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Introduction

Science Questions:

How effective are QML methods compared to classical
approaches in predicting climate-induced phenomena
like “crop-frosting” using NASA EO data?

How can we leverage KG to organize information and
integrate the ML results with DTs?

This study explores the feasibility of leveraging
quantum machine learning (QML) to analyze NASA
Earth Observational (EO) data for climate change
research, with a particular focus on the phenomenon of
“crop frosting” which has become more prevalent due to
climate change. We implemented and evaluated two
QML models, the Variational Quantum Classifier (VQC)
and Quantum Support Vector Classifier (QSVC), in both
simulated and real quantum computing environments
using a 127 qubit IBM quantum processor. Our study
emphasizes the scientific rigor in comparing these
quantum models with a classical Support Vector
Machine (SVM) classifier, highlighting their performance
in processing climate data. The results offer valuable
insights into the potential scientific advantages,
limitations, and scalability of QML for analyzing EO
datasets, thus paving the way for more advanced
climate modeling and predictive analytics using
quantum computing. We showcased how
Environmental Interaction Knowledge Graphs (EIKGs)
and Digital Twins (DTs) can be integrated into this
study. This research underscores the transformative
potential of Classical and QML leveraging KGs and DT
to address the multifaceted challenges posed by
climate change.
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Fig 2. Classical & QML Workflow for Crop-Frosting Project
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Fig 4. Schema: Integration for EIKGs, DTs and ML
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Classical Machine Learning Results:

Classical Machine Learning algorithms such as Support Vector
Machines (SVM: Linear, Polynomial Kernal, Radial Basis Function)
and Gaussian Naive Bayes classifier models were implemented to
compare the classical ML results with QML results.
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Table 2: Performance Metrics for
Classical SVM Radial Basis Function
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Table 4: Performance Metrics for
Classical Gaussian Naive Bayes
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Fig 3. EIKG Project Workflow

Glossary:

1V: Independent Variable

DV: Dependent Variable

netCDF: network Common Data Format
QML: Quantum Machine Learning

QSVC: Quantum Support Vector Classifier
VQC: Variational Quantum Classifiers

IV, : Surface Soil Wetness”

IV,: Total Surface Precipitation

DV (Target variable). : Soil Temperature

We programmatically generated the labels

as “Hot(Warm)” or "Cool" to conduct the binary classification task.
If "Soil Temperature” value > 295 K - labeled as “Hot(Warm|

If the "Soil Temperature” < 295 K, -> labeled it as “Cool ==

295 Kelvin is 71.3 Fahrenheit (21.85 Celsius).
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Weused FidelityQuantumKernel class, which utilizes
the BaseStateFidelity algorithm from Qiskit.

This class simplifies the computation of kernel matrices for
specific datasets and can be integrated with a Quantum
Support Vector Classifier (QSVC).
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Fig 7. Visual representation of the quantum circuit generated
using IBM Qiskit

Quantum Machine Learning Results:

Precision
0 0.7
1 1.00

Recall
100

Fl-score
086
0.13

Floscore
(23]
012

Support Precision  Recall Support
3% (k23 0955 ¥

14 1 033 00

072
047
064

sccuracy
macro avg

weighted avg

078
050
067

53
53
5

sccuracy
macro avg
weighied avg

054
063

051
072

0.88
082

054
035

Table 6: Results of VQC on IBM Qiskit
Simulator

Table 5: Results of QSVC on IBM Qiskit
Simulator
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Table 7: Performance Metrics of VQC on the real IBM 127 qubits Quantum Computer
(Real-Quantum-Computer)

Conclusion

This study introduced the Enhanced Integrated
Knowledge Graph (EIKG) framework to model
environmental factors impacting crop frosting. We
assessed classical and quantum machine learning (QML)
techniques using NASA Earth Observation data. Classical
methods, such as Support Vector Machine (SVM) and
Gaussian Naive Bayes, were evaluated on a 16 GB RAM
MacBook, while QML approaches, including Quantum
Support Vector Classifier (QSVC) and Variational
Quantum Classifier (VQC), were tested using the IBM
quantum simulator and a 127-qubit IBM quantum
computer. Our results show that the quantum classifiers
performed comparably to the best classical model, with
only a 6% difference in accuracy. Although modest, this
performance gap suggests that QML techniques have the
potential for climate-related predictions. The EIKG
framework effectively integrates and organizes both
heterogeneous and structured data, facilitating the fusion
of classical and QML models with Earth Observation data.
This integration highlights the promising role of QML in
weather and climate forecasting and emphasizes the
value of combining AIML insights with DTs to improve
predictive accuracy and decision-making.
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IBM Qiskit Machine Learning 0.7.2 Ecosystem: https://qiskit-community.github.io/qgiskit-machine-learning/

IBM Qiskit: https:

www.ibm.com/quantum/qiskit

NASA GES DISC: https:

Scikit Learn Machine Learning Package: https://scikit-learn.org/stable/
'www.earthdata.nasa.gov/eosdis/daacs/gesdisc

GitHub Code Repository: https:/github.com/thilankamny

NASA Giovanni: https://earth.gsfc.nasa.gov/ocean/data/giovanni
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