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Background  

Current airspace traffic consists of two categories of flights: VFR and IFR

• Airspace operations impacted by traffic from both VFR and IFR  

Image sources: Google Maps

Instrument Flight Rules (IFR)

➢ Flight plans available 

➢ Easy to forecast

Visual Flight Rules (VFR)

➢ Visual based flights

➢ High uncertainty
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Visual Flight Rules (VFR) flights have 

significant trajectory uncertainties due 

to: 

• Lack of flight plans 

• Gaps in surveillance

• Less-structured flight paths

• Mission and region-specific behavior

Background

Lat (°𝑁)

Long (°𝑊)

Comparison of VFR and IFR Flights

Uncertainty in the VFR flights makes traffic prediction challenging

VFR

IFR
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IFR

VFR

Motivation 

Image sources: Google Maps

• Future airspace will see 

integration of uncrewed aircraft 

(UA) 

• Requires seamless integration 

of UA with all existing traffic, 

both VFR and IFR
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Motivation 

• Future airspace will see 

integration of uncrewed aircraft 

(UA) 

• Requires seamless integration of 

UA with all existing traffic, both 

VFR and IFR

Image sources: Google Maps

IFR

VFR
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Previous Works

• State-space based methods: unsuitable for data driven optimization; typically limited to 

certain distribution types   [Jiang, et al 2021]

• Machine learning based methods: discriminative models produce deterministic results 

which don’t capture uncertainty  [Ayhan, et al. 2016; Dong, et al. 2023]

Trajectory forecasting works

• VFR trajectory prediction modelling: limited to mission specific scenarios (i.e. 

reconnaissance flights only)  [Andreeva-Mori, et al. 2022]

• VFR traffic prediction occupancy maps: grid-based heat maps that provide probability of 

VFR interaction    [Bulusu, et al. 2023, Bulusu, et al. 2024]

VFR specific works
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Motivation 

• Traditional methods are not 

sufficient for predicting VFR 

traffic

• Generative model presents a 

novel opportunity to forecast 

probabilistic trajectories that 

characterize varied VFR 

behavior

Image sources: Google Maps

IFR

VFR
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Contributions

• Development of variational autoencoder (VAE) architecture 

suitable for trajectory forecasting

– Includes data processing steps to prepare real-world flight trajectories

• Empirical results showing: 

– Comparison of VAE to classical machine learning (XGBoost) 

– Results over both towered and non-towered airports

– Forecasting over increasing time horizons

Use deep generative model, in the form of Variational Autoencoder (VAE), to 

perform VFR trajectory forecasting
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Problem Formulation

Forecasting of VFR flights using trajectories

• Trajectory: collection of states and any conditioning variables

  𝑇 = 𝒔0, 𝒂0, 𝒔1, 𝒂1, 𝒔2, 𝒂2, … , 𝒂𝑇−1, 𝒔𝑇

                 𝒔𝑡: 𝑠𝑡𝑎𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑔𝑒𝑛𝑡

    𝒂𝑡: 𝑎𝑛𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

      𝑒. 𝑔. 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑟 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 

• Forecasted trajectory: 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 = {𝒔0, 𝒂0, ො𝒔1, 𝒂1, ො𝒔2, 𝒂2, … , 𝒂𝑇−1, ො𝒔𝑇}

where ො𝒔t+1 ∼ 𝑝 𝒔t+1 𝒔t; 𝒂𝑡

Use deep generative model to learn the distribution of next state given current state 

and conditioning variables
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Variational Autoencoder (VAE)

• Deep generative model learns the underlying distribution of the training data

• Variational auto-encoder (VAE): latent space based representation that can capture diverse behaviors

– Provides the ability to do probabilistic sampling 

Encoder Decoder

Training data 

in complex 

distribution 

Encoded to 

easy-to-sample 

distribution

Decoded back to 

original, complex 

distribution

Image sources: adapted from Variational auto-encoder (Kingma and Welling, 2019) 
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Variational Autoencoder (VAE)

Encoder Decoder

Image sources: adapted from Variational auto-encoder (Kingma and Welling, 2019) 

ො𝒔t+1 ∼ 𝑝 𝒔t+1 𝒔t; 𝒂𝑡

Results in forecasted trajectory: 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 = {𝒔0, 𝒂0, ො𝒔1, 𝒂1, ො𝒔2, 𝒂2, … , 𝒂𝑇−1, ො𝒔𝑇}
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Data Processing

• Data source: 1 year of data over towered 

(SJC) and non-towered (HLI) airports

– Variability in trajectories observed

– Increased VFR traffic for non-towered

– More training data for towered

• Data pre-processing steps: 

– Delta time for inconsistent time steps

– Cos and sin of heading angle to prevent 

angular discontinuities

– Standard pre-processing steps 

• State vector for training:

𝑠𝑡 =  [Δ𝑡𝑖𝑚𝑒, 𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔, 𝑎𝑙𝑡, 𝑔𝑟𝑜𝑢𝑛𝑑𝑆𝑝𝑒𝑒𝑑, 𝑐𝑙𝑖𝑚𝑏𝑅𝑎𝑡𝑒, cos 𝐻𝑒𝑎𝑑𝑖𝑛𝑔 , sin 𝐻𝑒𝑎𝑑𝑖𝑛𝑔]

SJC

HLI

Image sources: Google Maps



15

Outline

Background and Preliminaries

   Model Development and Training Process 

Results and Conclusions



16

Results

• Comparison of three models: 

– XGBoost: classical state-of-the-art machine learning 

– VAE: developed model for towered airport

– VAE – Non-towered: developed model for non-towered airport

• Forecasting over three increasing time horizons: 

– Each horizon = 1 time step 

– Time step may be varying lengths, e.g. 4 s or 12 s

• Analysis of latitude, longitude, altitude, and total (averaged) errors



17

Horizon 

(Time Steps)
Model Type Total MAE Latitude MAE Longitude MAE Altitude MAE

1

XGBoost

VAE (Towered)

VAE (Non-towered)

0.0994

0.1091

0.1546

0.0010

0.0033

0.0020

0.0013

0.0032

0.0043

0.2959

0.3209

0.4577

5

XGBoost

VAE (Towered)

VAE (Non-towered)

0.5386

0.3409

0.4014

0.0047

0.0091

0.0047

0.0085

0.0089

0.0124

1.603

0.8967

-1.187

10

XGBoost

VAE (Towered)

VAE (Non-towered)

1.008

0.5714

0.7239

0.0043

0.0156

0.0083

0.0050

0.0151

0.0226

3.014

1.683

2.141

Mean Absolute Error (MAE) Values Between True and Forecast

• XGBoost performance similar to VAE for time horizon of 1

• VAE outperforms XGBoost for increased time horizons  
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Comparison of VAE and XGBoost (Time Horizon = 5)

Latitude (°𝑁)

Longitude  (°𝑊)

VFR

True

XGBoost
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Horizon 

(Time Steps)
Model Type Total MAE Latitude MAE Longitude MAE Altitude MAE

1

XGBoost

VAE (Towered)

VAE (Non-towered)

0.0994

0.1091

0.1546

0.0010

0.0033

0.0020

0.0013

0.0032

0.0043

0.2959

0.3209

0.4577

5

XGBoost

VAE (Towered)

VAE (Non-towered)

0.5386

0.3409

0.4014

0.0047

0.0091

0.0047

0.0085

0.0089

0.0124

1.603

0.8967

-1.187

10

XGBoost

VAE (Towered)

VAE (Non-towered)

1.008

0.5714

0.7239

0.0043

0.0156

0.0083

0.0050

0.0151

0.0226

3.014

1.683

2.141

Mean Absolute Error (MAE) Values Between True and Forecast

• MAE increases with increasing time horizons 

• Non-towered shows higher MAE than towered
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Results over Towered Airport

Ex Time Horizon = 1 Time Horizon = 5 Time Horizon = 10

1

2



21

Results over Non-towered Airport

Ex Time Horizon = 1 Time Horizon = 5 Time Horizon = 10

1

2
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Horizon 

(Time Steps)
Model Type Total MAE Latitude MAE Longitude MAE Altitude MAE
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5
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0.0047

0.0091

0.0047

0.0085

0.0089

0.0124

1.603

0.8967

-1.187

10

XGBoost

VAE (Towered)

VAE (Non-towered)

1.008

0.5714

0.7239

0.0043

0.0156

0.0083

0.0050

0.0151

0.0226

3.014

1.683

2.141

Mean Absolute Error (MAE) Values Between True and Forecast

• Altitude shows higher MAE values than latitude and longitude
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Results over Towered Airport – 2D and 3D Views 
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Results over Non-towered Airport – 2D and 3D Views 
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Conclusions 

• Developed VAE model suitable for 

forecasting of VFR trajectories 

– Probabilistic results showed the uncertainty 

distribution of VFR trajectories 

Future work: 

• Expand forecasting region to en route trajectories 

• Add conditioning variables, such as 

environmental conditions and metrics, to 

measure impact on forecasted trajectories

• Assess the effectiveness on other applications

Image sources: Google Maps
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Thank you! 

Questions? 
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