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1. Abstract  
Riparian zones are thin strips of wetland that occur along the edges of rivers, lakes, and other water 
bodies. They provide many ecosystem and societal benefits such as stream bank stabilization, flood control, 

and habitat stability, making these zones very important areas to preserve and protect. Recognizing the need 
to accurately map these ecosystems in a cost-effective way, we partnered with the South African National 
Biodiversity Institute (SANBI) and the Biodiversity Survey of the Cape (BioSCape) to develop a 
GIS methodology using Esri's ArcGIS Pro and data from Landsat 9 Operational Land Imager-2, Sentinel-2 
Multispectral Instrument, and the Shuttle Radar Topography Mission to identify potential riparian zones 
(PRZ) and observed riparian vegetation (ORV) in the Southern Cape and the North West Province of South 
Africa to estimate the actual riparian vegetation (ARV) within those areas. Potential riparian ecosystems were 

calculated by utilizing a Topographic Wetness Index (TWI) and a water feature layer, while observed 
riparian vegetation were calculated by overlaying a Normalized Difference Vegetation Index (NDVI) and 
TWI. Actual Riparian Vegetation is determined by the overlap of ORV with PRZ and is done with 
conditional statements; ORV within PRZ is ARV. This method significantly improved a current riparian land 
cover classification since it combined high resolution optical imagery and topographic data. We anticipate 
such maps will be used by conservationists and practitioners interested in riparian monitoring and 

management.  
 
Key Terms 
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2. Introduction 
Freshwater is one of, if not the most important natural resources for humanity, yet it only makes up a very 
small amount of the total water supply. Freshwater and the ecosystems that come along with it have been at 
the center of human development for most of history and are relevant to many cultures. Beyond human-
based needs for this limited resource, this marginal amount of water is home to nearly 6% of all known 
species (Dudgeon et al., 2006). These freshwater ecosystems range from simple tributaries in headlands to 
landscape-scale reveries that are hundreds of square kilometers, and so are not only highly biodiverse but also 
physically diverse, which leads to invaluable ecological services and societal benefits: benefits range from 
sediment deposition stabilizing stream banks to natural filtration of water from natural and man-made 
pollutants (Naiman et al., 2005). The interfaces between these freshwater ecosystems and terrestrial upland 
areas are unique in their characteristics, borrowing traits from both surrounding ecozones. These highly 
dynamic zones are called riparian zones, which are characterized by their high spatially and temporally 
dynamic nature. Many definitions of these zones exist for specific reasons; however, for this study, we classify 
riparian zones as regularly inundated transitional regions extending between waterbodies and the terrestrial 
lands that surround them (Naiman et al., 2005).  
 
Because of the importance to humans, riparian ecosystems are often cultivated, and in highly developed areas 
such as Europe and North America, up to 90% of riparian zones are functionally extinct (Tockner & 
Stanford, 2002). Tockner & Stanford (2002) and Dudgeon et al. (2006) found that the main anthropogenic 
pressures on these ecosystems are habitat destruction, flow and flood pattern alteration, water pollution, and 
invasive exotic species, with the loss rate only accelerating. Because of their rapid loss and ecological 
importance, understanding and monitoring the spatial and temporal patterns of riparian zones is the first step 
for responsible and effective management. Earth observations (EO) are a highly advantageous monitoring 
technology because of the extent of coverage and the ability to collect data at regular return intervals. 
 
There are numerous ways to categorize riparian zones. Fernández et al. (2012) argued that floodplain extent 
should be used as a primary riparian delineator by using remotely sensed Digital Elevation Models (DEMs). 
Their reasoning stems from the fact that hydrological regimes can influence both vegetation and geological 
structures. In addition to elevation data, remotely sensed multispectral data integrated with GIS has been used 
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to effectively delineate vegetation cover estimation from Yang (2007) integrated remotely sensed multi-
spectral EO data with Geographic Information Systems (GIS) to effectively delineate and map riparian 
vegetation community patterns using their unique spectral signature. With the rapidly increasing availability of 
remotely sensed EO data and GIS software, EO data products are becoming standard in the management of 
riparian ecosystems. However, this management method is only available to the few with access to the data 
and software. Often, the most threatened riparian ecosystems are also in areas with both low spatial data 
availability and field measurements, rendering this powerful decision support tool inaccessible in many cases 
(Stutter et al., 2021). As the human population in these regions increases, the impacts on the riparian 
ecosystems will also rise, with some of the most threatened Riparian ecosystems being in East Asia, North 
America, and Africa (Tockner & Stanford, 2002). South Africa provides an example of a region with a high 
impact on riparian ecosystems but low access to high-resolution EO data, which would help support 
mitigation efforts for some of the impacts.  

 
 

    

 
Figure 1. Study site map of the Western Cape and North West Province in South Africa 

  
In partnership with the South African National Biodiversity Institute (SANBI) and the Biodiversity Survey of 
the Cape (BioSCape), our project created a methodology that helps to identify riparian areas not highlighted 
in prior map products. SANBI provides public access to biodiversity data, promotes sharing information and 
knowledge, advancing policy, and conserving biodiversity. Currently, SANBI utilizes a combination of 
methods for mapping riparian ecosystems. This includes field observations, soil mapping, and heads-up 
digitization of Google Earth and historic maps. This process is labor intensive and relies on datasets that may 
not be available for the entire country, making riparian ecosystems difficult to identify. BioSCape is a research 
collaboration between the US and South Africa that combines remote sensing and field data to better 
understand biodiversity on land and water in the Greater Cape Floristic Region.  
 
Historically, land cover classification efforts have not accurately captured riparian zones due to the highly 
dynamic nature that riparian zones inhabit. We determined 2 sites to carry out this methodology due to the 
differences in the environmental conditions and in riparian data availability (Figure 1). The study site near 
Cape Town is wetter, more populated, and has higher quality data available such as Light detection and 
ranging (LiDAR); The North West (NW) province has a far more arid environment, with a lower population 
and high-quality data is scarce. Due to the dramatic differences in climate, population, and data quality, a 
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methodology that maps riparian ecosystems throughout South Africa—not just in places with favorable 
environments or data availability—must be developed. This methodology should combine the geospatial data 
that SANBI possesses with NASA EOs. While a second project team will work on mapping the entirety of 
South Africa, our team concentrated on refining the methodology for mapping the selected sites. We 
modeled our methodology after Weissteiner et al. (2016) and combined "potential" riparian zones (PRZ; 
locations where riparian zones could exist) with "observable" riparian zones (ORZ; locations where riprian 
zones are observed to exist) to produce an "actual" riparian zone for the year of 2023 (locations where PRZ 
and ORZ overlap; Vegetation Data Came from 2023 as we wanted the most up to date riparian maps 
possible; however Landcover data comes 2022 and our DEM uses data from 2000). This involved using river 
networks from open-source datasets and ground elevation and calculating the Normalized Difference 
Vegetation Index (NDVI), and the Topographic Wetness Index (TWI). Our end products will help partners 
understand where their riparian zones are most effective and where to target future conservation efforts. 
Overall, this project provides repeatable GIS-based methods which use freely available EO data to delineate 
riparian zones that can be used to guide future monitoring and decision-making. 

3. Methodology 
3.1 Data Acquisition  
We selected two time periods for each study site: peak rainy season (April-October) for the North West 
Province, and the peak rainy season (August-September) for the Western Cape to identify the annual 
maximum NDVI and TWI. As the most recent land cover classification map of South Africa was published 
in 2022, we focused on post-2022 date ranges for our study sites. We used Landsat 9 Operational Land 
Imager 2 (OLI-2) and Sentinel-2 Multispectral Instrument (MSI) imagery to analyze vegetation health from 
January 2023- December 2023 (Table 1).  For the Landsat data, we used Collection 2 Tier 1 Surface 
Reflectance because it is the highest quality data available that was preprocessed and atmospherically 
corrected by the USGS. We acquired the 2022 South African National Land Cover map (SANLC), which 
covered the entire country, and a geodatabase which included rivers, mapped wetlands and potential riparian 
area shapefiles from SANBI to analyze how accurately riparian zones were mapped (Table 2). 
 
To acquire the necessary atmospherically corrected Sentinel-2 MSI (Level 2A) and Landsat 9 OLI-2 data, we 
used the Google Earth Engine JavaScript API (GEE) platform. We filtered the data for the year of 2023 with 
a five percent cloud cover threshold and filtered the images for the highest mean NDVI values (section 3.2.6) 
to best represent vegetation greenness patterns in the study area. Since a Digital Terrain Model (DTM) was 
not available, our team chose a DEM of 1 arc-second or approximately 30 meters derived from SRTM. To 
account for any edge-effects in future calculations, our team created a buffer around the study area. To match 
the resolution of the Sentinel-2 images, we resampled the DEM to a 10 meter resolution.  

 
Table 1  
Earth observations used in this project 

Platform & Sensor  Processing Level  Date Range Used  Use Cases 

Landsat 9 OLI-2 
Level-2 SR Collection 2  

Tier 1  
January 2023 – December 2023  NDVI 

Sentinel-2 MSI  Level-2A   January 2023 – December 2023  NDVI 

NASA SRTM N/A 2000 DEM, TWI 
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Table 2  
Ancillary data used in this project  

Name  
Product 

Type 
Data Type Data Provider  Use Cases 

The South 
African 

National Land 
Cover map 
(SANLC) 

Land Use 
Land Cover 

map 

Raster, 20 
meters 

Republic of South Africa: 
Department of Forestry, 

Fisheries, and the 
Environment 

Water feature extraction 
and agriculture mask 

 River 
Polylines 

Centerline 
Shapefile 

Vector SANBI Water feature extraction 

National 
Wetland Map 

5 (2018) 
Polygon Vector SANBI 

Delineated riparian zone 
accuracy assessment 

Potential 
Riparian Areas 

Polygon Vector SANBI 
Delineated riparian zone 

accuracy assessment 

 

3.2 Data Processing 

3.2.1 Water Feature Data  
The water feature surface used in this study comprised two authoritative datasets. The 2022 geographic South 
African National Land Cover map (SANLC) had water body pixels extracted to create a water mask. We 
extracted pixel values that represented Natural Rivers, Natural Lakes, Natural Pans (flooded @ observation 
times), Artificial Dams and Canals, Herbaceous Wetlands, and Bare Riverbed Material. The mask excluded all 
other classes and non-freshwater water sources like lagoons and estuaries. These pixels were extracted to a 
new layer with the exact resolution of the parent dataset of 20 meters. Because of the highly variable climate 
in South Africa, many of the rivers contained little to no water during the SANLC classification campaign. 
Hence, the resulting dataset underrepresented the water bodies in South Africa. To counter this effect, 
SANBI provided a shapefile containing all rivers in South Africa. Rivers are highly dynamic and disturbance-
prone; they dance, change course, dry up, and flood. Because of this, and for ease of analysis, a 30-meter 
buffer was applied to the rivers to approximate their location better and rasterize them in the same step. The 
shapefile was rasterized to the same spatial resolution as the SANLC and assigned a 30-meter pixel width. 
The extracted water feature raster was merged with this river raster, creating a raster composite of water 
bodies and features that more accurately represent river networks in more arid environments in ArcGIS Pro. 

3.2.2 Agriculture Mask 
To create a more accurate ORZ, areas that were classified as any type of agriculture or cultivated lands in the 
2022 geographic South African National Land Cover map (SANLC) were removed. Agriculture is often 
adjacent to riparian vegetation and can be confused with ORV when using only NDVI, so it was important to 
mask out these pixels to ensure they were not included in any final riparian layers.  
 

3.2.3 Calculating Total Wetness Index  
Because riparian vegetation is water dependent and usually river adjacent (Huylenbroeck et al., 2020), we 
calculated topographic wetness index (TWI) to determine where water could potentially accumulate (Eq. 1, 

Winzeler, 2022). In equation 1, 𝐴 represents the catchment portion of the land (area upstream of a land unit 

from which water flows) while 𝐵 represents the slope of the land. The geoprocessing tools fill (to fill sinks), 
flow direction, flow accumulation, and slope were run on the SRTM DEM. We then used the Raster 
Calculator function in ArcGIS Pro to calculate TWI. To ensure accurate calculations and avoid null values, a 
small constant of 0.00001 was added to all slope values. A subjective threshold of 0.3 was chosen based on 
visual inspection. 
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𝑇𝑊𝐼 = 𝑙𝑛⁡[
𝐴

𝑡𝑎𝑛𝐵
] 

(1) 

3.2.4 NDVI Vegetation Threshold 

An extensively used metric for assessing the density and health of vegetation is NDVI. To exclude all non-
vegetated areas in the analysis, our team calculated NDVI on the Sentinel-2 and Landsat 9 imagery using the 

near-infrared and red bands (Eq. 2; Przyborski, 2000). A low NDVI threshold of 0.3 was selected to 
minimize the risk of inadvertently excluding vegetation. 

 

NDVI⁡=⁡
NIR⁡-⁡RED

NIR⁡+RED
 

  (2) 

3.3 Data Analysis 

3.3.1 Delineation of Groundwater-dependent Ecosystems (GWDE) 
Raster cells that met both threshold criteria for NDVI and TWI, were likely to be Ground-Water Dependent 
Ecosystems (GWDE). The structure, composition, and overall functioning of groundwater-dependent 
ecosystems are primarily maintained by groundwater, which provides all or part of the water needed for them 
(Huylenbroeck et al., 2020). This identification assumed that areas that satisfied both predefined threshold 
criteria for NDVI and TWI values, are more likely to be influenced by groundwater. These areas were 
extracted for further analysis.  

3.3.2 Classifying Riparian Vegetation 
Initially, sample points to use for classification were selected from iNaturalist observations. Our team only 
used “research-grade” observations (observations that were agreed upon by the iNaturalist community) as 
there was a consensus on the species identification. All vegetation points within the study sites in 2023, both 
native and invasive. However, points often overlapped or were in close proximity to each other. Since our 
team had limited knowledge about South African vegetation, we did not feel comfortable doing a supervised 
classification. Instead, an unsupervised classification was executed on the areas identified as GWDEs. The 
"Iso Cluster Unsupervised Classification" in ArcGIS Pro was utilized as the main classifier for this process. 
We used spectral reflectance, standard deviation, rectangularity, and compactness as segment attributes.  
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Figure 2. Shows the simple method for calculating PRZ including performing a path distance analysis (Section 
1), combining this analysis with the TWI dataset (Section 2), and finally reclassifying the data as discrete 

values to differentiate areas of overlap (Section 3). The output shows the PRZ. 

3.3.3 Potential Riparian Zone (PRZ) Calculation 
In essence, the PRZ looks at the interactions of water features within a physical landscape and has two inputs: 
water features and a TWI. Superficial characteristics like distance from water features and slope can provide 
enough context to rule out areas for PRZ. This is important since riparian zones are distinct from upland 
vegetation communities, often separated by a dramatic change in slope (Naiman et al., 2005). 
Section 1 in figure 2 shows a path distance analysis, which searches for areas close to water features until a 
fixed distance is reached. Path distance is similar to Euclidian distance (straight line), but it differs when 
considering elevation surface straight line distance. ArcGIS Pro’s Path distance tool allows users to input a 
cost surface, reducing or blocking the tool from searching further. In this scenario, the slope positions itself 
perfectly as a cost surface and limits the search distance when a significant slope value is encountered. The 
combination of the two properties of the tool had the unintended effect of mapping dry or extinct riverbeds 
where no water features were located while ignoring ridgelines and bluffs. This had a similar effect as a 
floodplain mapping model, another critical indicator of riparian zones (Fernández et al., 2012).  

Section 2 combines the two datasets, the TWI created previously and the path distance to water features 
created just above. Because riparian zones have nondescript boundary lines, it is fitting to use a nondescript 
method for calculating them. Fuzzy Logic is a nondescript way to help categorize data between two different 
datasets. It has two major parts: Membership and Overlay.  Fuzzy membership allows pixel values of all sizes 
to be remapped to values between 0 and 1, where favorable data is assigned numbers closer to 1, and 
unfavorable data is assigned numbers closer to 0. This nondescript way of assigning numbers accounts for the 
gradual transitions within the PRZ and helps provide a nuanced understanding of the landscape's likelihood 
of being a PRZ. For the path distance to water features, smaller numbers signified less distance from water 
features and were used to assign membership. Specifically, in ArcGIS Pro’s Fuzzy membership tool, it was 
assigned MSSmall and membership mean of 0.1, with a standard deviation of 1. Regarding the TWI, more 
extensive features represented more flow accumulation and larger catchment areas, and so had larger values 
signify membership. TWI was assigned an MSLarge and membership mean and standard deviation of 1.  

Fuzzy Overlay combines fuzzy membership layers to make another layer whose values represent a composite 
of the input membership layers, with values closer to 1 more likely to be a PRZ. The two resulting fuzzy 
membership datasets were combined using ArcGIS Pro’s fuzzy overlay tool with an overlay type of sum. The 
sum is not to be confused with the additive sum. This overlay type of sum heavily favors areas with high pixel 
value overlap and is based on a linear combination of the input features unique data distributions. This 
analysis favored areas closer to water with a large flow accumulation-drainage basin.  
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Section 3 aimed at refining the PRZ so that areas of little or no overlap between fuzzy membership layers 
were removed. These values will vary from analysis to analysis because of the nondescript nature of fuzzy 
logic. While values ranging from 0 –1 are intuitive, they still include areas of little or no agreement between 
fuzzy membership layers. Removing these non-overlapping areas can be done by reclassifying pixel value 
ranges into NODATA and integers. The range from 0 to 0.8 was given NODATA, 0.8 to 0.9 0, and 0.9 to 1 
in the analysis. This ensures that only the areas with the highest degrees of overlap could be PRZ. This 
method of discrete boundaries on the data produces holes and islands and was hard to use in further analysis, 
so a continuous surface was needed. Cleaning the boundary of the raster removed voids in the data and 
helped smooth out jagged edges. This was achieved using the boundary clean tool in ArcGIS Pro. 

3.3.4 Actual Riparian Vegetation (ARV) Calculation 
Actual Riparian Vegetation is determined by the overlap of ORZ with PRZ and is done with conditional 
statements; ORZ within PRZ is ARV. The ARV represents vegetation by considering slope, proximity to 
water features, flow accumulation, drainage area size, and NDVI. The resulting vegetation resembles the 
biophysical characteristics of true riparian vegetation.  
 
3.3.5 Accuracy Assessment & Confusion Matrix 
In GEE, we performed an unsupervised classification on areas that only were identified as ARV that could 
potentially contain riparian landcover. As the 2022 geographic South African National Land Cover map 
(SANLC) identified 5 types of Landcover which could contain riparian vegetation (including contiguous low 
forest & thicket, dense forest & woodlands, open woodland, herbaceous woodland, and lowland shrubland), 
we chose to use 5 classes for the plant communities could contain riparian vegetation. As this was an 
unsupervised classification and we had no on the ground data to compare to, we named these classifications 
‘Riparian 1’, ‘Riparian 2’, ‘Riparian 3’, ‘Riparian 4’, & ‘Riparian 5’ in lieu of more specific identification (Figure 
4). We performed an accuracy assessment of the potential riparian vegetation map using the potential riparian 
vegetation map to showcase how well the unsupervised classifier delineated the 5 classes. The assessment 
used stratified random sampling, with 2000 points in the sample, making sure each of the 5 classes was 
represented equally and robustly in the sample equally (Table 1).   
 

4. Results and Discussions 
4.1 Potential Riparian Zone 
4.1.1 Analysis of Results 
The resulting methodology produced just over 6 million hectares of potential riparian zones across both study 
sites. Area in hectares was achieved by equation 3 below, with pixels mapped in meters: 
 

𝐴𝑟𝑒𝑎 (𝐻𝑎)  =  
(𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑑𝑒 𝐿𝑒𝑛𝑔𝑡ℎ 2)

10,000
 

(3) 
 
The total PRZs classified encompass nearly half the 12,579,304-hectare study area, making up 48% of the 
total area between both study sites. Of those 12.5 million hectares of the study area, 9.79% were considered 
high confidence PRZ.  Of the high confidence PRZ, 6.09% were above the 0.9 threshold, and 3.70 were 
below 0.9 and above 0.8.  The PRZ > 0.9 was 12.7% of the total PRZ area classified, and the PRZ > 0.8 but 
< 0.9 made up 7.71 percent of the total PRZ area classified. Statistics were not calculated for any PRZ values 
below 0.8, which comprised 79.59 percent of the remaining PRZ classified (Table 3).  
 
 
 
 
 
 
 



   
 

8 

 

Table 3 

Simple data analysis ran on the classified PRZ 
Zone Type Pixel Count 

(px) 
Area (Ha) Percent of Study 

area (12,579,304 Ha) 
Percent of 

Total PRZ area 

Total PRZ classified 67,113,997 6,040,259.73 48.01  

Highest Confidence PRZ > 0.9 8,525,459 767,291.31 6.09 12.7 

High Confidence PRZ > 0.8 5,178,279 466,045.11 3.70 7.71 

 
 
SANBI had conducted a preliminary assessment of PRZ using an aggregation of soil data, hydrological 
extents, hand-drawn boundaries from aerial images, and more. No campaign has validated these, so they 
cannot be used to validate our model. Instead, they were used to assess over/underfitting. In order to 
compare the spatial patterns of our PRZs with those of SANBIs, we used a simple proportion index to 
demonstrate if our model was under or overfit when compared to a reference PRZ. The equations for the 
Proportion Index are below where Equation 4 details how the proportion inside was calculated and Equation 
5 details how the proportion outside was calculated: 
 
 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝐼𝑛𝑠𝑖𝑑𝑒  =  
𝐶𝑜𝑢𝑛𝑡 𝐼𝑛𝑠𝑖𝑑𝑒

𝐶𝑜𝑢𝑛𝑡 𝐼𝑛𝑠𝑖𝑑𝑒  +  𝐶𝑜𝑢𝑛𝑡 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
 

(4) 
 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑠𝑖𝑑𝑒  =  
𝐶𝑜𝑢𝑛𝑡 𝑂𝑢𝑡𝑠𝑖𝑑𝑒

𝐶𝑜𝑢𝑛𝑡 𝐼𝑛𝑠𝑖𝑑𝑒  +  𝐶𝑜𝑢𝑛𝑡 𝑂𝑢𝑡𝑠𝑖𝑑𝑒
 

(5) 
 

The total area of PRZ, which agreed with SANBI’s reference dataset, spanned 354,166.38 hectares. The 
majority of both >0.9 and > 0.8 confidence PRZs were located outside the reference dataset, 66.6 percent 
and 33.3 percent, respectively. Conversely, 33.3 percent of >0.9 PRZ and 21.1 percent of >0.8 PRZ were 
within the reference dataset (Table 4).  
 
Table 4 

Simple data analysis ran on the classified PRZ against reference PRZ data 

Zone Type Pixel Count  Area (Ha) Proportion of PRZ inside 
Reference area (%/Ha) 

Proportion of PRZ outside 
Reference area (%/Ha) 

 

Highest Confidence 
PRZ > 0.9 

8,525,459 767,291 33.3/255,815 66.6/511,476 

High Confidence 
PRZ > 0.8 

5,178,279 466,045 21.1/98,351 78.9/367,694 

 
 

4.1.2 Discussion 
In total, the applied method identified a little over 6 million hectares of land in which riparian zones could 
theoretically exist. When comparing SANBI's PRZ zones, our model appeared to overestimate PRZ. Also 
note that the reference dataset has never been validated. The proportion index for each PRZ class 
demonstrated that most PRZ pixels are not within the reference dataset for digital numbers > 0.8 and >0.9. 
This can be primarily attributed to the water features being classified as riparian. This issue relates to how the 
water feature layer was made. Large reservoirs and manmade lakes, along with natural lakes, are mistakenly 
classified as PRZ because of their high proximity to water and high flow accumulation. Removal of these 
zones should significantly reduce the outside reference area. However, this analysis was never run since the 
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reference data could not be verified. However, an agreement can be seen visually between the two, further 
supporting the hypothesis that outside pixel counts are obscured by prominent water features misclassified as 
PRZ.  
 
Further analysis needs to ensure extensive water features (e.g., lakes, reservoirs, and artificial water bodies) are 
not classified as PRZ within themselves but instead around their edges. Secondly, further studies should be 
far more liberal with the thresholds to characterize PRZ and use a lower threshold like 0.5 or none. PRZ 
zones were critical in determining ARV, so they should be as broad as possible while still relevant to the water 
features they relate to. Our PRZ zones showed great promise in defining the theoretical boundaries of 
riparian ecosystems, but further analysis should incorporate flood zones, inundation levels, and historical 
flood heights to understand the hydrological regime better. Finally, and most importantly, future studies 
should not include TWI as a member of PRZ. TWI seemed to serve little purpose in calculating PRZ; it rarely 
connected PRZ zones and caused gaps in the final data product. Instead, we propose further studies that 
utilize wetness coefficients, as Weissteiner et al. (2016) have used. Several wetness coefficients have been 
derived using data from mainstream sensors, including MSI on Sentinel 2 (Nedkov, 2017); Such methods 
have been used to derive highly accurate vegetation characteristics in arid and semi-arid environments 
(Lamqadem et al., 2018). Even with the statistics pointing to our model overfitting PRZ, our model intended 
to do just that. Combined with other analyses, the proposed method provides a significant first step for 
narrowing in on riparian ecosystems within a landscape when given only water features and a DEM, which 
makes this method especially attractive option for aiding wetland land management & conservation planning. 
 
4.2 Actual Riparian Vegetation 
4.2.1 Analysis of Results 
 
                  Table 5 
                 ARV Statistics by Study Area 

Study Area Area (Ha) Percent of Site-
Specific GWDE 

Percent of Total 
ARV 

North West ARV 140967.18 20.80 96.84 

Cape Town ARV 4597.92 45.86 3.16 

 
 

Within the over 6 million hectares of identified PRZ across both study sites, 145,565 hectares were classified 
as ARV. Area in hectares was achieved by using equation 1, with pixels mapped in meters. It is important to 
note that this ARV is based on a GWDE figure that had urban development and agriculture removed. The 
North West province study area has 20.80% of its GWDE classified as ARV, which comprised most of the 
ARV classified, at 96.84%. Cape Town had 45.86% of its GWDE classified as ARV, which made up just 
3.16% of the total ARV classified. Because the SANBI-provided PRZ zones had no relation to vegetation, 
they were not used to assess the ARV results.  
 
Five classes were created for the unsupervised classification (Figure 4). Since, we are not familiar with South 
African vegetation, input was needed to correctly identify these riparian communities. Overall accuracy 
compared to reference data was high, at 97.3%. And while there was little confusion between classes (Table 6) 
and the accuracy (i,e., level of agreement with reference data) was very high, there are drawbacks to using this 
type of accuracy assessment. For example, there is no ground truth/validation data to compare 
the classification against, so it is only testing how well the classifier works, not necessarily if it is right. 
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Table 6 
Confusion Matrix for unsupervised classification of potential riparian vegetation compared to available reference data 

 
Riparian 1 Riparian 2 Riparian 3 Riparian 4 Riparian 5 

Riparian 1 1,006 0 13 3 8 

Riparian 2 0 419 0 3 0 

Riparian 3 19 0 946 7 13 

Riparian 4 3 7 26 991 0 

Riparian 5 14 0 8 0 974 

 
 
4.3.2 Discussion 
Due to the lack of validation data, the summary statistics provided little information about the accuracy of the 
ARV. When visually inspecting the data, many interesting spatial patterns were observed in the resulting 
ARV, indicating some major takeaways. Primarily, and most importantly, the proposed methods suggest that 
large-scale riparian zone classification can be conducted with freely available EO data and produce usable 
results. Figure 3 shows how the process can distinguish riparian vegetation from cultivated vegetation and 
how well it can navigate through a heavily cultivated area full of disturbances. 

Figure 4. Unsupervised classification of 
riparian vegetation in the Study Site 

Northeast of Cape Town 
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Figure 3. This figure shows ARV in blue and GWDE in yellow in the North West study site. 

Figure 5 again demonstrates how well the method can distinguish between cultivated vegetation and 
vegetation likely to be riparian. However, this method was imperfect, and some drawbacks mainly related to 
the TWI. Visually examining the spatial patterns of the ARV showed that the TWI was far more effective at 
predicting ARV in the more mountainous Cape Town study sight, as seen in Figure 5. TWI also played a 
dramatic role in determining where vegetation was. The first example is that water in perennial rivers with 
elevated NDVI values was classified as ARV, while the surrounding vegetation was not. Figure 6 is an 
example of this anomaly occurring. While this was the case for many downstream waterways, headwaters, and 
waterways before and after artificial water features seemed to be exempt from this phenomenon, as seen in 
Figure 6. Even though the aerial imagery was not taken at the same time the multispectral imagery was 
collected, these initial conclusions suggest that slower-moving waters might support more photosynthetic 
organisms, which could be included in the final GWDE.  The second example of TWI incorrectly influencing 
where ARV was classified can be seen at the bottom left of Figure 6, where forested vegetation communities 
were not classified as ARV. There could be a handful of reasons, ranging from DEM’s spatial resolution not 
capturing the slope accurately to the NDVI values of the vegetation not being high enough to meet the ARV 
threshold. We speculate, however, that it was related to the TWI in that area not breaching the threshold used 
to classify GWDE, pointing to the sporadic distributions of GWDE and, thus, ARV as evidence for the 
arbitrary nature of the incorporation of TWI. However, these issues seemed unique to the flatter areas and 
epically evident in North West province. 
 
 
 
 

                                      
 
 
 
 

 

Figure 5. This shows ARV in blue and 
GWDE in yellow in the Cape Town 

Study Site. 

Figure 6. This shows perennial 
waterways being classified as ARV in 

the NW Study Site. 
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While being sporadic, the method for classifying ARV narrows down the search of riparian vegetation within 
a landscape significantly, and initial visual comparison shows significant promise for the refinement of this 
method to produce accurate results. Specifically, improvements with the physical predictors of ARV mainly 
relate to the TWI index used. TWI shines in areas with more topographic relief. TWI produced GWDE with 
matched vegetation on the ground; however, when using a PRZ zone to search for vegetation, our analysis 
showed that TWI seemed to limit our ability to capture vegetation accurately as it narrowed vegetation 
communities too much. Further analysis should avoid using TWI because the dynamic nature of riparian 
zones doesn’t tend to match the ridged predictions of flow accumulation that TWI predicts.  

5. Conclusions 
Our team used remotely sensed imagery from Landsat 9, Sentinel-2, and NASA SRTM to classify and detect 
riparian zones in South Africa. We developed a methodology using a two-pronged approach that utilized both 
physical and biological features characteristic of riparian areas. The parameters considered in our model are 
NDVI, TWI, and elevation. We produced maps of riparian zones in our two study sites using data from 2023, 
to provide the partners with information about the current extent of these ecosystems. Using these methods, 
we detected 145,565 hectares of actual riparian vegetation occurring on our two study sites. 

We found it feasible to use remote sensing methods for our project's ecological conservation application. Our 
results suggest that the methods successfully detect riparian zones using data that was freely available to the 
public. This benefits our partners as it is much less expensive and labor-intensive than previously used 
methods of detecting these wetland areas. Further projects may consider using ground validation data to 
improve result accuracy and incorporate a temporal aspect to this analysis, as these ecosystems are 
disturbance prone. 

The products delivered to our partners can be used to help assess current riparian ecosystem health and assist 
in planning and protecting these important ecological areas. The methodologies established by our project 
can be applied to other areas in South Africa to help create a cohesive map across the nation and increase 
accessibility to riparian extent data. Our products will also assist SANBI in contributing to compilation of the 
South African National Land Cover Map. 
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Figure 7. This shows that faster-moving 
waterways avoided being classified as 

ARV in NW 
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This material contains modified Copernicus Sentinel data (2023), processed by ESA.  
 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. 
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7. Glossary 
ARV – Actual Riparian Vegetation 
DEM – Digital Elevation Model  
DTM – Digital Terrain Model 
Earth Observations – Satellites and sensors that collect information about the Earth’s physical, chemical, 
and biological systems over space and time. 
Fuzzy membership – Scales numerical values from zero to one. 
GEE – Google Earth Engine.   
GIS – Geographic Information Systems 
GWDE – Groundwater Dependent Ecosystems 
MSI - Multispectral Instrument.  
NASA SRTM – NASA Shuttle Radar Topography Mission 
NDVI - Normalized Difference Vegetation Index 
NDWI - Normalized Difference Vegetation Water Index  
OLI - Operational Land Imager.  
PRZ – Potential Riparian Zones 
Riparian Zone - thin strips of land that occur along the edges of rivers, lakes, and other water bodies 
TIRS - Thermal Infrared Sensor.  
TWI - Topographic Wetness Index 
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