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Overview



• ACM allows user to trade data 
throughput for link robustness

• ACM is a closed loop method, requires 
feedback from RX to TX

• DVB-S2 allows TX to unilaterally 
change ModCod frame-by-frame

• DVB-S2 does not specify feedback 
method, left to modem vendors
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Adaptive Coding and Modulation
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• DVB-S2 modem vendors implement 
unique or proprietary ACM feedback 
methods

• Communications service providers 
(SPs) use these modems to service 
spacecraft

• Impractical to integrate a closed-
source feedback method on SDR

• Some vendors design for terrestrial 
use only (maritime, aviation)
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Motivation
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Our ACM System Design
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Our ACM System Design

1. User-operated ACM server queries link quality from the SP
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Our ACM System Design

1. User-operated ACM server queries link quality from the SP

2. Optimal DVB-S2 Modcod is selected (factoring in a desired link margin)
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Our ACM System Design

1. User-operated ACM server queries link quality from the SP

2. Optimal DVB-S2 Modcod is selected (factoring in a desired link margin)

3. ACM server sends selected ModCod to spacecraft over SP-handled IP traffic
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Our ACM System Design

1. User-operated ACM server queries link quality from the SP

2. Optimal DVB-S2 Modcod is selected (factoring in a desired link margin)

3. ACM server sends selected ModCod to spacecraft over SP-handled IP traffic

4. Process on spacecraft receives and implements selected ModCod
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• We test our design on the CGT, a high-
fidelity near-Earth communications testbed

• Spacecraft emulation through engineering 
model SDRs and single-board computers

• RF channel emulation from orbital 
mechanics simulation, delay, doppler, 
interference and free space path loss

• Representative modems with provider 
accurate waveforms
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• The CGT is configured to emulate two DTE contacts between a LEO spacecraft and a SP

• The ACM server is configured to select ModCods with 3 dB of link margin

11

Emulation and Results
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• Latency and link margin affect what rate 
of link quality change an ACM system 
can handle

• 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑔𝑢𝑎𝑟𝑎𝑛𝑡𝑒𝑒𝑑 𝑟𝑎𝑡𝑒 =
𝑙𝑖𝑛𝑘 𝑚𝑎𝑟𝑔𝑖𝑛

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

• Our design is disadvantaged in latency 
compared to vendor methods
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ACM System Performance
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• High variation (due to unoptimized 
testbed modem) but 2 std deviations is 
0.49 seconds

• Thus, with a link margin of 3 dB, our 
system can handle 6.12 dB/s

• LEO free space path loss slope is on order 
of 0.1 dB/s

• LEO Ka-Band DTE rain fade slope does 
not exceed 3 dB/s 99% of the time [1]
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Latency Results

[1] Liu, W., Michelson, D.: ‘Fade Slope Analysis of Ka-Band Earth-LEO Satellite Links Using a Synthetic Rain Field Model’. IEEE Transactions on Vehicular Technology, 2009, 58, (8), pp 4013-4022



• The benefits of our ACM system design include:

• No requirement to fly a specific vendor’s modem

• Interoperability between multiple DVB-S2 SPs

• User control over ModCod selection algorithm (machine learning...)

• No loss of ACM if DVB-S2 SP switched to a different modem vendor

• Our system does this without:

• Requiring any hardware to be installed at SP facilities

• Being too slow to handle typical link quality changes
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Conclusion
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