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Samples Mean Percent Error

20 0.1215 21.5%

100 0.0917 8.3%

1,000 0.0970 3.0%

10,000 0.0986 1.4%

20,000 0.0990 1.0%
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1. Introduction 

 
Understanding and accounting for uncertainty in 
risk analysis is a critical step in the management 
and communication of risk in engineered systems. 
The component and system-level analysis to 
determine the probability of a negative outcome 
and its consequence is often quantified by a point 
estimate. 
 
Many Program and Enterprise decisions involving 
technical concerns and issues rely on reliability 
engineering activities to produce quantified risk 
analysis to inform the decision making process. At 
NASA, it is common to use a Probabilistic Risk 
Analysis (PRA) to inform the overall risk to Loss of 
Mission or Loss of Crew that involves integration 
across all spacecraft subsystem fault trees to 
produce an overall probability of mission failure. 
The point estimate is an estimate of this overall 
probability and is an immediate result of a fault 
tree model. It is the result of a model where the 
probability of each event is taken to be equal to its 
mean. The value provides an approximation of the 
overall mean without running any uncertainty 
calculations (e.g., no sampling). Using only the 
point estimate can lead to a false sense of precision 
and the point estimate may not match the resulting 
mean when uncertainty is taken into consideration. 
 
This paper will explore five conditions that can 
cause the PRA model mean to diverge from the 
point estimate and will provide engineers and 
managers insight into the importance of 
understanding uncertainty in the elements of PRA 
models. 
 
2. Condition One - Lack of Convergence 

 

A lack of convergence can cause a disparity between the 

point estimate and the mean.  Consider a single event  

that is lognormally distributed with mean 0.10 and error 

factor 5.0.  The point estimate for this event is 0.10.  

Clearly if there are enough samples then the sample 

mean will converge to 0.10.  Table 1 below shows the 

percent error with respect to the sample size for random 

samples of event . 

 

 

 

 

 

 

 

 

 

 

 

 

The disparity between the point estimate and the mean 

due to lack of convergence can be avoided by simply 

running more replications of the model.  Reference [1] 

describes strategies to ensure convergence within given 

specifications.  Generally speaking, convergence is 

achieved when the confidence interval about the mean is 

sufficiently small. 

 

 

3. Condition Two - Correlated Events in AND-

Gates 

 

It is generally considered good practice to use 

correlation classes for similar items in the same 

functional area.  In a fault tree, a correlation class is a 

group of similar events that not only have the same 

failure distribution but also use the exact same sampled 

value for each replication.  That is, if   and  are 

correlated, then in each replication if  has a sampled 

value of x then  is also assigned a value of x. 

 

Consider an AND-Gate with two correlated events.  

Suppose events  and  are in the same correlation 

class , where  is lognormally distributed with mean 

0.10 and error factor 5.0 (the resulting variance is 

0.016). 

 

 

 

 

 

 

 

Table 1 - Percent Error With Respect 

to Sample Size 

Figure 1- AND-Gate with Two 

Correlated Events 
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For each replication a value x is sampled, and the result 

for the AND-Gate is x2.  So, the expected value of the 

AND-Gate is the expected value of , or .  From 

Reference [2]:  

    

  Eq. 1 

 

Solving for  yields: 

 

 Eq. 2 

 

So, the expected value of the AND-Gate is 

.  Running 20,000 

replications of the AND-Gate yields the same result, 

0.026.  The point estimate for the AND-Gate is 

. 

 

It is evident from Eq. 2 that  since 

.  So correlated AND-Gates will return a 

value that is always larger than the point estimate.  This 

effect will be more pronounced when the error factor is 

large (hence the variance is large) and when there are 

several items in the AND-Gate. 

 

It should be noted that if the events are not correlated, 

that is events   and  have the same distribution but 

are sampled independently, then the expected value of 

the AND-Gate is equal to the point estimate. 

 

4. Condition Three – Truncated Events 

 

Consider an event  that is lognormally distributed with 

a mean of 0.5 and an error factor of 5.0.  Clearly this is 

a large mean and there is a high probability of sampling 

values greater than 1.0.  This is a problem when the 

samples represent probabilities which are constrained to 

be between zero and one.  In a situation like this, the 

sampling software will typically either remove samples 

greater than one, or truncate the distribution, effectively 

cutting the tail off the distribution and renormalizing it.  

The two methods of truncation appear to be different 

but are in fact mathematically equivalent. 

 

In this example, setting the truncation point, b, at 

 results in the right 24% of the distribution being 

removed. 

 

Two ways to truncate a distribution are the rejection 

method and the truncation method. 

 

With the rejection method, sample from  and reject 

values that are greater than 1.0.  Doing this yields a 

mean of 0.33, which is noticeably lower than the 

untruncated mean of 0.50.  This is because the largest 

24% of the values are rejected. 

 

In Excel, to obtain a sample, , from a lognormal 

distribution that is right-truncated at location  

(Reference [1]): 

 

   Eq. 3 

 

where  is the inverse of the lognormal 

distribution,  is the cumulative 

lognormal distribution,  is the log-mean,  is the log-

standard deviation, and  is a random number between 

zero and one. 

 

Truncating the distribution also yields a mean of 0.33.  

This is not surprising since this method is 

mathematically equivalent to the rejection method. 

 

Right-truncating a distribution will result in a lower 

mean than the non-truncated distribution.  However, in 

general it is not good practice to model probabilities 

with a distribution that will require frequent truncation. 

 

5. Condition Four – Quotients of Events 

 

Consider random variables X and Y.  In general, the 

expected value of the quotient is not equal to the 

quotient of the expected values, that is: 

 

( )

( )

E XX
E

Y E Y

 
 

 
    

  Eq. 4 

 

An approximation for the expected value of the quotient 

is (Reference [3]): 

 

( )

( )

( )
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    + 

      

  

  Eq. 5 

 

b 

Figure 2 - Lognormal Distribution with b = 1.0 
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Suppose events X and Y are both lognormally 

distributed with mean 0.10 and error factor 5.0 (the 

resulting variance is 0.016).  Using Eq. 5: 

 

  

 
2

0.10 0.016
1 2.60

0.10 0.10

X
E

Y

   
 + =   

   
 

 

Running 20,000 samples of X and Y and finding the 

quotient yields a mean of 2.60, as expected. 

 

The expected value of the quotient is always greater 

than the quotient of the expect values.  Quotients are 

rarely used in fault trees (perhaps as compound events) 

but if they are used it is clear from the example above 

that the results could be problematic. 

 

 

6. Condition Five – Long Mission Times 

 

Fault tree models typically sample a failure rate, , and 

then calculate the failure probability based on some time 

.  Usually  is lognormally distributed and after 

sampling the failure rate , the failure probability  is 

calculated using the exponential distribution: 

 

   

 Eq. 6 

 

Consider a lognormal distribution with mean and 

standard deviation both equal to  (units in 

hours) and suppose the operating time is 100 hours.  

The point estimate is: 

 

 
 Eq. 7 

 

Simulating 100,000 values of  the corresponding 

values of  results in a mean of 1 . 

 

Keeping everything the same except for changing the 

operating time to 1,500,000 hours gives a point estimate 

of mean of 9  and a sample mean of 8 . 

 

Figure 3 shows the relationship between the point 

estimate and the mean over increasing operating time. 

 

 
Figure 3 Relationship Between Point Estimate and 

Mean over Time (hours) 

 

Notice that they both start out similarly at  and 

then reunite when  gets large.  This is because both 

methods start at zero and coverage at 1.0, albeit at 

different rates. 

 

 

7. Conclusion 

 

The point estimate used to quantity the probability for 

overall mission failure is a key component of Space 

Systems and Mission risk analysis such as PRA models. 

Given the use of the PRA results by critical decision 

makers in Space Programs, it is important to understand 

the conditions at which the point estimate can deviate 

from the mean. It is good practice to identity the 

components of the point estimate model that directly 

lead to deviations to quantify the confidence in the 

overall PRA. When making decisions based on PRA 

models, decision makers should consider both the 

resulting failure probability and confidence in that 

probability. As such, when Reliability Engineers and 

Risk Analysts present results from a point estimate 

model, there should be inclusion of the five conditions 

described in this paper and their influence on the 

confidence of the final result. 



13th IAASS Conference  2024 IAASS 

Prague, Czech Republic – 8-10 October 2024  

 

4 

 

 

 

 

APPENDIX A - REFERENCES 

[1] Law, A., and Kelton, W. D.  Simulation Modeling and Analysis, McGraw-Hill Inc., 1991. 

 

[2] Hogg, R., and Tanis, E.  Probability and Statistical Inference, Pearson Prentice Hall, 2010. 

 

[3] CRC Press.  OR Handbook, CRC Press LLC, 2001. 

 

 

APPENDIX B – AUTHOR BIOGRAPHIES 

 

Paul Collier received a B.S. in Computer Science from Louisiana State University – Shreveport, Master’s Certificate in 

Systems Engineering from California Institute of Technology, and a M.S. in Space Systems Engineering from Johns 

Hopkins University. He has supported human spaceflight Programs and Projects for over 20 years at NASA’s Johnson 

Space Center in Houston, TX through various roles in Engineering, SE&I, Safety & Mission Assurance, and Cross-

Program Integration. Paul is currently the Orion Program Functional Area Manager for mechanical, pyrotechnic, and 

landing & recovery systems in the Crew & Service Module Office. 

 

Bruce Reistle received a B.S and M.S in Mathematics from Virginia Tech University and a Master of Operations 

Research from North Carolina State University. He worked for Intel as a facility design analyst and then SAIC as a 

reliability analyst. Later he joined NASA’s Johnson Space Center in Houston, TX as a Safety & Mission Assurance 

Analysis Branch where he has served for over 15 years as the Data Lead. In addition to data analysis, Bruce enjoys 

building ad-hoc Monte Carlo models and spreadsheet-based analysis tools. 

 

 

 

 

 


