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Required, recommended, and optional features are discussed that benefit
preparation and evaluation of the load prediction equations in a strain–gage
balance data analysis tool. First, milestones in the evolution of load prediction
methods are reviewed so that suggested features can be put into a historical
context. Afterwards, independent and dependent variable choices for the balance
data analysis are discussed. Then, it is illustrated how three different metrics
may be used for the identification of the root cause of an unwanted divergence
of the load iterations that may be observed during an iterative load prediction.
Finally, a list of features is provided to guide software development efforts.

Nomenclature
a0, a1, a2 = fitted coefficients of a regression model of the force of a load cell
AF = axial force of a force balance
b1, b2, . . . , b27 = coefficients of the math model of an axial force bridge output
c0, c1, c2 = fitted coefficients of a regression model of the electrical outputs of a load cell
F = force acting on a load cell
Fmax = capacity of a load cell
NF = normal force of a balance
NF ′ = positive constant normal force
NF ′′ = negative constant normal force
N1 = forward normal force of a force balance
N2 = aft normal force of a force balance
PM = pitching moment of a balance
Q = Percent Contribution
rAF = electrical output of the axial force bridge of a balance after weight tare removal
rF = electrical output of a load cell
RM = rolling moment of a force balance
rN1 = electrical output of the forward normal force bridge of a force balance
SF = side force of a balance
S1 = forward side force of a force balance
S2 = aft side force of a force balance
YM = yawing moment of a balance

ξ = iteration step index

I. Introduction

Strain–gage balances have been used for more than 60 years for the measurement of the loads that act
on a wind tunnel model. A primary balance, for example, can measure all six load components to high levels
of accuracy. Unfortunately, due to design and space constraints, balance bridges have to be attached in close
proximity to interconnected parts of the balance. Because of this, the bridges respond to load components
they were not intended to measure. Therefore, load combinations must be applied at different levels during
a calibration experiment so that more complex interactions between an applied load and the bridge outputs
can correctly be described in the load prediction equations of the balance.

The load prediction equations of a primary balance for a wind tunnel test need to precisely characterize
the multivariate nature of the relationship between the loads and the electrical outputs of the balance
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bridges. Many advances in mathematics, programming languages, and computer hardware have been made
since the load prediction equations were first defined in the late 1950s. These advances led to improvements
in both data analysis and load prediction methods that allow six–component balances to satisfy accuracy
requirements of today’s wind tunnel customers.

Many wind tunnel facilities use balance data analysis methods that do not necessarily reflect the latest
advances in our understanding of the balance load prediction process. In addition, it is difficult to make
updates to an existing analysis software package because a significant amount of development time and
testing may be required to revise its algorithms. Consequently, an analyst may have to continue the use of
a legacy software package even though its analysis results may not be as transparent or accurate as results
that could be achieved with more modern approaches.

During the past two decades the authors developed and continuously refined a software tool for strain–
gage balance data analysis at NASA Ames Research Center. The tool is called BALFIT. It takes advantage
of many improvements that were made to the balance load prediction process. Therefore, the authors were
able to identify a list of features that could be implemented in a modern balance data analysis tool.

First, the evolution of balance load prediction methods is reviewed so that suggested features can be put
into a historical context. Then, independent and dependent variable choices for the balance data analysis
are discussed. Afterwards, the application of three metrics to balance data is used to demonstrate benefits
of metrics that are less frequently applied in the balance community. Finally, required, recommended, and
optional features are presented that can guide the development of a balance data analysis tool.

II. Evolution of Load Prediction Methods

Important milestones in the evolution of balance load prediction methods are summarized in Fig. 1. The
development of load prediction methods started in the 1950s when six–component balances became available
for wind tunnel tests. Engineers had to develop mathematical relationships between the loads and electrical
outputs of the balance bridges so that loads could be predicted from outputs during a wind tunnel test.

Cook’s technical note of 1959 defines both the math model of the bridge outputs and the load iteration
scheme that was initially used for the prediction of balance loads (see Ref. [1]). Cook’s process is an early
version of the Iterative Method that is still in use today (see Fig. 1). The primary difference between
Cook’s process and the Iterative Method is the fact that the Iterative Method uses global regression† for the
determination of the math model coefficients of the bridge outputs. Cook’s method, on the other hand,
determines coefficients by performing a sequential graphical analysis of balance calibration data (Ref. [1],
pp. 4–5). This approach was possible because Cook’s calibration data consisted of subsets that were designed
to support specific math model terms (basic ideas of Cook’s approach are illustrated in the paper’s appendix
by using the math model of the axial force bridge output of a balance as an example). Finally, a load
iteration scheme is constructed from the math models of the outputs so that loads can be predicted from
outputs during a wind tunnel test (Ref. [1], pp. 5–7). Global regression was not considered for the processing
of balance data in the late 1950s and 1960s because (i) the matrix solution‡ of the least squares problem
was not yet widely known and (ii) computer resources were limited.

Researchers also started using the Non–Iterative Method for the balance load prediction in the 1960s.
This alternate approach directly determines math models of the loads from the bridge outputs of balance
calibration data. Therefore, no load iterations are required. However, linear or massive near–linear de-
pendencies between math model terms were not rigorously investigated before the 2000s. This omission
occasionally lead to incorrect load predictions when the regression model of a load was applied. The authors
believe that this observation is one of the reasons why the Iterative Method became the preferred method
for the balance load prediction in North American wind tunnels.

Significant advances were made in the 1970s that greatly benefited the analysis of balance calibration
data (see Fig. 1). First, Galway of NRC Canada recognized the advantage of applying the matrix solution‡ of
the least squares problem to balance calibration data (Ref. [7], p. 13, Eq. (36)). He also understood benefits

† The terminology global regression indicates that a single least squares fit is used to simultaneously determine all coefficients
of the multivariate regression model of a dependent variable of balance calibration data.

‡ The matrix solution of the least squares problem is an application of the Moore -Penrose pseudo inverse that British
physicist and Nobel Prize laureate R. Penrose first proposed in 1956 (Ref. [2]).
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of the use of the absolute value function † in regression models of data from balances with bi–directional
outputs and extended the idea to higher–order terms (Ref. [7], pp. 21–23; Ref. [8], p. 5). Furthermore,
he recommended the use of the natural zero as the global datum for the electrical output of a balance
bridge (Ref. [7], p. 27; Galway uses the synonym buoyant component offset in that context). Finally, Galway
developed a tare load iteration process. His algorithm was first published in 1999 (Ref. [9]). AIAA’s
Internal Balance Technology Working Group adopted Galway’s algorithm for use with the Iterative Method
(Refs. [10] & [17]). Galway’s four ideas were first implemented with the Iterative Method because (i) the
Iterative Method was Galway’s preferred load prediction approach and (ii) the reliability problem of the
load prediction equations of the Non–Iterative Method had not yet been solved. Finally, the development
of minicomputers (PDP, VAX) in the 1970s made computational resources more accessible. Consequently,
global regression analysis could more easily be applied to balance calibration data.

No significant improvements of balance load prediction methods appear to have been made in the 1980s.
However, the personal computer and FORTRAN & BASIC compilers became widely available. Now, analysts
could implement the more complex analysis algorithms that emerged in the 1970s. It became obvious in the
1990s that the use of the Iterative Method had to be standardized so that a wind tunnel customer could use
a given set of load prediction equations at multiple wind tunnel facilities. This conclusion was one of the
reasons why AIAA’s Internal Balance Technology Working Group (IBTWG) was established (see Ref. [11],
p. 85, p. 88). A major accomplishment of this group was the development of a standard description of
the Iterative Method. This description was published in 2003 in the first edition of AIAA’s Recommended
Practice document on calibration and use of internal strain–gage balances (Ref. [10]).

Again, advances were made during the 2000s after many data analysts adopted IBTWG’s description of
the Iterative Method and more powerful programming languages and software tools became available (C++,
IDL, Matlab, EXCEL, Design–Expert, Python). For example, Parker et al. started to use the principles
of Design of Experiments (DOE) during both preparation and execution of balance calibration experiments
(Refs. [12], [13]). The primary goal of these efforts was the reduction of the total number of data points
needed for a manual calibration of a balance. In addition, Ulbrich applied Singular Value Decomposition
(SVD) to balance calibration data in 2005/2006 to analytically determine regression model terms that a
given data set supports (Ref. [14]). He recognized that SVD needs to be applied to a transformed set of
independent variables of the balance calibration data in order to be effective (Ref. [14], p. 3; Ref. [19],
App. 17, p. 360). The supported regression model is assembled step–by–step, i.e., SVD is applied whenever
a new term is considered for the regression model. The new term is either retained or rejected depending
on the result of the SVD analysis (Ref. [19], App. 17, p. 362). Furthermore, it was discovered in 2007 that
unsupported regression model terms associated with the use of the Iterative Method could be identified by
using the Variance Inflation Factor (VIF) as a test metric (Ref. [15], p. 4). This discovery also meant that
VIFs could be used to assess the reliability of regression models of the loads that the Non–Iterative Method
uses. Then, load predictions resulting from the application of the Non–Iterative Method could be made as
reliable as load predictions resulting from the application of the Iterative Method.

It was observed in 2010 that a convergence instability sometimes appeared when Galway’s original tare
load iteration algorithm was used in combination with the Non–Iterative Method. Therefore, an improved
version of Galway’s tare load iteration algorithm was developed that avoids the instability. This new tare
load iteration algorithm was first published in 2011 (for details see Refs. [16], [18], [19]).

A second edition of AIAA’s Recommended Practice document on calibration and use of internal strain–
gage balances was published in 2020 (Ref. [17]). In addition, a new implementation of the Non–Iterative
Method was completed at NASA Ames Research Center in the same year. This new implementation made
it possible to systematically compare the load prediction accuracies of the Non–Iterative Method with the
load prediction accuracies of the Iterative Method. Since 2020, comparisons have been made for many types
of balances and calibration load schedule designs. They showed beyond any doubt that the accuracies of the
load prediction equations of the Non–Iterative & Iterative Methods are the same for all practical purposes
as long as five conditions are met: (i) the given balance calibration data is suited for the application of
global regression, (ii) bridge outputs are formatted as differences relative to the natural zeros of the bridges,
(iii) loads are tare corrected, i.e., described as differences relative to the datum of zero absolute load, (iv) the

† The idea of using the absolute value function for the description of bi–directional bridge output characteristics appears to
have originated in Europe (Ref. [8], p. 5).
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same function classes are used to define regression models of the dependent variables, and (v) the selected
regression models are free of unwanted linear or near–linear dependencies. The application of the load
prediction equations of the Non–Iterative Method is less complex than the application of the equations of the
Iterative Method. No iterations are needed. Each load is computed by simply evaluating an explicit equation
that uses the electrical outputs of the balance bridges as input. A NASA Contractor Report became available
in 2022 that describes both analytical background and practical use of the Iterative and Non–Iterative Method
in great detail (Ref. [18]). A second edition of this report was published at the beginning of 2024 (Ref. [19]).

III. Independent and Dependent Variables
Different justifications for the selection of the independent & dependent variable sets of balance data

exist. They are directly linked to the historical development of balance load prediction methods. The Iterative
Method, for example, uses bridge outputs as dependent variables and loads as independent variables during
the regression analysis of balance data. This choice can be traced back to Cook’s Technical Note of 1959
where he concludes . . . Each bridge indicator reading, as a consequence of interactions, is a function of all six
load components. . . . (taken from Ref. [1], p. 3). Many longtime users of the Iterative Method also believe that
it is “logical” to use bridge outputs as dependent variables because the bridge outputs are “measured” while
the loads are “applied” during the calibration. This belief and Cook’s conclusion come from the traditional
approach that many metrology organizations use for the reporting of calibration data. The primary mission
of a metrology organization is the calibration of sensors that measure a single physical quantity. In addition,
a sensor’s electrical outputs may have highly linear characteristics. Then, a metrology organization would
provide the following information to the sensor’s end user: (i) the sensor’s raw calibration data, (ii) the
first derivative of the sensor’s electrical output, i.e., the sensitivity, and (iii) a regression model of the
sensor’s electrical output. It remains the end user’s responsibility to figure out how the sensor’s calibration
information should be used so that the predicted physical quantity meets given accuracy requirements.

Wright illustrates the traditional approach of a metrology organization with calibration data of a load
cell (Ref. [20], p. 150). His example can be used to show connections between traditional approach, Iter-
ative Method, and Non–Iterative Method. Equation (1) below defines the second order regression model
of the electrical output of the load cell that is used in Wright’s example. Symbol rF describes the outputs

regression model of the electrical output =⇒ rF = c0 + c1 · F + c2 · F 2 (1)

given in units of [mV ], symbol F describes the forces given in units of [lbf ], and c0, c1, c2 are the regression
coefficients. Equations (2a) to (2c) below list coefficient values that are given in the calibration report of
the load cell (copied from Ref. [20], p. 150). Independent calculations confirmed that these coefficients were

intercept =⇒ c0 = −1.1888E−04 [mV ] (2a)

sensitivity =⇒ c1 = +3.8715E−01 [mV /lbf ] (2b)
coefficient of the higher order term =⇒ c2 = +1.8648E−06 [mV /lbf 2 ] (2c)

obtained by using the first eleven data points for the analysis. The report also says that the eleven data
points were recorded while outputs were increasing. Therefore, the report’s regression model is, to some
degree, load direction dependent. It works best if the forces on the load cell are gradually increasing.

In theory, a load iteration equation can be constructed from Eq. (1) if the influence of the higher order
term F 2 is small. This requirement can be verified if the term’s Percent Contribution is computed using an
equation that is given in the literature (see Ref. [19], App. 16). The load cell’s capacity Fmax is 50 [lbf ].
Then, after applying Eq. (16.13) from Ref. [19], the Percent Contribution of term F 2 is obtained. We get:

Q(F 2) =
c2 · {Fmax}2

c1 · Fmax
× 100 % =

1.8648E−06 · 502

3.8715E−01 · 50
× 100 % ≈ 0.024 % (3)

The Percent Contribution is very small. It is well below the threshold of 0.1 % that identifies terms of
no importance (see Ref. [19], p. 351, Table 16–3). Nevertheless, a load iteration equation can still be defined
even though F 2 may not be needed for an accurate load prediction. Then, after solving Eq. (1) for force F
and introducing the iteration step index ξ, the load iteration equation shown in Eq. (4a) below is obtained.

load iteration equation =⇒ Fξ+1 = (1/c1) · [ rF − c0 ] − (c2/c1) · Fξ2 (4a)
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The initial guess F0 of the force is zero. Therefore, the first two estimates of the force can easily be computed:

F1 = (1/c1) · [ rF − c0 ] (4b)

F2 = (1/c1) · [ rF − c0 ] − (c2/c1 ) · F1
2 = (1/c1) · [ rF − c0 ] − (c2/c

3
1 ) · [ rF − c0 ]2 (4c)

Equations (5a) & (5b) below list coefficients of the load iteration equation that were obtained from the
right–hand sides of Eqs. (2b) & (2c). Numerical tests showed that a convergence tolerance of 0.0001 % of

inverse of the sensitivity =⇒ 1 / c1 = +2.5830E+00 [ lbf /mV ] (5a)

scaled coefficient of the higher order term =⇒ c2 / c1 = +4.8167 E−06 [1/lbf ] (5b)

load capacity is met after two iteration steps. Equation (4a) above can be interpreted as a one–component
balance version of the load iteration equation that Cook first introduced in 1959 (see Ref. [1], Eq. (4a)) and
that AIAA’s Internal Balance Technology Working Group published in 2003 (see Ref. [10], Eq. (3.3.4)).

An alternate justification for the definition of the independent and dependent variables of a balance
data set emerged during the last decade. It supports the variable definition choices of both the Iterative and
Non–Iterative Method. The justification is derived from the fundamental idea that a unique, i.e., reversible
mapping between the loads and bridge outputs of a balance must always exist (see Ref. [21], pp. 3–5). Then,
any “load state” of a balance can be described by using either the loads or the bridge outputs (see also
discussions in Ref. [19], p. 2, pp. 10–12). Consequently, an analyst has the freedom to select either the loads
or the bridge outputs as the dependent variables during the balance data analysis.

The load cell data of Ref. [20] was also processed with the Non–Iterative Method to show its connection
to the traditional approach of a metrology organization. This alternate analysis was possible because the
outputs are given as differences relative to an output datum that describes zero load. Equation (6) below

regression model of the force =⇒ F = a0 + a1 · rF + a2 · rF 2 (6)

shows the chosen regression model of the force that acts on the load cell. Equations (7a) to (7c) list coefficients
that were computed after using the first eleven calibration points as input for the regression analysis. Both

intercept =⇒ a0 = +3.0772E−04 [ lbf ] (7a)

inverse of the sensitivity =⇒ a1 = +2.5830E+00 [ lbf /mV ] (7b)

coefficient of the higher order term =⇒ a2 = −3.2120 E−05 [ lbf /mV 2 ] (7c)

the regression model of the force, i.e., Eq. (6) and the second estimate of the force from the load iteration
process, i.e., Eq. (4c) are second order polynomials. Therefore, an analytical connection must exist between
their coefficients. Intercept a0 is given in Eq. (7a) as +3.0772E−04 [ lbf ]. It is 0.00062 % of the load cell’s
capacity of 50 [lbf ]. Similarly, intercept c0 is given in Eq. (2a) as −1.1888E−04 [mV ]. It is −0.00059 %
of the output of 20 [mV ] at load cell capacity that Wright reports (see Ref. [20]). It is concluded that both
intercepts are very small. They can be neglected. Then, after replacing a0 and c0 in Eqs. (6) and (4c) with
zero and comparing the remaining coefficients of Eq. (6) with those of Eq. (4c), we get:

a1 ≈ 1/c1 = +2.5830E+00 [ lbf /mV ] (8a)

a2 ≈ −(c2/c
3
1 ) = −3.2136E−05 [ lbf /mV 2 ] (8b)

Numerical values given on the right–hand sides of Eqs. (8a) and (8b) were computed with the values
for c1 and c2 that are listed on the right–hand sides of Eqs. (2b) and (2c). They show excellent agreement
with the independently obtained values that are listed for a1 and a2 on the right–hand sides of Eqs. (7b) and
(7c). These observations indicate that the regression model of the force, i.e., Eq. (6) and the load iteration
equation, i.e., Eq. (4a) will lead to load values of compatible magnitude and accuracy.

It needs to be mentioned that a good reason exists to separate the balance calibration laboratory of an
aerospace testing center from its metrology organization. Balances are unique sensors that simultaneously
measure up to six physical quantities. This characteristic is not a good fit for a metrology organization
because its primary mission may be the calibration of sensors that measure a single physical quantity.

Different metrics were applied in the past to screen balance data for problems and make load predictions
more reliable. Three examples of these metrics are discussed in the next section. They may be used in parallel
to diagnose load iteration convergence problems whenever the Iterative Method is applied.
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IV. Assessment of Load Iteration Divergence

Unsupported terms in the regression model of a bridge output are often responsible for the divergence
of the load iterations that the Iterative Method uses (Ref. [10], p. 11, 3rd paragraph). Then, an analyst must
use a considerable amount of subject–matter knowledge in combination with past experience to identify and
remove the term (or terms) that may be responsible for the iteration divergence. This kind of troubleshooting
can be very time–consuming. Its success highly depends on an analyst’s skills. Alternatively, it is possible
to investigate load iteration divergence by applying analytical methods and metrics. For example, iteration
divergence may be studied by using the Lipschitz Constant (see Ref. [19], App. 11). In addition, it is known
that Variance Inflation Factors (VIFs) can be used to identify terms that are responsible for the divergence
(Ref. [15], p. 4, 4th para.). Finally, an examination of the Percent Contributions of the higher–order terms of
the regression model may also be useful when trying to identify unsupported terms (this metric is defined in
Ref. [19], App. 16). The connection between load iteration divergence, Lipschitz Constant, VIFs, and Percent
Contributions can be demonstrated by using calibration data of NASA’s MK3C balance as an example.

The MK3C balance was manufactured by the Task/Able Corporation. It is a six–component force
balance that measures five forces and one moment (N1, N2, S1, S2, AF, RM). The balance has a diameter
of 2.0 inches and a total length of 11.25 inches. Some of the bridge outputs of the balance are known to be
bi–directional. Table 1 below shows the load capacity of each load component. The balance calibration was

Table 1: Load capacities of NASA’s MK3C balance (lbf ≡ pounds of force).

N1, lbf N2, lbf S1, lbf S2, lbf AF, lbf RM, in−lbf

900 900 450 450 500 1000

performed in 2023 at the NASA Ames Balance Calibration Laboratory using the manual process. A total
of 141 data points were recorded that were distributed across 16 load series. Figure 2 shows the load
schedule of the complete manual calibration. Single–component loads were applied to all load components.
In addition, combined loadings were applied using the forward and aft normal forces and the forward and
aft side forces (see load series 3, 4, 8, and 11 in Fig. 2). Therefore, the original calibration data set supports
the cross–product terms N1×N2 and S1×S2 in the regression models of the six bridge outputs.

A subset of the calibration data was created that omits load series 8 & 11 of the original calibration
data set. Figure 3 shows the calibration load schedule of this subset. No combined loadings of the two side
force components are part of the subset. Therefore, it cannot support the S1×S2 term.

In the next step, the data of the subset was processed with regression models that included the unsup-
ported S1×S2 term. Figure 4a shows load iteration results for this situation. The load iterations diverge.
Figure 4b shows the result of the iteration convergence test. The upper bound of the Lipschitz Constant
equals 4.0143. This value is well above the threshold of 1.0 that defines the dividing line between con-
vergence and divergence. Iteration convergence is anticipated whenever the upper bound is less than 1.0.
Consequently, the magnitude of the Lipschitz Constant confirms that convergence problems can be expected
with the chosen regression models of the outputs. Figure 4c shows the VIFs of the regression model of the
forward normal force bridge output rN1 as an example. The VIFs of three terms, i.e., |S1|, |S1|, and S1×S2
are well above the threshold of 20 that is often used to assess near–linear dependencies in regression models
of balance data. Therefore, massive near–linear dependencies exist in the regression model. Furthermore, it
is known that both positive and negative loads were applied to the side forces (see Fig. 3). Therefore, it is
concluded that the large VIFs must be caused by cross–product term S1×S2. Finally, Fig. 4d shows the
Percent Contributions of the regression models of the six bridge outputs of the balance. The magnitudes of
the Percent Contributions of the term S1×S2 for the six regression models of the outputs are unusually large
(from 20.31 % to 157.76 %). In theory, the higher–order term S1×S2 should only make a small contribution
in the part of the iteration equation that changes with each iteration step. Therefore, it is concluded that
cross–product term S1×S2 is most likely responsible for the divergence of the load iterations.

Figure 5a shows load iteration results after processing the subset with regression models that omitted
the unsupported S1×S2 term. In this case, the load iterations show rapid convergence. It is also observed
that the upper bound of the Lipschitz Constant equals 0.0394 (see Fig. 5b). This value is well below the
threshold of 1.0 indicating that rapid convergence can be expected. Figure 5c shows the VIFs of the alternate
regression model of the forward normal force bridge output. Now, all VIFs are well below the threshold of
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20 that is traditionally used to assess regression models of balance data. Therefore, no massive near–linear
dependencies exist in the model. Finally, Fig. 5d shows the Percent Contributions of the alternate regression
models of the six bridge outputs. The magnitudes of the percent contributions of all higher–order terms are
below 2.0 %. Therefore, no iteration convergence problems are expected.

The authors have observed that load iterations are not guaranteed to diverge if an unsupported term is
used in the regression models of the bridge outputs. In other words, the convergence behavior of the load
iterations is an unreliable indicator of the presence of unsupported terms. The impact of an unsupported
term on the iterations may simply be too small if regression models have a large number of terms. This
situation often exists if machine calibration data of a balance is analyzed. Therefore, it is critical to check if
the Lipschitz Constant is close to 1.0, or, if the VIFs of the terms indicate a near–linear dependency, or, if
the Percent Contributions of the higher–order terms of the regression models of the outputs have unusually
large values. Any one of these observations could indicate the presence of an unsupported term.

VIFs have been used since the 1970s for the assessment of near–linear dependencies in response surface
models of multivariate data sets (see Refs. [4] to [6]). It was concluded at the NASA Ames Balance Calibration
Laboratory that VIFs could also be used to screen regression models of the tare corrected loads for linear
or near–linear dependencies that are caused by the presence of unsupported regression model terms. Once
screened for dependencies, the load prediction equations of the Non–Iterative Method can be made as reliable
as the load prediction equations of the Iterative Method as long as unsupported terms in the regression models
of the tare corrected loads are analytically identified and removed.

V. List of Software Features

The evolution of key elements of balance data analysis methods was reviewed. Then, the Lipschitz
Constant, VIFs, and Percent Contributions were discussed as examples of metrics that may be used to screen
regression models for hidden problems. It remains to identify features to include in a data analysis tool.
Each feature needs to be defined, its importance needs to be rated, and an estimate of the development effort
needs to be provided. Implementations of many complex algorithms already exist in modern programming
languages (e.g., IDL, Matlab, Python) which helps to reduce the development effort.

Figure 6 summarizes milestones in the development of NASA’s BALFIT software. The authors included
many features in the tool that make the balance data analysis process more transparent, repeatable, and
reliable. In addition, the software was intentionally designed to support all major approaches that use global
regression for the generation of the load prediction equations of a balance. BALFIT is applied on a regular
basis to balance calibration data. The authors decided to use BALFIT’s development milestones as the
starting point for the identification of features that they consider important. Figure 7 lists features that the
authors selected. They are organized in three groups: required features, recommended features, and optional
features. The features can be summarized as follows:

Required Features (development effort ≡ low to high)

• Global Regression =⇒ should be used in combination with the matrix solution of the least squares
problem for the analysis of balance calibration data. Then, the physical behavior of the balance is described
with multivariate regression models that are determined for each dependent variable by using a global least
squares fit. The effort required for the implementation of global regression is low.

• Percent Contribution =⇒ should be implemented as a test metric so that the relative impact of the
chosen regression model terms can be assessed (for details see Ref. [19], App. 16). The effort required for
the implementation of the Percent Contribution is low.

• Near–linear Dependency Test =⇒ should be implemented so that VIFs can be used to screen regres-
sion models for unsupported terms (see Ref. [19], App. 18). The effort required for the implementation of
the near–linear dependency test is low as long as the developer has a solid background in matrix algebra.

• Tare Load Iteration Algorithm =⇒ should be implemented so that all calibration loads are described
relative to the common datum of zero absolute load (see Ref. [19], App. 12, App. 13). Referencing calibration
loads to zero absolute load will result in more precise descriptions of the loads and more accurate load
prediction equations. The implementation of the tare load iteration process can be complex even if an
analyst has a good understanding of the algorithm itself. Therefore, the development effort is high.
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Recommended Features (development effort ≡ medium to high)

• Singular Value Decomposition (SVD) =⇒ should be used to make an analytical detection of supported
terms for the regression model possible (for details see Ref. [19], App. 17, App. 19). SVD works with both
the regression models that the Non–Iterative and the Iterative Method use. The development effort required
is medium to high assuming that the developer has a background in the programming of matrix methods.

• Load Iteration Convergence Test =⇒ should be implemented if the Iterative Method is chosen for the
balance load prediction (for details see Ref. [19], App. 11). Typical convergence test results are shown in
Figs. 4b and 5b. The development effort is medium to high assuming that the developer has a background
in the programming of matrix methods.

Optional Features (development effort ≡ high to very high)

• Regression Model Search Algorithm =⇒ may be implemented (see, e.g., Ref. [19], App. 19); algorithm
greatly reduces the total effort needed for the calibration data analysis.

• Automatic Analysis Report Generation Capability =⇒ may be developed; capability greatly reduces
the total effort needed for the reporting of analysis results.

• Graphical User Interface =⇒ may be developed; interface makes interaction between analyst and
software tool more convenient.

The implementation of the second and third optional feature should only be attempted if an organization
has a long–term need for balance data analysis services. The implementation requires a team of developers
who know balance data analysis problems very well and have excellent programming skills.

VI. Summary
Balance data analysis software may need to be replaced when (i) existing computer software or hardware

is no longer supported or (ii) laboratory staff changes occur. These situations represent a unique opportunity
for a laboratory to critically evaluate existing capabilities of its data analysis process. Improvements could be
implemented that make the analysis process less dependent on an analyst’s skills, more transparent to both
analyst and wind tunnel customer, and more efficient to use. Features that may help a balance calibration
laboratory make good software development decisions were discussed. First, the evolution of balance data
analysis methods was reviewed so that origins of the most important features can be understood. Afterwards,
independent and dependent variable choices for the regression analysis of balance data were discussed. Then,
benefits of the application of the Lipschitz Constant, Variance Inflation Factor, and Percent Contribution
were demonstrated by using data from the calibration of a force balance as an example. Finally, a list of
required, recommended, and optional features for a modern balance data analysis tool was presented.
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Appendix

Sequential Graphical Analysis of Balance Calibration Data

Elements of Cook’s sequential graphical analysis approach for balance calibration data are reviewed
because basic ideas of his calibration design are still applied today. The discussion of Cook’s approach also
illustrates why the introduction of global regression greatly simplified the calibration data analysis.

Cook’s approach was often used in the 1960s and 1970s to develop the load prediction equations of a
six–component strain–gage balance (Ref. [1]). Cook’s process is an early version of the Iterative Method
(Ref. [19], App. 10). It determines coefficients of the math models of the bridge outputs by performing a se-
quential graphical analysis of balance calibration data (Ref. [1], pp. 4–5). This approach was possible because
Cook’s balance calibration design consisted of twenty–one data subsets. Table 2 below shows the calibration
data subsets that Cook used as input for his data analysis approach. Either one or two load components are

Table 2: Definition of data subsets needed for Cook’s analysis approach.

SET 1 SET 2 SET 3 SET 4 SET 5 SET 6
   AF     SF     NF     RM     PM     YM

SET 7 SET 8 SET 9 SET 10 SET 11
AF, SF SF, NF NF, RM RM, PM PM, YM

SET 12 SET 13 SET 14 SET 15
AF, NF SF, RM NF, PM RM, YM

SET 16 SET 17 SET 18
AF, RM SF, PM NF, YM

SET 19 SET 20
AF, PM SF, YM

SET 21
AF, YM

SET NUMBER
APPLIED LOAD

SET NUMBER
APPLIED LOADS

SET NUMBER
APPLIED LOADS

SET NUMBER
APPLIED LOADS

SET NUMBER
APPLIED LOADS

SET NUMBER
APPLIED LOADS

simultaneously applied within a data subset. The twenty–one subsets were explicitly designed to support
the twenty–seven–term math model that was used for the analysis of six–component balance data before
absolute value terms were introduced in the 1970s. Cook’s math model consists of six linear terms, six
quadratic terms, and fifteen cross–product terms. He implicitly assumed that bridge outputs are formatted
as differences relative to the outputs at the beginning of each load series (see also the discussion of bridge
output format Difference Type 2 in Ref. [19], App. 6). Therefore, no intercept is needed. Cook’s bridge
output format choice also means that the impact of the weight of the calibration equipment on the bridge
outputs is neglected. Equation (9) below shows, for example, the twenty–seven–term math model of the
axial force bridge output of a six–component balance that Cook’s data subsets support.

rAF = b1 · AF + b2 · SF + b3 · NF + . . . + b6 · YM
+ b7 · AF 2 + b8 · SF 2 + b9 · NF 2 + . . . + b12 · YM 2

+ b13 · {AF · SF} + b14 · {AF ·NF} + . . . + b27 · {PM · YM}
(9)

The same terms are used to define math models of the outputs of the remaining five balance bridges.
The coefficients b1, b2, . . . , b27 of the math model of the axial force bridge output are the unknowns. In
theory, they could be obtained by performing a single least squares fit if global regression would be applied
to the calibration data that Cook’s twenty–one data subsets describe. However, computer resources were
limited when Cook defined his approach in the late 1950s. Therefore, he developed a sequential graphical
analysis approach that uses combinations of data subsets for the determination of the coefficients.

Cook’s approach can be illustrated by reviewing the determination of the five coefficients b1, b3, b7, b9,
and b14 of the axial force bridge output as an example. First, data of Set 1 is used to obtain the coefficients
b1 and b7. The axial force is applied as a single–component load during Set 1. Therefore, data of Set 1 only
supports a simplified version of Eq. (9) that is defined in Eq. (10) below.

Set 1 =⇒ rAF = b1 · AF + b7 · AF 2 (10)
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Now, the axial force bridge output is plotted versus the axial force as shown in Fig. 8. Coefficient b1
describes the slope of the plotted line. It remains to determine the coefficient b7 of the quadratic term from the
data of Set 1. Therefore, both sides of Eq. (10) are divided by the axial force. Equation (11) below shows the
resulting equation. It can be interpreted as a straight line. Coefficient b1 is the intercept. Coefficient b7 is

rAF /AF = b1 + b7 · AF (11)

the slope. It can be computed using a graphical approach after the left–hand side of Eq. (11), i.e., rAF/AF ,
is plotted versus the axial force (see Fig. 9).

It is also known that the normal force is applied as a single–component load in Set 3. Therefore, data
of Set 3 supports a simplified version of Eq. (9) that is defined in Eq. (12) below. Coefficient b3 can directly

Set 3 =⇒ rAF = b3 · NF + b9 · NF 2 (12)

be obtained using graphical analysis after plotting the axial force bridge output versus the normal force.
In addition, similar to the determination of coefficient b7, coefficient b9 can be obtained after dividing
both sides of Eq. (12) by the normal force. The result is shown in Eq. (13) below. It can be interpreted as

rAF /NF = b3 + b9 · NF (13)

a straight line where coefficient b9 represents the slope. Again, the slope is obtained using graphical analysis
after plotting rAF/NF versus the normal force.

The coefficient b14 of term AF · NF still needs to be determined. It can be obtained after applying
Cook’s approach to data of Set 12. It is known that data of Set 12 supports terms that are constructed from
both AF and NF . Therefore, a five–term math model can be used for its analysis:

Set 12 =⇒ rAF = b1 · AF + b3 · NF + b7 · AF 2 + b9 · NF 2 + b14 · {AF ·NF} (14)

Set 12 has data that was recorded by varying the axial force while keeping the normal force at a constant
non–zero value. Outputs of the axial force bridge of Set 12 can be plotted versus the axial force for constant
normal force. In addition, the partial derivative of the axial force bridge output with respect to the axial
force can be obtained by treating the normal force as a constant. Then, the following value is obtained:

NF = const. =⇒ ∂ rAF /∂AF = b1 + 2 · b7 · AF + b14 · NF (15)

Consequently, the partial derivative at zero axial force is given by the following relationship:

NF = const. & AF = 0 =⇒ ∂ rAF /∂AF = b1 + b14 · NF (16)

Furthermore, it is assumed that data of Set 12 is recorded for the required minimum of two constant
values NF ′ and NF ′′ of the normal force. The first normal force is positive (NF ′ > 0). The second
normal force is negative (NF ′′ < 0). Now, the axial force bridge output observed for NF ′ and NF ′′ can
separately be plotted versus the axial force so that the slope ∂ rAF /∂ AF for each of the two lines can
be obtained (see red dots in Fig. 10). It is also known from the earlier analysis of Set 1 that the slope
∂ rAF /∂ AF equals coefficient b1 if the normal force is zero (see blue dots in Fig. 10). Finally, the three
slopes ∂ rAF /∂ AF can be plotted versus the related normal force values NF ′, NF ′′, 0. The slope of the
resulting straight line is described in Eq. (17) below and shown in Fig. 11. It is the graphical estimate of

b14 =
∂ ( ∂ rAF /∂ AF )

∂ NF
=

∂ 2 rAF

∂ AF ∂ NF
≈ ∆ ( ∂ rAF /∂ AF )

∆NF
(17)

coefficient b14 of term AF · NF . The graphical determination of the remaining twenty–two coefficients of
the math model of the axial force bridge output and of the coefficients of the math models of the other five
bridge outputs follows Cook’s process steps that are described in this appendix.

The example illustrates both complexity and bookkeeping challenges associated with Cook’s approach.
It also reminds the reader why Galway’s introduction of global regression to balance calibration data analysis
represents such an important milestone (see Ref. [7]). First, global regression greatly simplifies the analysis
task because the given calibration data set is processed using a single least squares fit for each dependent
variable. It also allows for the global assessment of multivariate regression models of balance data by using
metrics like, e. g., the p–value, the t–statistic, the standard error, and the Variance Inflation Factor. Finally,
global regression makes it possible to systematically include absolute value terms in regression models of the
dependent variables of balances with bi–directional bridge outputs.
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Fig. 2 Calibration load schedule of the MK3C force balance before the omission of load
series 8 and 11 (red color≡ single–component loads ; blue color≡ two–component loads).

Fig. 3 Calibration load schedule of the MK3C force balance after the omission of load
series 8 and 11 (red color≡ single–component loads ; blue color≡ two–component loads).
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Fig. 4a Load iteration result before cross–product term S1×S2 is removed from the regression
model of the calibration data set that omits load series 8 and 11 (=⇒ load iterations diverge).

lbf                                  lbf                                  lbf                                  lbf           lbf                                in-lbf

Fig. 4b Upper bound of Lipschitz Constant before cross–product term S1×S2 is removed
from the regression model of the calibration data set that omits load series 8 and 11.

N1 x N2
S1 x S2

Fig. 4c Variance Inflation Factors of the regression model terms of the forward normal force bridge output
before cross–product term S1×S2 is removed from the model (red ≡ massive near–linear dependencies).
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N1 x N2
S1 x S2

Fig. 4d Percent Contributions of the regression model terms of the bridge outputs before cross–
product term S1×S2 is removed (red ≡ very influential term; blue ≡ term of minor influence).

Fig. 5a Load iteration result after cross–product term S1×S2 is removed from the regression
model of the calibration data set that omits load series 8 and 11 (=⇒ load iterations converge).
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lbf                                  lbf                                  lbf                                  lbf           lbf                                in-lbf

Fig. 5b Upper bound of Lipschitz Constant after cross–product term S1×S2 is removed
from the regression model of the calibration data set that omits load series 8 and 11.

N1 x N2

Fig. 5c Variance Inflation Factors of the regression model terms of the forward normal force output
after cross–product term S1×S2 is removed from the model (black≡ no near–linear dependencies observed).

N1 x N2

S1 x S2

Fig. 5d Percent Contributions of the regression model terms of the bridge outputs after cross–
product term S1×S2 is removed (red ≡ very influential term; blue ≡ term of minor influence).
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plotted line

D rAF

D AF

AF

rAF

data point of Set 1

Fig. 8 Graphical determination of coefficient b1 of term AF (blue dot = data point of Set 1).

b1

rAF / AF

D (rAF/AF)

D AF

plotted line

data point of Set 1

AF

Fig. 9 Graphical determination of coefficient b7 of term AF 2 (blue dot = data point of Set 1).
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D rAF

D AF

AF

rAF

data point of Set 12

data point of Set 1

data point of Set 12

Fig. 10 Graphical determination of the slope ∂ rAF /∂AF for a constant
normal force (red dot = data point of Set 12; blue dot = data point of Set 1).

D
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NF
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NF = NF  ’NF = NF  ”
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Fig. 11 Graphical determination of coefficient b14 of term AF ·NF .
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