

NASA In-Situ Resource Utilization (ISRU) Pilot Excavator (IPEX) Digital Twin Autonomy Challenge for Universities 2024 Machine-Ground Interaction Consortium Meeting (MaGIC) Authors: Rob Mueller, Jason Schuler– NASA Kennedy Space Center; Eric Reiners - Caterpillar

09.11.2024

What is IPEx ?

Why do we need Digital Twin Simulations?

In Situ Resource Utilization (ISRU) Pilot Excavator (IPEx) TRL 5 Dual Bucket Drum Excavator Prototype

Quantitative Impact

- Traverse total of **70km** in Lunar environment (1.5x current SOA)
 - Traffic over same terrain **350x** (70x current SOA)
- Move a total of 10t (metric tons) of regolith 100 meters over 11 days (200x current SOA)
- Proof of Concept Results
 - Simulating the lunar regolith
 - Simulating IPEx
- Caterpillar inc. Collaboration
- University Competition
- Next Steps

IPEx Project

- ISRU Pilot Excavator
- Game Changing Development (GCD) project under the Space Technology Mission Directorate (STMD)
- Design and build a TRL 6 robotic excavator ready for lunar demonstration
- Demonstrate capability to excavate, transport, and deliver 10 metric tons (ISRU Pilot Plant need) of lunar regolith during an 11-day mission.
- Enabling technologies:
 - Low gravity excavation system
 - Robust Lunar surface
 system reliability
 - Dust tolerant battery charging

- Dust tolerant thermal control
- Supervised autonomous operation
- High-cycle mobility

IPEx Project

- Need: Required testing of subsystem and system level interactions with regolith.
- Problem: Terrestrial testing challenges for a Lunar Excavator:
 - Effect of reduced gravity
 - Reduced gravity flights are suited to short and small experiments
 - Regolith conditions
 - Lack of geotechnical data from Lunar South Pole region and variability depending on landing site selection.
 - Numerous geotechnical configurations to test
 - Repeatability between tests is hard to achieve and labor intensive
- Solution: Simulations grounded in limited terrestrial tests
 - Regolith flow inside a bucket drum (DEM) validated by reduced gravity experiment.
 - Vehicle response to excavation in various regolith conditions
 - Ability to tune parameters within the autonomy stack
 - "Playbook" of mission scenarios

University of Wisconsin Simulation of RASSOR 2.0 in Chrono

https://www.youtube.com/watch?v=uuF-jHwcfcY

Proof of Concept Results – Lunar Regolith

Calibration Approach

Grain Size $r \min = 1mm$, $\frac{rmax}{rmin} = 2.5$

Pocket Vane-Shear

Angle of Repose - 0.9% error.

Triaxial Compression - 0.3% to 11.8% error at various densities

System Tests - Excavation

Single Bucket Drum

- Four sets of controlled experiments at two linear velocities (10 mm/s and 30 mm/s) and two cut depths (10 mm and 16 mm).
- Compare experimental force and torque results with DEM results.

Processor	Total Threads	Compute Time (mins) / Mission Simulation (secs)
3.00 GHz	48	12.5
	~ 1 million p	oarticles

Schuler et al. (2022)

Bucket Drum Results

• 10 mm/s velocity,

• Simulation aligns

of physical test

data

16 mm cut depth.

within the scatter

100 Exp1_Fx Exp2_Fx 75 Exp3_Fx Exp4_Fx 50 --- Exp1_Fy --- Exp2_Fy 25 Load (N) --- Exp3_Fy and the second state and the second state of the --- Exp4_Fy - R3D_Fx -25 --- R3D_Fy -50 -75 -10020 60 100 120 0 40 80 140 time (s)

Torques

Forces

Medium Drum, linear velocity = 0.01 m/sec, 16 mm cut

Medium Drum, linear velocity = 0.01 m/sec, 16 mm cut

System Tests - Mobility

- Mobility / Drawbar
 - Experiment: weights were added incrementally to the sled as the robot is commanded to move at 0.1 m/s velocity. Pull force was measured using a single-axis load cell.
 - DEM: single tire model with a vertical load equal to ¼ of the total weight of the robot, and a variable horizontal load equal to ¼ of the experimental pull force.

Provided by NASA (2023)

Mobility / Drawbar Results

12

Proof of Concept Results – IPEx

IPEx Physics - Chrono

- Generic component models for chassis, arms, drums, wheels, and radiator cover
 mass, inertia, etc.
- Motor and Gear Train modeled with efficiency
- Battery State of Charge

IPEx Modeling in Chrono: Terrain Model

- Utilizing Chrono SCM (Soil Contact Model) for ground deformation, with Bekker equations and soil properties from Lunar Sourcebook and other research
 - SCM supports bulldozing effect and realistic deformation, but not excavation

IPEx Modeling in Chrono: Drawbar pull

16

IPEx Autonomy & Lunar Surface - CARLA

- 8 cameras w/ LED Lights
- IMU
- Lunar surface
 - South Pole Location
 - Craters / Rocks
 - Lighting conditions

Lunar Autonomy Challenge

LUNAR AUTONOMY CHALLENGE

SCAN TO LEARN MORE

Challenge Team

APL | CATERPILLAR | EMBODIED AI With technical assistance provided by NASA The Lunar Autonomy Challenge is a competition for university students to develop algorithms to autonomously control systems in a realistic lunar environment

- Map a simulated lunar surface using IPEx's digital twin
- Develop terrain height maps and identify rocks given power and data budgets
- Real-world problem solving contributes to the knowledge base for autonomous lunar operations
- Summer 2024 Pilot
- Official announcement and challenge details in Fall 2024

NASA LUNAR AUTONOMY CHALLENGE

