Copilot combinators

• There is an expanding library of predefined combinators to aid in the
writing concise specifications

• The Copilot language has been used for general purpose
programming of embedded systems
• Not just for RV

7

Questions?

8

Contact Information:

Ivan Perez.
ivan.perezdominguez@nasa.gov

Alwyn Goodloe.
 a.goodloe@nasa.gov

Frank Dedden.
frank@systemf.dev

mailto:a.Goodloe@nasa.gov

	Slide 1: Runtime Verification of Hard Realtime Systems with Copilot: A Tutorial
	Slide 2: RV Motivation
	Slide 3: RV in Practice
	Slide 4: Foundations of RV
	Slide 5: RV Engineer Checklist
	Slide 6: Copilot
	Slide 7: Copilot Language
	Slide 8: Questions?

