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Abstract

This report presents the findings from market research conducted for NASA’s Aerial
Aid Convergent Aeronautics Solutions (CAS) exploration project, which aims to as-
sess the current state of the market and technological readiness for Uncrewed Aerial
Systems (UAS) for medical emergency first response. The research reveals a robust
and rapidly growing market for UAS, with a notable emerging sector for Drones as
First Responders (DFR). Despite this growth, DFR applications are currently lim-
ited by regulatory, technical, and other challenges, which restrict their use primarily
to manned remote video surveillance, and therefore are primarily employed by po-
lice units. To our knowledge, there is no evidence of UAS being utilized by medical
first responders for scene assessment. Limited evidence exists for closely related
applications; however, these are mostly confined to pilot programs for the deliv-
ery of medical supplies or equipment. Although there has been discussion around
fully autonomous DFR applications for medical purposes such as UAS ambulances
or patient transport drones, these applications are generally not yet operational in
practice. The technology for full autonomy, especially in guidance and control, has
seen significant advancements, and recent Federal Aviation Administration (FAA)
regulations are likely to accelerate adoption. Computer vision algorithms for fully
autonomous medical emergency response scene surveillance are primed for advance-
ment and deployment. A notable gap likely exists between advancements in com-
puter vision research and what is being integrated in the commercial DFR sector.
This gap is primarily due to challenges such as quality assurance for autonomous
systems, the availability of application-specific training datasets for computer vision
algorithms, regulatory constraints, and public perception and privacy concerns.
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1 Introduction

NASA’s Convergent Aeronautics Solutions (CAS) project invests in innovative ideas
and challenges to advance aeronautics and related industries [1]. The CAS project
has identified an opportunity to enhance human health through the use of Uncrewed
Aerial Systems (UAS), also known as Uncrewed Aerial Vehicles (UAV) or drones,
for medical applications, currently being explored by an effort called Aerial Aid.
Aerial Aid focuses on Drones as First Responders (DFR), a paradigm in which UAS
are deployed to emergency scenes in advance of or alongside traditional resources
such as fire and medical first response units. DFR uses UAS to provide reliable
situational awareness to ground units prior to their arrival. Equipped with cameras,
sensors, and communication devices, the drones can send live video feeds to the
remote pilot and other stakeholders including responding officers, fire departments,
and command personnel—giving them near real-time situational awareness before
they arrive on the scene. The benefits of these programs include faster response
times, improved safety for both officers and the community, and cost-effectiveness
compared to traditional aerial support like helicopters [2, 3].

Within DFR, Aerial Aid emphasizes the use of Artificial Intelligence and Ma-
chine Learning (AI/ML) toward automatic scene mapping and perception technolo-
gies, leveraging advances in commercially available computer vision capabilities such
as object detection1 and semantic segmentation2. Advances in UAS sensors and
data streams (e.g., positioning, inertial data, network signals) enable the creation
of detailed 3D models of emergency scenes without manual input [4]. Further-
more, automatic scene perception technology seeks to identify and report on critical
environmental information for first responders. This could include such tasks as
identifying safe routes of ingress and egress, patient count and location, bi-stander
count and location, an indication of certain patient vitals such as respiration rate,
the presence of hazards such as fire, and more, providing a comprehensive operating
picture for emergency personnel.

1.1. Report Objectives

This report aims to inform Aerial Aid’s efforts to promote the expanding role of
drones in emergency medicine and their potential to enhance patient outcomes. It
highlights the current state of DFR and related AI/ML, discusses scene assessment
relevant datasets for training AI/ML from a UAS perspective, and reviews gaps
and challenges which may be inhibiting the integration of drones into Emergency
Medical Services (EMS).

Currently, key research, including limited deployments, is underway for DFR
applications for emergency medicine including delivering Automated External De-
fibrillators (AEDs) to cardiac arrest victims, transporting blood and blood products,
delivering emergency medications such as Naloxone and Epinephrine, and assisting
in search and rescue operations with advanced imaging and communication capa-
bilities such as deep learning for emergency hand signal and drowning victim iden-

1https://www.tensorflow.org/hub/tutorials/object detection
2https://www.tensorflow.org/tutorials/images/segmentation
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tification [5]. However, the widespread adoption of medical drones faces several
challenges. Challenges limiting UAV autonomy have a special impact on the utility
of DFR for emergency medicine. Challenges exist that include limiting autonomy
such as regulations by authorities like the FAA and the European Union Aviation
Safety Agency, safety and privacy concerns, the efficacy and reliability of AI/ML
capabilities for computer vision and decision making, and hardware limitations such
as battery life and payload capacity. Despite these challenges, future opportunities
exist for integrating drones into existing EMS and 9-1-1 systems, gaining public ac-
ceptance through education, and evaluating the cost-effectiveness of drone networks.
Case studies highlight the effectiveness of drones in delivering AEDs and blood
products and enhancing search and rescue missions, demonstrating their potential
to improve emergency medical response [5]. Academic research shows promising ad-
vancements in AI/ML including computer vision, and new FAA legislation indicates
more widespread autonomous flight in the near future.

UAS technology is a broad and growing field. Within UAS research, this report
specifically seeks to contribute to a broader understanding of the DFR market by
assessing the technological capabilities of relevant AI/ML, the availability of training
datasets, and the use of assurance measures related to training data and model
outputs for medical scene assessment. Therefore, the primary objectives of the
report are to investigate the following knowledge areas:

1. State of DFR use within the UAS industry

2. State of AI/ML for UAS scene assessment, with an emphasis on medical DFR
applications

3. Availability of public datasets for training UAS scene assessment models

4. Quality assurance concerns for learning-enabled UAS systems, with an em-
phasis on DFR applications

5. Gaps and barriers to adoption for medical DFR systems

1.2. Research Methodology

Research for this report is conducted solely via resources available over the inter-
net. These resources specifically are websites, patents, academic and other technical
articles, and published reports. Generative AI is employed in the compilation and
organization of this research and in draft writing; however, all research is augmented
and fact-checked by a human being. The final draft of the report is written, edited,
and proof-read solely by human subject matter experts.

1.3. Scope and Limitations

For this report, effort is made to keep the scope focused on DFR with an empha-
sis on emergency medical response when possible. Additional emphasis was placed
on AI/ML technologies and related datasets, capability gaps, and challenges to the
industry adoption of medical DFR. These emphases are intended to inform Aerial
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Aid’s proposed contributions. Further, this report benefits from several comprehen-
sive reports and review papers [4,6–15]. Several of these resources provide significant
detail on technology and capability aspects of the DFR topic which would be im-
possible and duplicative to completely convey here. Our intention is a highlighted
survey of the subject area, and if additional details are desired by the reader, com-
prehensive source summaries are provided in the Appendices.

The primary limitation of this study is that it was conducted completely using
resources available over the internet. As a result, there is likely some bias; for
example, proprietary data concerns may inhibit commercial vendors from publishing
data or technical details about their capabilities. Websites pose a particular problem
in that it is not always possible to ascertain how current and reliable the information
is. The age and reliability of journal articles is less uncertain; however, information
is often dated by several years which is a consideration for a technology as rapidly
changing as UAS and AI/ML.

1.4. Organization

The rest of the report is organized as follows. Section 2 gives an overview of the
DFR industry - applications and technological advancements. Section 3 presents
our findings on the current state of the art for AI/ML technologies relevant to
autonomous DFR operations. Section 4 presents an overview of publicly available
training datasets relevant to UAS based scene assessment, while Section 5 discusses
assurance concerns when considering learning-enabled components for safety-critical
systems such as DFR. Section 6 presents the gaps and barriers we have identified
for this problem space, and Section 7 concludes.

2 State of the Drones as a First Responder Industry

The UAS sector is experiencing rapid growth. The value of drone activity in the
United States increased from $40 million in 2012 to about $1 billion in 2017, and is
projected to have an annual impact of $31 billion to $46 billion on the U.S. GDP by
2026 [6]. Various stakeholders, including government agencies and private investors,
are directing funds towards the development and deployment of UAS technologies.
For the DFR subsector specifically, approximately 10% of funding comes from public
safety agency budgets, 15% from forfeited funds, and the majority 46% from dona-
tions [16]. The number of agencies adopting UAS for DFR increased by over 82%
between 2016 and 2017, with states like Texas, California, and Wisconsin leading
the pack [16]. Of public safety agencies deploying UAS, 63.7% are law enforcement
and only 20.4% fire and EMS combined [16].

These market forecasts reflect the growing demand for DFR technologies. How-
ever, the extent to which machine learning and computer vision-based technologies
are being integrated into the DFR industry is not confidently assessed. The volume
of academic research for AI/ML technologies for capabilities such as UAV-based
scene assessment has grown significantly in recent years, but it is unclear how much
of this technology is being deployed in the field. Available information about com-
mercial drone capabilities from company websites appears to be vague and promo-
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tional; AI/ML or computer vision techniques being deployed in the field are either
unknown or little detail is given. Most DFR concepts are used by law enforcement
agencies and generally function as a remote video imaging platform where the con-
trols and image processing is mostly or completely performed by a human [2]. A
primary task of law enforcement is surveillance, thus piloted drones serve a current
need; however, increasingly autonomous DFR concepts would likely embolden wider
adoption. In the future, more autonomous DFR concepts may work to free up con-
strained human resources for other tasks; however, this remains to be seen. The
following section reviews the current state of DFR capabilities and applications.

2.1. Corporate Interest and Involvement

Companies like Draganfly [17], Paladin Drones [18], and BRINC [19] are leading the
charge by offering comprehensive UAV solutions designed to enhance emergency
response through real-time data capture and surveillance. Draganfly, for instance,
alleges that its DFR platform currently provides high-zoom RGB cameras and ther-
mal imaging enhanced by target tracking via optical recognition [17].

British company PELA Systems and AI Robotics Drones Solutions focus on in-
tegrating UAV technology into urban, defense, industrial, and surveillance applica-
tions. PELA Systems states that their PELAmesh technology integrates instrumen-
tation, visual, and communication protocols for comprehensive scene assessment, for
purposes of allowing first responders to capture real-time data and make informed
decisions before deploying human resources [20]. Similarly, AI Robotics Drones So-
lutions offers UAVs designed for 24/7 autonomous operation, providing real-time
video, data analytics, and integration with other systems with a stated relevance to
scene assessment and emergency response [21].

The MITRE Corporation is a not-for-profit organization that operates federally
funded research and development centers and works across government and indus-
try [22]. The MITRE Corporation offers first responders affordable UAS initiatives
tailored to fit their communities’ specific needs and interests. MITRE’s initiatives
in the DFR industry focus on designing drones that meet specific needs, providing
training standards for first responders, and developing tools to help agencies select
the best drones for their purposes. They also conduct technical analyses of com-
mercial drones and invent drone adapters for specialized tasks such as hazardous
materials detection [3].

The public sector is also involved in advancing DFR capabilities. AIRT Inc’s
DRONERESPONDERS program, a non-governmental organization, provides stan-
dardized training, certifications, and resources for aerial first responders, emergency
managers, and search and rescue specialists [23, 24]. DRONERESPONDERS has
entered into a three-year partnership with NASA’s System-Wide Safety project,
and aims to enhance emergency management through UAS operations and auto-
mated air safety systems [25]. The DRONERESPONDERS Public Safety Summit,
hosted in September 2024, provides case studies, workshops, and networking events
to support the development of UAS programs for first responders [24]. The National
Institute of Standards and Technology (NIST) and the Public Safety Communica-
tions Research Division host the First Responder UAS Challenges to advance UAS
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technology for public safety applications. These competitions focus on scene assess-
ment, search and rescue, and emergency response, allowing participants to showcase
innovative solutions like 3D mapping and indoor navigation to improve first respon-
ders’ situational awareness and effectiveness [26]. The Department of Homeland
Security (DHS) emphasizes the use of small UAS for public safety tasks, including
search and rescue and firefighting, via their Systems Assessment and Validation for
Emergency Responders (SAVER) program [27]. A SAVER hosted focus group re-
port summarizes discussions on assessment criteria for integrating UAS in public
safety highlighting the “Blue UAS Cleared List” from the Department of Defense,
which helps agencies acquire reliable UAS technology [8].

Training and consulting organizations like Skyfire Consulting and UAV Coach
offer turnkey solutions and guides to help public safety agencies establish and man-
age DFR programs. Skyfire supports DFR program development with real-time
video streaming and situational awareness tools [28], while UAV Coach provides
comprehensive overviews of DFR programs, their benefits, and guidance on navi-
gating FAA regulations [29]. Argus Rising provides specialized drone training for
first responders, emphasizing law enforcement and fire rescue applications, covering
aspects like UAS flight safety, search and rescue, and thermal imaging [30].

2.2. Applications and Use Cases

DFR applications span several critical areas in emergency response. Within search
and rescue, drones are assessed for their capability to provide aerial views that
help locate missing persons, assess their conditions, and identify the safest and
quickest access routes for ground responders. Equipped with thermal imaging cam-
eras, drones can operate in low-visibility conditions, including at night, enhancing
their utility in these scenarios [7, 8].

In firefighting, drones are assessed for their capability to assist fire departments
using the drones to assess fire scenes, monitor fire spread, and identify hotspots
[8]. Fire departments also use drone video at traffic collisions to determine needed
equipment and whether occupants are trapped inside. Additionally, DFR drones
offer valuable oversight of wildfires, including hotspot locations, access points, and
direction of travel [2].

Within law enforcement, as of August 2023, there are at least 16 police de-
partments with active DFR programs and another 100 or so that are exploring the
concept; the primary uses of drones for these departments is in advanced situational
awareness, de-escalation, and as a force multiplier [2]. Drone derived video feeds
help law enforcement de-escalate scenerios by determining if suspects possessing ob-
jects believed to be weapons are actually weapons; this takes place before officers
ever interact with the individual(s) whose actions prompted the police response [2].
As a force multiplier, drones can augment or increase the efficiency of law enforce-
ment resources. For example, the Chula Vista Police Department reports that, in
approximately 25% of the cases in which a drone is dispatched, no ground units
are needed, freeing personnel to answer other needs; other departments with DFR
programs report similar results [2].

For medical response, studies in the US and Europe suggest that drones can
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assist in medical emergencies by delivering medical supplies such as Naloxone, anti-
epileptics, and blood products; and by transporting AEDs to cardiac arrest victims
faster than ground vehicles [6,10,31]. Blood delivery drones are already being used
in Rwanda and Ghana with significant reductions in response time compared to
human responders [31], while organizations like Zipline and Volansi have demon-
strated success in using drones for delivering prescription medications and vaccines
to remote areas [5]. Drones are also being utilized in emergency medical response to
supplement ground teams and manned aircraft, particularly in hazardous situations
or where traditional vehicles are costly. During the COVID-19 pandemic, drones
delivered Personal Protective Equipment (PPE), tests, lab samples, and vaccines;
they also conducted remote patient evaluations using drones fitted with two-way
video communication devices and sensors to monitor temperature, pulse rate, and
respiratory rate [5]. A 2020 patent describes a medical DFR concept, with special
focus on describing communications technologies for coordinating with other UAVs
and emergency personnel during the response [32]. Finally, studies have been con-
ducted to assess the value in using UAV to triage patients. In one study on multiple
casualty accidents, triage with a drone was 3.5 minutes slower but could arrive 93%
faster than first responders [9].

2.3. Technological Advancements

There have been a high number of recent technological advances which serve to
enable autonomous DFR capabilities across a range of UAS concerns. For au-
tonomous flight and control systems, significant advancements in autonomous
flight technology such as detect-and-avoid technologies, versatile location technolo-
gies, integrated air-traffic-management systems, system failure responses, dynamic
routing. Hand-offs between human and machine controllers are expected to enable
drones to operate with minimal human intervention, making them more effective for
applications such as scene assessment and surveillance in dynamic and hazardous
environments [6]. A 2023 survey paper cites nonlinear control systems as a critical
element for the future of UAVs in smart cities; however, advancements in computer
vision technologies are also needed [7].

For sensor integration and hardware support, drones can now be equipped
with a variety of sensors, including high-definition cameras, thermal imaging, Li-
DAR, and gas detectors, allowing them to capture comprehensive data from a
scene [8]. This also includes improved battery life and energy density, which is
increasing at a rate of 5% to 8% per year; this allows drones to operate for longer
durations, covering more ground and providing extended support during emergency
operations [6].

Finally, for communications, infrastructure and paradigms to coordinate data
streams and response logistics are an essential component to autonomous emer-
gency response. A 2018 patent describes a communication system for coordinat-
ing autonomous UAV response to emergencies including receiving vehicle data, de-
tecting emergencies, and dispatching UAV concepts to execute emergency response
tasks [33].
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2.4. Focus Group Insights

In November 2023, the US Department of Homeland Security’s SAVER program
held focus groups with fire and law enforcement representatives to gather criteria,
scenarios, and product suggestions for evaluating UAS technology. Over two days,
13 participants from various US states, experienced in UAS operations, contributed
to these discussions. The following focus group insights were collected from the
resultant report published in 2024 entitled “Blue Unmanned Aircraft Systems for
First Responders Focus Group Report” [8].

The feedback gathered from these preliminary focus groups yield some valuable
insights. First, when asked about capabilities and criteria of an acceptable
DFR system, the groups highlighted critical needs for DFR drones, including high-
quality cameras, flight duration, reliable command and control links, low latency,
and rapid redeployment times. Specifically, they identified 18 assessment crite-
ria, emphasizing “capability” and “deployability” as the most important categories.
Critical capabilities includ “camera visual acuity” for clear imagery, “command and
control link quality” for reliable data transmission, “communication latency” for
minimal delay in data reception, and “time to redeploy” for quick battery changes
and return to flight.

When discussing potential operational scenarios, groups recommended spe-
cific operational scenarios for evaluating DFR drones, such as search and rescue
operations, post-incident damage assessment, situational awareness exercises, and
night operations. These scenarios assessed various capabilities of the drones under
different conditions, such as locating individuals in diverse terrains, inspecting in-
frastructure during disaster relief, providing detailed intelligence during unplanned
incidents, and operating in low-light conditions. Evaluators highlighted the im-
portance of using both manual and automated flight modes, dealing with varying
lighting conditions, and handling different types of terrain and obstacles.

2.5. Summary

To conclude, contributions are being made to DFR from both the private and pub-
lic sectors, driven by technological advancement, investments, and the recognition
of the value drones bring to emergency response scenarios. Companies offer UAV
solutions with specific application to DFR [3, 17–22] and services to develop and
manage DFR programs [28–30]. Public and non-profit sector initiatives focus on
education, training, analysis, and regulatory support to enhance the effectiveness of
UAVs in emergency response [8,23–27]. DFR applications cover critical areas such as
search and rescue, firefighting, law enforcement, and medical response, leveraging
technological advancements in autonomous flight, sensor integration, and battery
technology to enhance effectiveness [2, 5, 6, 8, 10]. However, gaps exist in the DFR
sector. Of particular interest to Aerial Aid, integration of computer vision tech-
nologies toward increased drone automation appear lacking especially outside of the
area of navigation and control. Limiting automation reduces the utility of DFR
concepts particularly for applications beyond law enforcement such as emergency
medical response.
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3 State of Artificial Intelligence/Machine Learning for
Drones as a First Responder

A comprehensive survey of existing literature and review papers reveals a scarcity
of AI/ML approaches applied to DFR scene assessment, especially for medical first
response; however, there is extensive research on general computer vision including
research specific to UAS-based applications. This section reviews relevant computer
vision methodologies for UAS scene assessment, encompassing applications such
as object identification and tracking. Despite significant academic advancements
in computer vision technology, its integration into the commercial DFR is largely
unknown and likely limited. Currently, drones for DFR scene assessment appear
to primarily function as remote video sensors, relaying data to human operators
who perform the scene assessment and analysis. This section presents a high-level
overview of the state-of-the-art for both computer vision research and UAS-based
scene assessment.

3.1. Computer Vision for Uncrewed Aerial Systems-based Scene As-
sessment

The field of computer vision has changed dramatically over the past decade, and
consequently so have the algorithms available for computer vision related to scene
assessment. For example, between 2016 and 2021 there has been 3.5x increase in the
publication of academic papers related to object detection [14]. There has been a
general shift toward computationally complex algorithms, particularly those based
on Convolutional Neural Networks (CNNs) and Deep Learning (DL), which are
well suited to tasks such as object detection and tracking. In a 2018 review paper
on computer vision for emergency response and detection, the authors describe
algorithms specialized to execute feature extraction or classification tasks in roughly
equal proportion to those which perform object detection or tracking [11]. However,
review papers published in 2021 [12] and 2022 [4] on aerial surveillance focus almost
entirely on deep learning algorithms such as Faster R-CNN, YOLO, and Single
Shot Detection (SSD). We now briefly survey some of the various computer vision
algorithms which have been described for aerial surveillance and emergency response
and detection; for a more detailed treatise, the reader is referred to the review articles
which provided the sources for this brief summary [4, 11,12,14].

Computer vision algorithms in aerial surveillance and emergency response
and detection-related literature focus primarily on feature extraction (color,
shape/texture, temporal) and machine learning. Feature extraction can be used
to aid in detecting visually distinctive emergency-specific elements of interest, uti-
lizing spatial, motion, or other data to differentiate between normal and emergency
situations. The machine learning algorithms enhance the detection and response
capabilities of computer vision systems by leveraging their strengths in handling
complex, nonlinear, and temporal data. Most machine learning algorithms men-
tioned in aerial surveillance papers in open literature focus on object detection and
tracking with a direct application to DFR; for example, the algorithms might handle
identification of individuals in disaster areas so that rescue teams can be given their
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Algorithm Description
C
o
lo
r

Color Feature Ex-
traction

Identifies the distinctive colors of materials and events
which lack specific shapes but have characteristic col-
ors, such as fire, smoke, and water. Approaches are
customized to particular color models, such as RGB,
HSI, HSV, YCbCr, and CIELab.

S
h
a
p
e

Shape and Tex-
ture Feature Ex-
traction

Identifies the distinctive shapes and textures of mate-
rials, events, or actors within a scene. This can include
vague shapes such as smoke or fire, or more concrete
shapes such as human bodies. Example approaches
include Histogram of Oriented Gradients (HOG) [34]
and analysis of local binary patterns in pixels [35].

T
e
m
p
o
ra

l

Optical Flow Estimates the motion of objects in consecutive frames;
identify moving threats, analyze crowd dynamics, and
detect anomalies. Example approaches include Lucas-
Kanade and its derivatives [36].

Background Sub-
traction

Separates moving objects from a static background to
detect anomalies given a “normal” environment. Pri-
marily useful in stationary viewpoint scenarios. Ex-
ample approaches include Stauffer and Grimson [37].

Object Tracking Identifies and tracks objects as unique individuals
across consecutive video frames. Object representa-
tions vary based on approach, and could take the form
of individual points, basic geometric shapes, or sophis-
ticated outlines depending on system needs.

M
a
ch

in
e
L
e
a
rn

in
g

Neural Networks Handles imprecise and complex nonlinear data, mak-
ing them suitable for detecting specific features, clas-
sifying events, and improving accuracy in detection
tasks given specific training data.

Support Vector
Machines (SVM)

Used for classification and regression problems, partic-
ularly in binary classification tasks (such as crash/no
crash), effectively working in high-dimensional spaces
and performing well even with limited data. One-class
SVMs can detect anomalies in complex systems like
crowded areas.

Hidden Markov
Models

Recognize temporal patterns in emergency situations,
including sequences of movements or events, such as
crash detection or monitoring crowd behavior to iden-
tify abnormal events.

Table 1. Descriptions of a selection of feature extraction and machine learning
algorithms used to perform common computer vision functions [11,38].
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exact locations [38]. A high-level description of a range of algorithmic approaches
to perform computer vision tasks are presented in Table 1.

Among the machine learning family of algorithms, deep learning neural networks
are receiving a great deal of attention. Two-stage networks such as RCNN [39],
R-FCN [40], and Faster-RCNN [41] are popular for their performance when han-
dling multi-scale challenges in aerial object detection. As the name suggests, these
architectures typically involve two main stages: proposal generation (identify re-
gions of interest) and classification (proposals are refined, classified, and further
processed). R-CNN variants, combined with other networks, have shown success
in competitions like VisDrone [42] and the Tiny Object Detection [43] challenges.
Of the two-stage network architectures, Faster R-CNN is the first near-real-time
deep learning detector. It combines a pre-trained CNN for feature extraction with
two trainable subnetworks: the Region Proposal Network (RPN), which generates
object proposals, and the Classification Network, which predicts the actual class of
the object. The main contribution of Faster R-CNN is the introduction of the RPN
that enables nearly cost-free region proposals. It offers higher detection quality than
RCNN and Fast RCNN, performs classification and regression training in a single
stage, and eliminates the need for separate memory storage for feature extraction.
The real-time frame rates are achieved due to the design of the RPN. Multi-scale
object detection (a general challenge in computer vision), is improved by using a
Feature Pyramid Network (FPN) that generates multi-scale feature representations
at high-resolution levels. Faster R-CNN has been used for both UAV-based detec-
tion and tracking, implemented on desktop and embedded GPUs, achieving fast and
accurate results, and studied on the Stanford drone dataset [44].

One-stage, or “single shot” networks, on the other hand, are favored for
their speed and efficiency compared to two-stage approaches; networks like Reti-
naNet [45], EfficientNet [46], SSD [47], and YOLO variants [48] are widely used in
aerial object detection due to their lower computational requirements. YOLO, or
“You Only Look Once”, is particularly known for its extreme speed. It combines fea-
ture extraction and object localization into a unique monolithic entity, eliminating
the need for separate classification or detection modules and repeated region propos-
als. YOLO performs feature extraction, boundary box regression, and classification
in one output layer. Its quick inference time makes it suitable for edge devices. De-
spite its speed, YOLO has suffered from a drop in localization accuracy compared to
two-stage detectors, especially for small objects; however, improvements have been
made in more recent versions to address this issue. Most recently, SSMA-YOLO
proposed in a 2024 paper has shown improved performance and efficiency compared
to YOLOv8n when applied to a small object dataset [49].

Anchor-free networks are especially effective for UAV-acquired images where
varying object scale, densities, and resolutions present challenges to object detec-
tion. These networks use points instead of anchors (such as bounding boxes). Cen-
terNet [50], FCOS [51], CornerNet [52], FreeAnchor [53], and RRNet [54] are notable
examples. GPU computing has pushed more research toward anchor free designs
in recent years. RRNet employed a hybrid object detection approach to achieve
high performance on the on the VisDrone2018 dataset, achieving the highest scores
in several evaluation metrics (AP50, AR10, and AR100) and was runner-up in the

13



ICCV VisDrone2019 Object Detection in Images Challenge [54].
Network ensembles combine multiple different detectors, which can enhance

performance by leveraging their respective strengths. Multi-stage detectors reduce
false negatives, while single-stage detectors improve bounding box quality. This
strategy, used by winners of the VisDrone 2020 object detection challenge (DP-
NetV3) [42], utilized an ensemble approach with backbones such as HRNet-W40 [55],
Res2Net [56], Libra R-CNN [57], and Cascade R-CNN [58].

This short summary of relevant object detection algorithms demonstrates a par-
tial view of the advances over the past decade. The pace of research in this area has
significantly increased in recent years, and the reader is encouraged to consult liter-
ature for an understanding of new approaches which may not have been conveyed
at the time of this writing.

3.2. Application to Commercial Drones as a First Responder and Chal-
lenges

The current state-of-the-art in the use of computer vision for commercial DFR scene
assessment reveals limited details, likely at least partly due to proprietary informa-
tion handling. Draganfly employs high-zoom RGB and infrared cameras for the
stated purpose of “comprehensive target tracking capabilities” and disaster area as-
sessment, hinting at the possible use of computer vision [17]. BRINC Drones features
obstacle avoidance and autonomous navigation capabilities, a function suggesting
the use of computer vision and possibly other machine learning technologies [19].
In a 2022 patent entitled “Systems and Methods for Tracking, Evaluating, and
Determining a Response to Emergency Situations Using Unmanned Airborne Vehi-
cles”, computer vision is implied in many of the described applications and explicitly
specified in the description of an “obstacle avoidance module” [59]. However, details
about the algorithms employed in these examples are lacking. Similar implications
are made in a 2023 patent describing an emergency UAV monitoring network; how-
ever, specific AI/ML strategies are not directly described [60]. A limited search into
non-DFR commercial UAS scene assessment indicates computer vision may be de-
ployed more widely in other industries. For instance, Dedrone’s DedroneTracker.AI
platform claims to utilize AI/ML for autonomous threat detection and classification
by integrating multiple sensors such as radio, radar, video, and acoustics to provide
comprehensive airspace security [61].

Airborne UAS-based scene assessment has a set of unique machine learning re-
lated challenges both in the areas of computer vision and also availability of compu-
tational resources. The 2023 NOMAD dataset addresses the challenge of occluded
human detection in aerial views, evaluating models like YOLOv8, FasterRCNN, and
RetinaNet for their effectiveness in real-world emergency response scenarios [38].
Challenges to computer vision algorithms unique to UAS-based scene assessment
are summarized in Table 2 [38, 62]. In addition to these challenges, availability of
computational resources is also of great consequence to UAS-based scene assessment
algorithms.

We focus here on computational resources in particular due to hardware design
impacts for an AI/ML UAV application relevant to Aerial Aid. Two computational
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Challenge Description

Small Resolutions Objects may appear extremely small due to high flying
altitudes.

Multiple Scales Instances of the same class, such as people, can vary sig-
nificantly in shape, size, and scale.

Extreme Views Objects may appear in overhead, angled, or distorted
views, which are uncommon in standard object detec-
tion.

Moving Cameras The airborne platform’s movement causes abrupt or con-
tinuous changes in object views, adding challenges like
motion blur and the need for camera stabilization.

Non-Uniform
Distribution

Objects may be densely clustered in urban areas or
sparsely distributed in search and rescue missions.

Illumination Variations in lighting and illumination due to wide area
coverage create non-linear local lighting conditions.

Noisy Data Environmental factors such as clouds, fog, haze, rain, and
wind can obstruct scenes and complicate video stabiliza-
tion.

Dynamic Transition
of Moving Objects

The changing positions and speeds of moving objects add
complexity to detection and tracking.

High Density
of Objects

In urban areas, the high concentration of objects makes
individual detection and tracking more difficult.

Complex
Background

The varied and detailed backgrounds in aerial views can
hinder accurate object detection.

Table 2. Summary of challenges to computer vision algorithms when applied to
UAS-based scene assessment.

scenarios exist: executing the scene assessment capabilities either (a) on the network
edge or (b) on a remote server. Edge implementations process data directly using
the limited onboard resources, critical for real-time applications such as obstacle
avoidance [59] and immediate hazard detection, mitigating any network latency is-
sues. Server implementations may handle more complex data processing tasks which
require significant computational power, and are useful for detailed analysis and
long-term data storage. However, in DFR scenarios where UAVs may need to oper-
ate in areas with limited connectivity and visibility to operators, edge-implemented
computer vision tasks may be required [63]. Additionally, there is a desire to push
vision tasks to edge platforms in general in order to achieve more autonomy via
lower latency, higher reliability, improved security and privacy, reduced cost, and
reduced energy consumption [63]. Solutions to such resource constraints at the
edge include: training smaller networks, model compression techniques (e.g., prun-
ing, quantization, low-rank factorization, and knowledge distillation), data/model
parallelism, hardware approaches, hardware and software co-design, federated learn-
ing, and block-chain [13]. In this case, lightweight algorithms offering a trade-off
between accuracy and performance have been proposed for emergency response sce-
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narios [64]. Derivatives of YOLO such as Edge-YOLO [65] and other detectors based
on MobileNet, have been argued to show promise for edge implementation of object
detection; however, each approach has drawbacks which should be considered [15].

4 Publicly Available Datasets for Drones as a First Re-
sponder

The utility and accuracy of an AI/ML algorithm largely depends on the data avail-
able for training. Dataset size, diversity, and relevance are important factors in
the efficacy of a training dataset. In our search, we were unable to identify any
datasets specific to medical DFR, including injuries or medical emergencies, from
an aerial perspective. However, there are many publicly available datasets relevant
to training an object detection algorithm for UAV-based scene assessment. Such
datasets can be accessed online [66, 67]. One such resource, “Papers With Code”,
offers a robust assortment of 10,104 datasets available for training machine learning
algorithms including 114 for pose estimation, 245 for image classification, 270 for
object detection, and 318 for semantic segmentation [67]. In this section, we de-
scribe a range of the available datasets that are relevant to advancing AI/ML scene
assessment capabilities of interest to Aerial Aid. For additional datasets beyond
those discussed below, please see [4, 12,67].

4.1. Human Target Observation

Datasets in this section cover scene assessment tasks focused on human targets.
These tasks include target identification and re-identification, target tracking, crowd
density mapping, crowd flow estimation, target behavior identification, pose estima-
tion, and target interaction (both human/human and human/non-human). These
datasets demonstrate UAV capabilities of interest to Aerial Aid due to related needs
of interest to medical first response such as patient and bi-stander number identifica-
tion and location, patient behavior, and patient pose and orientation. Select datasets
highlighting this area are detailed below and summarized in Table 3. In addition to
the datasets described in this section, the MULTIDRONE datasets website provides
36 UAV-based visual detection and tracking datasets. Within MULTIDRONE, only
the DroneCrowd dataset [68] is detailed below; for details on the other 35 datasets,
the reader is referred to the MULTIDRONE website [69].

The Stanford Drone dataset (2016) [44] is intended to demonstrate human
behavior in complex environments with multiple non-human targets. The dataset
includes over 929,499 frames and captures more than 19,564 targets at 100 scenes
(road, roundabout, sidewalk, etc.) over six areas on a university campus. The tar-
gets include 11,216 pedestrians, 6,364 bicyclists, 333 skateboarders, 244 golf carts,
1,292 cars, and 115 buses. There are approximately 185,000 target-target interac-
tions (e.g., a pedestrian avoiding a skateboarder) and 40,000 target-space interac-
tions (e.g., a bicyclist maneuvering a roundabout). The scenes are annotated with
target IDs, trajectories, and detailed interaction labels, allowing for comprehensive
analysis of multi-target interactions and social navigation behaviors. Each scene is
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Motorized Vehicles X X
Non-motorized Vehicles X X
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Beaches / Coastal X X
Building Interiors X

Farmland X
Fields / Parks X X

Forest X
Mountains X

River / Lakeside X
Rural X X

Streets / Roadways X X X X X X
Urban / City X X X X X X X X
Varied Seasons X X
Varied Times X X X
Varied Weather X X X

L
A
B
E
L
S

Activity X X X X
Age X X

Appearance X X X
Bounding Box X X X X

Class X X X
Gender X X X

Pose / Posture X X
Target Interactions X
Target Trajectories X X X

Table 3. Summary of publicly available aerial datasets for human target observation
operations.
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captured using a 4K camera mounted on a quadcopter, providing top-view perspec-
tives of the interactions at an altitude of approximately 80 meters. The dataset
supports research in multi-target tracking, activity understanding, and trajectory
prediction.

The UAV123 dataset (2016) [70] is a comprehensive collection of 123 high-
definition video sequences, amounting to 112,578 frames, captured from low-altitude
UAVs. The dataset is divided into three subsets: 103 sequences captured between 30
and 96 frames per second (FPS) at 720p and 4K resolutions using a DJI S1000 UAV
with a Panasonic GH4 camera, 12 sequences captured from a low-cost UAV (details
not provided), and 8 synthetic sequences generated by a custom UAV simulator using
Unreal4 Game Engine at 30 FPS. The videos feature a wide range of environments
including urban landscapes, roads, fields, and beaches, and involve various targets
such as cars, trucks, boats, and people engaged in activities like walking, cycling,
and swimming. The sequences are annotated with upright bounding boxes at, or
interpolated to, 30 FPS, highlighting challenges like fast motion, occlusions, scale
and aspect ratio changes, and illumination variations.

The CrowdFlow dataset (2018) [71] provides an optical flow benchmark fo-
cused on the estimation of movements of pedestrians, especially in highly crowded
scenes. The dataset, generated synthetically using the Unreal Engine, consists of
10 sequences (5 unique sequences each with on static CCTV and one dynamic UAV
perspective) with a total of 3200 frames, rendered at a resolution of 1280 x 720 pixels
and a frame rate of 25Hz. Each sequence features between 371 and 1451 individuals
and simulates various crowd behaviors such as structured flows and panic situations.
The dataset is designed to evaluate the performance of optical flow algorithms in
densely crowded scenes, addressing challenges such as precise motion estimation and
long-term temporal consistency. Detailed labels and metadata for both foreground
and background motion are included.

The Drone-Action dataset (2019) [72] comprises 240 high-definition video
clips recorded at 25 FPS in high definition (HD) resolution (1920 x 1080 pixels)
from a 3DR SOLO rotorcraft drone flying slowly at low altitudes (8–12 m), cap-
turing a total of 66,919 frames. The dataset features 13 dynamic human actions,
including walking, jogging, running, clapping, punching, and various other activi-
ties performed by 10 volunteers. Some actions were recorded while the drone was
hovering (e.g., kicking, stabbing, and punching), and others were recorded while
the drone was following the subject (e.g., walking, jogging, and running). The
dataset was recorded in an outdoor setting to simulate real-world scenarios, and
the videos were annotated with subject IDs, action classes, and bounding boxes.
Additionally, body joint estimations were computed using the OpenPose algorithm.
This dataset is particularly useful for research in action recognition, surveillance,
situational awareness, and gait analysis.

The TinyPerson dataset (2020) [73], is a benchmark dataset with the pri-
mary focus of improving detection of persons in images taken from a long distance
(perhaps less than 20 pixels in height), a task complicated by low signal-to-noise
ratios within complex backgrounds. The TinyPerson dataset was constructed from
high-resolution videos collected from various online sources. The dataset consists of
72,651 annotated objects across 1,610 images. The data is divided into training and
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validation sets, with 794 images in the training set and 816 in the validation set. An-
notations are categorized into ”sea persons” and ”earth persons,” depending on their
location, and further subdivided into ”normal,” ”ignore,” ”uncertain,” and ”dense”
based on attributes like visibility and grouping. The authors tested the effectiveness
of a proposed approach called ”Scale Match” using the TinyPerson dataset. This
method aims to align object scales between the pre-training dataset and the detector
training dataset in order to improve small target detection accuracy.

The P-DESTRE dataset (2020) [74], developed through a collaboration be-
tween the University of Beira Interior (Portugal) and JSS Science and Technology
University (India), is a collection of UAV-based pedestrian detection, tracking, re-
identification, and search data. This dataset includes over 14 million frames cap-
tured by DJI Phantom 4 drones at 4K resolution (3,840 x 2,160 pixels) and 30 FPS,
stored in MP4 format with H.264 compression. The data was collected in two ur-
ban campus environments under varied conditions, simulating real-world scenarios.
The dataset features 269 volunteers (261 known identities), mostly aged 18-24, with
65/35% males/females, and of predominantly two ethnicities (e.g., “White” and “In-
dian”). Each pedestrian is annotated with bounding boxes and 16 soft biometric la-
bels, such as gender, age, height, body volume, ethnicity, hair color, hairstyle, beard,
moustache, glasses, head accessories, body accessories, action, and clothing infor-
mation. Drones operated at altitudes between 5.5 and 6.7 meters with camera pitch
angles between 45° and 90°. The annotations are frame-level, providing detailed
information for each pedestrian, making the dataset suitable for various pedestrian
analysis tasks. Additionally, the dataset supports research on UAV-based person
search, including consistent unique identifiers for each pedestrian maintained across
multiple days, prohibiting reliance on clothing-based features for identification.

The UAV-Human dataset (2021) [75] is a large-scale benchmark designed to
advance human behavior understanding using UAVs. Multiple data modalities are
collected using a UAV with sensors including a fisheye camera, a night-vision sensor,
and an Azure Kinect DK. The dataset is annotated for multiple tasks, including
67,428 multi-modal video sequences for action recognition with 22,476 frames in-
volving 119 subjects performing 155 different activities, pose estimation with 22,476
frames annotated with 17 keypoints, person re-identification with 41,290 frames of
1,144 identities, and attribute recognition with 22,263 frames annotated for seven
attributes (gender, hat, backpack, upper clothing color and style, and lower cloth-
ing color and style). The data was collected across 45 diverse sites, including urban
and rural areas, forests, riversides, mountains, farmlands, streets, gyms, and inside
buildings, over a period of three months covering both summer and fall, during both
day and night. It includes various weather conditions such as sunny, cloudy, rainy,
and windy, and different illumination settings from bright daylight to dark night-
time. The dataset presents significant challenges due to its diverse environments,
varying UAV flight attitudes, and extensive subject variations.

DroneCrowd (2021) is one of the MULTIDRONE Datasets (see [69]). The
DroneCrowd dataset comprises 112 video clips with a total of 33,600 HD frames,
captured by drone-mounted cameras (i.e., DJI Phantom 4, Phantom 4 Pro and
Mavic) covering various scenarios such as campuses, streets, parks, parking lots,
playgrounds, and plazas in four different cities in China (Tianjin, Guangzhou,
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Daqing, and Hong Kong). Videos were shot at 25 FPS at a resolution of 1920
x 1080 pixels. Each video frame contains between 25 and 455 people and an av-
erage of 144.8 objects for a total of over 20,800 annotated people trajectories and
4.8 million head annotations. The dataset features diverse attributes like illumina-
tion conditions (cloudy, sunny, night), scale (large and small objects), and density
(crowded and sparse). It is designed for training and benchmarking algorithms in
density map estimation, localization, and tracking in crowded scenes captured by
drones [68].

The AG-ReIDv2 dataset (2023) [62] is a video image collection designed to
facilitate person re-identification (ReID) from both aerial and ground perspectives.
Over a period of five months, data was collected on a university campus using
three different types of cameras: a DJI M600 Pro UAV equipped with an XT2
camera with resolution of 3840 x 2160 pixels which captured images at 30 FPS from
altitudes between 15 and 45 meters, a Bosch Closed-Circuit Television (CCTV)
camera with resolution of 800 x 600 pixels which captured ground-level footage at
30 FPS, and a Vuzix M4000 wearable camera which captured 4K images at 30 FPS to
provide stationary first-person perspectives. The dataset comprises 100,502 images
featuring 1,615 unique identities, annotated with 15 soft-biometric attributes such
as age, gender, and clothing style. The images reflect diverse real-world scenarios,
capturing pedestrians in various states of motion and environmental conditions, such
as different times of day and weather.

4.2. Disaster and Emergency Response

These datasets contain visual data from UAV or other aerial observed disaster areas
and emergency response scenerios. Data includes scenes with annotations of vari-
ous levels of building damage and related features resulting from disasters such as
fires, floods, and hurricanes. Also included is the NOMAD dataset which features
actors, partially occluded by objects, intended to provide data for search and rescue
response scenarios. The disaster and emergency response datasets are summarized,
along with the aerial scene assessment datasets, in Table 4.

The Aerial Image Database for Emergency Response (AIDER) dataset
(2019) [63, 64] contains images of four disaster events (320 images of fire/smoke,
370 for Flood, 320 for rubble, and 335 images for traffic accidents), as well as
“normal” (1200 images). Data was collected both manually from UAV-generated
images available on the internet and using a UAV (details about the platform used
for the dataset collection were not clear). Since the images were collected from a
diverse set of sources, most of which were not under direct control by the authors,
characteristics such as image resolution, lighting, and viewpoint varied. To address
this, efforts were made to standardize feasible aspects such as image size. Image
augmentation strategies were applied to vary characteristics such as orientation,
shifting, blurring, etc., which produced a larger 8,540 image dataset. The dataset
was designed with the intention of training a convolutional neural network which
was demonstrated on a UAV platform with both embedded and remote processing
for aerial object classification.

The RescueNet dataset (2023) [76] consists of high-resolution UAV imagery
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Beaches / Coastal X X
Rural / Remote X X X

Streets / Roadways X X X X X X X X
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Varied Seasons X X X
Varied Times X X X X
Varied Weather X X X X X
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Damage - Buildings X X X
Damage - Roads X X

Damage - Trees / Landscape X X
Debris / Rubble X X
Fire / Smoke X
Flooding X X

Target Class X X X X X X X X X
Target Location X X X X X X X X
Target Visibility X X X

Topology X X
Traffic Accident X

Table 4. Summary of publicly available aerial datasets for disaster and emergency
response and general-purpose aerial scene assessment.
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collected after Hurricane Michael made landfall at Mexico Beach, Florida, over 80
flights conducted between October 11–14, 2018. The dataset was collected using DJI
Mavic Pro quadcopters producing and comprises 4,494 images at a resolution of 3000
x 4000 pixels. Images were annotated by providing semantic masks for 10 classes:
trees, water, vehicles, road-clear, road-blocked, building-no damage (4011 masks),
building-medium-damage (3119 masks), building-major-damage (1693 masks), and
building-total-destruction (2080 masks). The dataset is designed to improve the
accuracy and efficiency of damage assessment in post-disaster scenarios by facilitat-
ing comprehensive scene understanding supporting both semantic segmentation and
image classification tasks.

The Natural, Occluded, Multi-scale Aerial Dataset for emergency re-
sponse scenarios (NOMAD) (2023) [38] is developed to provide training data
for object detection algorithms for UAV emergency response with an emphasis on
search and rescue. The dataset consists of 42,825 frames extracted from 5.4k reso-
lution videos, featuring actors performing sequences of hiding, laying, and walking
under different levels of occlusion by an obstacle. Videos were collected at 30 FPS at
a resolution of 5,472 x 3,078 pixels from a sequence of five progressively more distant
locations from the target (ranging from 10m to 90m). Details of the UAV used for
data collection are not clear. All frames are annotated with bounding boxes and
visibility labels categorized into 10 different levels based on the percentage of the
human body visible. NOMAD features a demographic diversity of 100 actors, with a
50/50 male/female distribution and aged 18 to 78, from various racial backgrounds
including White Caucasians, Latinos, African descent, Asians, South Asians, Middle
Eastern, and Pacific Islander. Twelve filming locations provided a variety of natural
and man-made environments, such as field, lake, forest, and school, ensuring rich
environmental diversity and included a range of weather conditions.

The LADIv2 dataset (2024) [77] consists of 9,963 images, split into 8,030
train examples, 892 validation examples, and 1,041 test examples. The training and
validation examples are drawn from federally declared disasters across the United
States between 2015-2022, and the test examples are drawn from disaster declara-
tions in 2023. The images were captured using both small manned and unmanned
aircraft from altitudes, perspectives, geographies, and lighting conditions. Details
are not provided on the aircraft or photographic equipment used. Each image is
annotated with multiple labels by a team of 46 trained Civil Air Patrol volunteers.
The labels include various levels of building damage (unaffected, affected, minor
damage, major damage, and destroyed), as well as other relevant features such as
debris, flooding, and damage to roads and trees.

4.3. Aerial Scene Assessment

These datasets are focused on general aerial scene assessment. General city-scape
data collected from UAV and non-UAV aerial perspectives is available, including
a range of annotated objects such as buildings, cars, and trees. Variation in ob-
ject type and object scale is reflected, as well as, variation in scene conditions such
as lighting and weather. Additionally, perspectives address aerial object identifi-
cation challenges such as moving object recognition and temporal consistency. In
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addition to the datasets referenced below, the reader is referred to “BayesNet for
remote sensing” (Sagar et al., 2024) which refers to four additional widely recog-
nized UAV-based remote sensing datasets of interest to Aerial Aid [78]. The aerial
scene assessment datasets are summarized, along with the disaster and emergency
response datasets, in Table 4.

The International Society for Photogrammetry and Remote Sensing (ISPRS)
publishes benchmark datasets for urban scene classification and 3D building re-
construction. The ISPRS Vaihingen dataset (2013) [79] is an urban dataset
composed of non-UAV captured imagery collected in four areas of the city of Vai-
hingen: Area 1 (“inner city”), Area 2 (“high rise”), Area 3 (“residential area”), and
a large “roads” area. For each area, the following data is available: digital aerial
images and orientation parameters, digital surface model and truth orthophoto mo-
saic, and airborne laser scanner data. The dataset includes true orthophotos and
digital surface models with a ground sampling distance (GSD) of 9 cm. Aerial image
data was collected at an altitude of 900m, and laser scanner data is collected at an
altitude of approximately 500 meters. The ISPRS Toronto dataset (2013) [79]
provides non-UAV aerial imagery captured over three scenes, Area 4 (mixed density
buildings), Area 5 (high rise), and Entire Data, at an altitude of approximately
1600 meters above downtown Toronto. In addition to the high altitude imagery,
laser scanning data is also available for the Toronto dataset from an altitude of
650m.

The UAVDT dataset (2018) [80] was developed to enhance training for com-
puter vision applied to UAV surveillance tasks. The dataset comprises about 80,000
representative frames from 100 video sequences. The video data was taken using a
DJI Inspire 2 UAV platform at 30 FPS with a resolution of 1080 x 540 pixels from
various urban locations representing scenes such as squares, arterial streets, toll
stations, highways, crossings, and T-junctions. Data is annotated with 14 kinds of
attributes such as weather conditions, flying altitude, camera view, vehicle category,
and degree of target occlusion with 841,500 target bounding boxes. This benchmark
is designed for tasks like object detection, single object tracking, and multiple object
tracking.

The VisDrone2018 dataset (2018) [81] includes 263 video clips and 10,209
static images, with a total of 179,264 video frames and over 2.5 million annotated
object instances. The data was acquired by various drone platforms including DJI
Mavic and Phantom series 3, 3A, 3SE, 3P, 4, 4A, and 4P; maximum video and
static image resolutions are 3840 x 2160 pixels and 2000 x 1500 pixels, respectively.
Captured across 14 cities in China, the annotated data covers diverse urban and
suburban scenarios and various weather and lighting conditions. This dataset is
designed for training and benchmarking algorithms in object detection and tracking
tasks in drone-captured images and videos.

The UAVid dataset (2020) [82] consists of 30 video sequences capturing 4K
images (either 4096 x 2160 pixels or 3840 x 2160 pixels) from a height of about 50m
by DJI Phantom 3 Pro and DJI Phantom 4 vehicles. For each sequence, 10 images
were annotated at five second intervals for a total of 300 labeled images. The dataset
is designed for urban scene analysis and features eight classes: building, road, tree,
low vegetation, static car, moving car, human, and clutter. UAVid aims to improve
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UAV scene understanding by addressing challenges like large-scale variation, moving
object recognition, and temporal consistency.

In this section we highlighted datasets of special relevance to Aerial Aid. Review
of additional dataset papers beyond those discussed above may produce additional
datasets of interest to the reader; however, to the best of our knowledge, there are
no publicly available datasets labeling patients for medical first response scenarios
beyond search and rescue.

5 Assurance of Learning-Enabled Uncrewed Aerial Sys-
tems

The term “assurance” has a range of different contexts and connotations depending
on the domain in which it is being used. For aerospace systems, “assurance” has a
very specific meaning due to the risks and hazards posed by the potential failure of
said systems, though a precise definition still remains elusive. DO-178C, one of the
preeminent guidance documents for developing aviation software in compliance with
safety and airworthiness regulations, defines assurance as “the planned and system-
atic actions necessary to provide adequate confidence and evidence that a product
or process satisfies given requirements” [83]. Under Strategic Thrust 6: Assured
Autonomy for Aviation Transformation, NASA’s Strategic Implementation Plan for
2023 refers to the goals of assurance in this way: “...to ensure autonomy technolo-
gies for traditional aviation applications that unequivocally show improvements in
overall safety without sacrificing other factors, [and for novel aviation applications
that enable] their business cases and safe integration of new vehicles and missions
into the [national airspace]” [84]. From these descriptions, it is clear that, for an
aviation system to operate in the national airspace, there must be rigorous demon-
stration of compliance with safety and airworthiness requirements; this includes any
learning-enabled components that may exist on those systems.

For UAS, assurance research efforts have been applied with great success to
more traditional aviation functions, such as geofencing and containment; naviga-
tion, tracking, and collision avoidance; and general safety and airworthiness. For
geofencing, Hayhurst et al [85] propose a hazard partitioning framework to isolate
and mitigate risk relevant to location-constrained UAS operations; here, the au-
thors stress that “the assured part of the assured containment concept comes from
being able to build a safety argument, sufficient for certification purposes, that the
[uncrewed aircraft] will remain in a specified area in the presence of common ve-
hicle, autopilot, sensor and actuator failures”. Bateman et al [86] assure geofence
boundaries by applying tiered allowable zones, parameterized to the vehicle’s turn
radius. At NASA, the SAFEGUARD project [87,88] manages geofencing and speed
and altitude limits via a small set of formally verifiable functions, disparate sen-
sors providing redundant capabilities, and killswitch methods to terminate flight if
necessary. For navigation, tracking, and collision avoidance, detect-and-avoid assur-
ance (particularly in urban environments) is one of the most popular topics both for
individuals [89–91] and swarms of vehicles [92, 93]. For general safety and airwor-
thiness, Denney and Pai [94] explore the feasibility of written arguments to support
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Fairness “AI systems must include considerations regarding how
to treat people, including refining solutions to mitigate
discrimination and bias, preventing covert manipulation,
and supporting diversity and inclusion.”

Explainability
and Transparency

“Solutions must clearly state if, when, and how an AI
system is involved, and AI logic and decisions must be
explainable. AI solutions must protect intellectual prop-
erty and include risk management in their construction
and use. AI systems must be documented.”

Accountability “Organizations and individuals must be accountable for
the systems they create, and organizations must imple-
ment AI governance structures to provide oversight. AI
developers should consider potential misuse or misinter-
pretation of AI-derived results (intentional or otherwise)
and take steps to mitigate negative impact.”

Security and
Safety

“AI systems must respect privacy and do no harm. Hu-
mans must monitor and guide machine learning pro-
cesses. AI system risk trade-offs must be considered when
determining benefit of use.”

Human-Centered,
Societal Benefit

“AI systems must obey human legal systems and must
provide benefits to society. At the current state of AI,
humans must remain in charge, though future advance-
ments may cause reconsideration of this requirement.”

Scientific and
Technical Robust-
ness

“AI systems must adhere to the scientific method NASA
applies to all problems, be informed by scientific the-
ory and data, robustly tested in implementation, well-
documented, and peer reviewed in the scientific commu-
nity.”

Table 5. NASA Framework for the Ethical Use of Artificial Intelligence [96]

safety cases for UAS airworthiness at design-time, while Avram et al [95] present
a framework that monitors a UAS for loss of effectiveness in rotors and for faults
in the controller software. This selection of works is by no means exhaustive, but
it illustrates the wide range of non-learning-enabled functions for which assurance
methods have been successfully demonstrated. The rest of this section is dedicated
to a discussion of assurance frameworks and methods that have been proposed for
AI/ML systems at large and for UAS specifically. We highlight, in particular, the
lack of current work on learning-enabled UAS for emergency medical response.

5.1. Frameworks for Ethical and Trustworthy Artificial Intelli-
gence/Machine Learning

The recent surge in interest in AI/ML systems and their applicability to all areas
of human life has inspired a related interest in defining what it means to be ethical
in our development, application, and interpretation of the data and outputs offered
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by such systems. In response to a series of executive orders issued from the White
House on the need for frameworks to guide the ethical use of AI, NASA proposed
their own framework [96], as summarized in Table 5. The framework names six prin-
ciples - Fairness, Explainability / Transparency, Accountability, Security
/ Safety, Human-Centered Societal Benefit, and Scientific and Technical
Robustness - by which AI/ML systems should abide in order to promote social
good and minimize harm. Similarly, Bharadwaj [97] identifies three assurance objec-
tives that must be met to assure autonomy for aviation and Department of Defense
applications: (1) Safety (specifically in enumerating, accounting for the full spec-
trum of possible real-world operating conditions), (2) Reliability (demonstrating
resilience against adversarial samples with specifically-crafted statistical characteris-
tics), and (3) Trust (building human-understandable explanations of internal func-
tions that are transparent and don’t rely on additional opaque models). DARPA’s
eXplainable AI (XAI) program [98,99] also identified three principles for AI develop-
ment - (1) Deep Explanation, or “...modified or hybrid [deep learning] techniques
that learn more explainable features or representations or that include explanation
generation facilities”, (2) Interpretable Models, or “...[machine learning] tech-
niques that learn more structured, interpretable, or causal models”, and (3) Model
Induction, or “...techniques that experiment with any given [machine learning]
model - such as a black box - to infer an approximate explainable model”.

The Aerospace Corporation’s “Trusted AI” framework [100, 101] goes even
farther than this. The framework organizes assurance efforts according to four
“threads”: (0) Formulation, Value Proposition, and Stakeholders; (1) AI Objective,
Model, and Data Specification; (2) Assess and Enhance Trust; and (3) Deploy-
ment, Monitoring, and Control. Thread 0 refers to tasks involved with information-
gathering and confirming mutual understanding with all relevant stakeholders before
any technical activities ever begin. Thread 1 describes tasks relevant to concrete
specification of expectations and requirements for the high-level objective of the AI
functionality, the model being used, and the data on which it will be trained and
tested. Thread 2 presents principles by which stakeholder trust in the correctness
and completeness of the design and implementation may be improved; these princi-
ples are summarized in Table 6 and bear resemblance to NASA’s proposed principles.
Finally, Thread 3 describes activities for deploying the learning-enabled component
to its operating context, monitoring its function within that context, and control-
ling the resultant behavior. Representatives from the Aero Corp and JPL have since
followed up the framework proposal with a case study retrospective [102], in which
they applied the framework to the Machine learning-based Analytics for Automated
Rover Systems (MAARS) and Ocean Worlds Life Surveyor (OWLS) projects and
discussed lessons learned. While this is a unique and highly useful demonstration
of assured autonomy in aerospace, it still lacks detail in how the required level of
evidence demonstrating regulatory compliance was achieved.
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Traceability “...the process by which all artifacts involved in the im-
plementation and evaluation of a system are documented
and maintained to facilitate a clear and reversible de-
velopment, V&V, deployment, monitoring, and upgrade
trajectory.”

Stability “...a measure of the consistency and validity of an AI-
based system’s performance when provided inputs that
fall within the nominal scope.”

Pertinence
Awareness

“...the ability to discern when inputs fall outside the
nominal domain, providing bounds for very low predic-
tion confidence, user alerts, or complete prediction absti-
nence.”

Uncertainty
Quantification

“...the calibrated estimation of the credibility of an AI’s
predictions across the nominal range of input parame-
ters.”

Adversarial Re-
silience

“...the ability to detect and provide stable output even
when presented with intentionally misleading input.”

Interpretability “...the degree to which a user can understand the cause-
and-effect of an AI algorithm prediction, both in terms of
overall behavior and the internal calculations performed.”

Fairness “...the degree to which an AI algorithm provides equitable
outcomes to all subgroups and the thorough characteri-
zation of residual biases.”

Familiarity “...the measure of comfort and ease with which a user
successfully operates a system.”

Table 6. Aerospace Corporation’s Principles of Trusted AI [100,101]

5.2. Current Research on Artificial Intelligence/Machine Learning As-
surance

Contemporary research efforts in AI/ML assurance provide starting points for as-
suring learning-enabled UAS operations, even if the work is not explicitly intended
as such. Verma and Maroney [103] describe a methodology for breaking down and
allocating responsibility in human-machine teams for UAS. Hawkins et al [104] pro-
pose a framework for writing safety assurance arguments for ML-based components
in an autonomous system, but make sweeping assumptions that appropriate require-
ments, validation and verification activities, and all necessary evidence can and have
been supplied. Feather et al [105] present a use case for the framework proposed
in [104] where the assurance case approach is applied to a simplified scenario of
optical communication between earth and space. Hernandez et al [106] propose a
taxonomy of aspects and activities to guide the development of and build trust in
AI/ML-enabled air traffic management systems, but also lack concrete guidance on
demonstrating compliance.

Dmitriev et al [107] provide the most concrete examples of how existing aircraft
certification guidance can be massaged to accommodate learning-enabled compo-
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nents. In [107] and [108], the authors demonstrate feasibility of learning-enabled
components complying with Design Assurance Level (DAL) D, as described in DO-
178C [83]. In [108], the authors provide a proof-of-concept system built on YOLOv2
to perform runway sign recognition during aircraft taxiing. In [109], the authors ex-
pand this work further by proposing that two dissimilar models targeting DAL D
can provide DAL C functionality, since “ARP4754A allows to reduce the design
assurance level if a system is implemented by two or more dissimilar components”.
To achieve this, the authors lean on best practices from DO-178C and ARP4754A
to demonstrate independence of the dissimilar models, propose “qualifying” the ML
training process to provide requirements traceability, and embrace behavioral re-
quirements coverage through testing. It is true that the body of work put forth by
Dmitriev et al provides a glimpse into the possibility of certifying aircraft carry-
ing learning-enabled components; however, the hand-waving around requirements
traceability indicates a significant gap which still needs to be addressed.

When considering research for assuring machine learning models outside of an
aviation context, there are some highly relevant recent works. Gopinath et al [110]
build on the successful Reluplex framework [111] and propose an updated method-
ology to infer formal properties about a neural network. However, both works are
limited only to those networks which use ReLU as an activation function, since “the
on/off activation status of neurons [using ReLU] is our key building block in defin-
ing network properties” [110]. This is a major limitation since commercial models
have moved beyond ReLU; for example, the YOLOv8 model uses SiLU as its activa-
tion function, but only applies it during CONV blocks3. Katz et al [112] propose a
methodology for identifying adversarial inputs to a trained neural network, but only
test their solution on ResNet and VGG with the CIFAR-10 data set. As such, it is
currently unclear how well the solution will scale to commercially popular models
such as YOLOv8. Leino et al [113] design a “self-correcting” layer which can be
appended onto neural networks to enforce safe ordering constraints on classification
output vectors; it is unclear, however, whether this approach can also be extended
to safety properties beyond the ordering of output values. While great progress has
been made in this area, there is still a long way to go before such assurance methods
can be acceptable for real-time airborne systems.

6 Gaps and Barriers to Adoption for Medical Drones
as a First Responder

In this section, we will discuss various gaps and barriers related to DFR with an
emphasis on medical first response. By examining issues such as the capability
differences between academic research in computer vision and commercial DFR,
quality assurance, and regulation we aim to highlight the critical areas that should
be addressed in order to promote adoption of medical DFR.

3https://blog.roboflow.com/whats-new-in-yolov8/
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6.1. Challenges Specific to Emergency Medical Systems and Medical
First Responders

Medical emergency first responders using UAS for scene assessment represents a
significant gap in DFR. Limited examples of surveillance for medical response do
exist: examples include surveillance of disaster sites and monitoring of threats such
as the presence of sharks in swim areas or the spread of diseases [5]. However, we
found no evidence in the literature of emergency first responders employing UAVs
to provide scene assessment for anticipated medical DFR purposes such as scene
safety, triage, or patient condition. This gap presents an opportunity for research
of interest to Aerial Aid to identify and address the obstacles that are preventing
the adoption of UAS for scene assessment in medical first response.

There have been a small number of efforts to use UAS to provide other medical
response services beyond scene assessment. The company Zipline spent two years
researching technological solutions before opting for drone deliveries of medical sup-
plies. In 2016, they made their first delivery of blood to a hospital in Rwanda,
subsequently expanding their operations to multiple distribution centers across the
country. By 2018, Zipline extended its services to Ghana and five other African
countries. In 2020, they began delivering PPE in the U.S., followed by pharma-
ceuticals and other products for Walmart in Arkansas and Intermountain Health in
Utah in 2021. By 2023, Zipline developed a platform for short-distance deliveries to
homes, targeting restaurants and other retailers, and now has contracts with over
20 health systems, restaurants, and retailers in the U.S., the U.K.’s National Health
Service, and Japan. It appears that Zipline’s technologies, outside of Africa, are
focused on non-emergency medicine [114].

In Clemmons, North Carolina, starting in September 2024, drones equipped
with AEDs will respond to cardiac arrest calls with plans to arrive several minutes
before Emergency Medical Technician (EMT)s or ambulances [115]. This initiative,
led by the Forsyth County sheriff’s office in collaboration with local emergency
services, Duke University’s Clinical Research Institute, and company Hovecon, aims
to improve survival rates for cardiac arrest victims. A 2023 Swedish study in The
Lancet [115] found that drones reached cardiac arrest scenes faster than ambulances
two-thirds of the time; this is a crucial finding for UAS-based solutions as cardiac
arrest victims face a 10% decrease in survival odds for every minute without help
[115]. Emerging drone programs in the U.S. are also exploring applications for drug
overdoses, trauma, and drowning rescues, with Tampa General Hospital, Manatee
County, and emergency drone services provider AFRS launching a program to deliver
AEDs, tourniquets, and Narcan within a 1.5-mile radius [115].

The concept of a “drone ambulance” re-imagines traditional emergency response
vehicles as single-person drones, modeled after quad-copters [115]. These drones, de-
signed to be dispatched with no pilot onboard to emergency scenes require only a sin-
gle EMT for patient stabilization and transport, present a novel approach to urgent
medical care. Argodesign, a Texas-based firm specializing in innovative technology
design, has been identified as a leading contender in developing this concept [115].
However, as of July 22, 2024, no information was available on their website related
to this technology. Key challenges include the drone’s one-seater design, preventing
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an EMT from accompanying the patient during transport, urban legal restrictions
on drone flights, and the high cost of approximately $1 million per unit. EHang,
another company in this space, appears to be the closest to actualizing the drone
ambulance vision. It has had its air operator certificate application accepted by
the Civil Aviation Administration of China, indicating that while the technology
exists and is being certified, it is not yet operational for medical transport as of July
2024 [116].

6.2. Regulatory Barriers

Another barrier to DFR adoption is the challenge to fully autonomous UAS flight
posed by regulation. Regulations such as those related to Beyond Visual Line-of-
Sight (BVLOS) operations are crucial for enabling autonomous drone deployment.
Autonomous deployment is desirable in emergency response scenarios that would
benefit from removing the time and financial cost of requiring a human operator, or
enabling scenarios such as emergency detection where long-term monitoring could
be performed efficiently by one or multiple networked autonomous UAS. As of a
2017 article, regulations required stringent safety and detect-and-avoid technologies
to ensure that drones can safely navigate complex environments and avoid collisions,
particularly in urban settings where emergency responses are frequently needed [6].
Additionally, regulations relevant to the development of infrastructure such as charg-
ing stations, vertiports, and integration with existing air traffic management systems
were stated factors. These regulations are designed to ensure safety and security
but can limit the operational flexibility of DFR technology. For example, drones
must remain below 400 feet above ground level without a waiver, and operations
over people are generally prohibited without special approval.

A positive development is that FAA Regulatory Updates in 2023 have expedited
the first responders BVLOS waivers through a checklist template available through
DRONERESPONDERS, making the approval process significantly faster [2]. Ad-
ditionally, the introduction of new technologies, such as pre-positioned 360-degree
camera nodes and drone-in-a-box systems, are poised to reduce reliance on rooftop
pilots and visual observers, mitigating the most significant cost of UAV opera-
tions [2]. Additionally, on May 15th 2024, the U.S. House of Representatives passed
the FAA Reauthorization Act of 2024 reauthorizing the FAA through Fiscal Year
2028 [117]. Notably, this bipartisan legislation requires the FAA to propose rules for
UAS BVLOS operations within four months and a final rule for powered lift aircraft
operations within seven months. The FAA has commented that their focus is on
the development of standard rules to make BVLOS operations routine, scalable, and
economically viable [118].

6.3. Public Perception and Buy-in Challenges

Public perception is another critical factor which influences the adoption of DFR
technologies. Concerns regarding safety, privacy, and data security are significant
barriers that impact public acceptance of drones in emergency response scenarios.
Despite this, relatively few studies have been done to assess public perception of UAS
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for medical first response [5]. A study in Australia found general safety acceptance
with concerns about privacy and misuse. Studies involving AED-equipped drones
in simulated emergencies reported positive feedback, with participants feeling com-
fortable and appreciating the delivery of life-saving equipment. The acceptance of
drone-delivered AEDs was high, though more community-based research and public
education are needed.

Assessing the comfort level of EMS and Centers for Medicare and Medicaid
Services with drone technology and integrating that technology into healthcare sys-
tems is also essential [5]. For widespread adoption in the US, buy-in from hospi-
tals and insurance companies is necessary requiring established feasibility, safety,
and cost-effectiveness. A theoretical model in North Carolina suggested that a
network of drones carrying AEDs could improve cardiac arrest survival, but more
cost-effectiveness analyses are needed for insurers.

Privacy is also a barrier. Some civil liberties groups are concerned that FAA
regulations may not provide enough protection from drone cameras for people on
the ground [118]. For example, organizations such as the American Civil Liberties
Union and the Electronic Frontier Foundation fear that video data collected by UAVs
could expand beyond what is required for emergency response. These organizations,
and others, have objected to the collection of video data by UAVs traveling to and
from the scene of an emergency, and even sued for the public release of such video
data [2].

To facilitate increased adoption of DFR, there may be a need to shift public
perception from viewing drones as invasive or novelty items to recognizing them as
valuable tools for enhancing public safety. Highlighting successful use cases and the
positive impact of drones in emergency scenarios can help in changing public atti-
tudes. Engaging with community organizations that may have reservations about
drone use, providing transparency through regular updates, and ensuring civil lib-
erty and privacy protections are essential strategies for gaining public trust and
acceptance [2].

6.4. Financial and Integration Barriers

UAVs offer a significant cost savings over traditional methods in several medical
emergency response scenerios [5]; however, costs must be weighed against the bene-
fits of DFR capability investment. The cost of acquiring and maintaining advanced
DFR technology may include the initial UAV investment as well as sensors, commu-
nication systems, maintenance, insurance, and supporting infrastructure. Capabil-
ity level can effect the cost-to-benefit ratio for an organization. For example, small
UAVs serving as remote video surveillance platforms are relatively inexpensive but
require a dedicated human operator; on the other hand, a future fully autonomous
UAV could obviate the need for the human operator. High capability drones, such
as those envisioned for autonomous patient transport, could cost $1 million per
vehicle [115]. Especially for smaller or under-funded agencies, budget constraints
may limit the ability to invest in cutting-edge technology or expand existing drone
programs. Exploring creative funding solutions, such as public-private partnerships
and government grants, can help mitigate these financial barriers [2, 6].
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Once obtained, effective integration of drones into existing emergency response
systems is essential. This includes seamless interoperability with communication
networks, data management platforms, and other response units. Ensuring that
drones can easily share data and communicate with other technologies in the field,
including existing 9-1-1 and other emergency dispatch systems, is crucial for their
practical utility [5,8]. Some work in this area is described in patents from 2018 and
2020 [32,33].

6.5. Capability Gaps between Academia and Industry

Significant gaps exist between the sophisticated computer vision capabilities devel-
oped in academic research and the capabilities which are available to and in use in
the commercial DFR industry. As discussed in Section 3, there are limited examples
of AI/ML technologies being deployed in DFR contexts; what information is avail-
able about commercial UAV capabilities primarily comes from vendor websites and
is thus considered potentially unreliable. We posit that this dearth of information
is due to the difficulty of scaling research-grade algorithms to meet the complex
requirements of fielded applications.

For AI/ML models, how well the training and test data used in development
map to the real-world conditions of the fielded system is a major challenge. This
challenge is augmented when the model is destined for use in a safety-critical system
(discussed further in Section 6.6). Although many high-performing computer vision
algorithms are available which have been pre-trained on large amounts of general
data, ensuring high accuracy for specific tasks requires, among other things, training
with application-specific data, which may be costly or time-consuming to collect.
For medical UAS scene assessment, this data should include information relevant
to domain features of interest, such as patient condition or behavior data. For
this current work, we were unable to find any publicly available datasets specific
to emergency medical first response (though descriptions of more general-purpose
aerial datasets may be found in Section 4). Training datasets play a key role in image
classification and object detection, and the lack of such data has been identified as
a main barrier for UAV object detection research [12]. Thus, this lack of publicly
available training data specific to medical first response represents a gap in enabling
fully autonomous medical DFR.

Finally, regulation, as discussed above, plays a role in limiting the deployment of
computer vision algorithms for DFR operations. This is because drone autonomy,
such as BVLOS flight applications, is heavily restricted; this results in a limited need
for computer vision in-flight due to the assumed presence of an operator within line-
of-sight. For many academic and lab-based research settings, this limitation can
be worked around by testing proposed models on simulated rather than physical
flight vehicles. When attempting to deploy the model to a fielded flight system,
however, regulation can no longer be avoided. Due to the interrelated nature of
the factors resulting in this capability gap, research which addresses one factor is
likely to also effect the rest. For example, research which demonstrates explainable,
reproducible quality assurance outcomes for AI/ML models is also likely to ease
pressure due to regulatory restrictions on aerial autonomy, therefore promoting their
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implementation in real world applications such as medical DFR.

6.6. Quality Assurance

In addition to the gaps and barriers listed above, there are a range of challenges
which must be addressed before AI/ML components can be fully assured for a
medical UAS use case. This section summarizes those challenges, based on the state
of the art in AI/ML assurance research and our discussions with stakeholders.

The first challenge is building a performant model for a niche prob-
lem domain. Medical emergencies constitute a huge range of potential scenarios
to which emergency medical services may be tasked to respond; this could encom-
pass anything from vehicle accidents (cars, trucks, vans, bicycles, motorcycles, with
pedestrians, without pedestrians, etc.) to medical incidents (heart attacks, strokes,
seizures, diabetic fits, heatstroke, overdose, etc.) to interpersonal conflicts (per-
sonal fights with(out) weapons, large-scale violence, etc.) and more. The amount of
specialized data required to cover this range of scenarios in order to develop a com-
prehensive scene assessment model is enormous, but ultimately a fairly mechanical
task. Assuming that the data is collected, the problem becomes crafting a model
architecture that is highly performant but able to operate in a resource-constrained
environment (such as onboard a UAS). There will be trade-offs to consider, such
as whether to transition to a more coarse-grained, lower-performing model to save
battery or whether to increase the data transmission back to the base station when
an emergency is identified. While these are highly labor-intensive and specialized
tasks, they are reasonably achievable with sufficient resources.

The second challenge is to manage risk when the model is wrong. No
model can be correct 100% of the time. However, in a medical context - and par-
ticularly, in an emergency medical context - the possibility of the model outputting
incorrect or misleading information may have significant implications. Incorrect di-
agnosis or misinterpretation of the scene could lead to emergency medical services
bringing the wrong equipment to a scene, or placing themselves or the victims in
danger through lack of situational awareness. If the UAS was being used in a dif-
ferent supporting role, such as delivering equipment to the site, a navigation error
could result in a dose of Narcan or an extra first aid kit being dropped off in a
public park instead of the incident site. Therefore, stakeholders would ultimately
require assurance that, if these kinds of system errors and failures occur, it is not
through misbehavior on the part of the AI/ML model. For traditional safety-critical
systems, this assurance would take the form of “number of 9’s”, that is, the number
of 9’s that follow the decimal point when specifying the percentage of time that
the system will operate safely. As an example, for an AI/ML model where 95%
accuracy is considered state-of-the-art, a requirement for 99.99999% accuracy in a
safety-critical system such as DFR is an incredible challenge to satisfy.

The third challenge is two-fold: to prove that the system meets stake-
holder needs, and, ultimately, to secure public trust and buy-in. The twin
aspects of this challenge are intertwined; one builds on (or undermines) the other.
As mentioned above, there will always be cognitive overhead involved in learning a
new system, integrating it into existing procedures. Therefore, an emergency med-
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ical response organization will not adopt a new technology - and acquiesce to this
burden - if that technology does not provide a significant improvement to their ex-
isting processes without imposing an undue cognitive cost. Similarly, if there are
privacy or data usage concerns surrounding the use of a pervasive sensing AI/ML
model, or resistance to the use of UAS due to noise and sound pollution, then a lack
of buy-in on the side of the public will also provide a significant barrier for medical
service providers.

7 Conclusions

This market research for Aerial Aid has identified significant trends and challenges
in the UAS market for medical emergency first response. The market for UAS is
robust and expanding rapidly, with a burgeoning sector for Drones as First Respon-
ders (DFR). Despite the potential, DFR applications are currently constrained by
challenges related to regulation, technology, finance, public perception, assurance,
and integration, limiting their role to remote video surveillance predominantly used
by police. The adoption of increasingly autonomous UAS by Emergency Medi-
cal Services (EMS) for medical first response is not observed, with related medical
emergency uses mainly in pilot programs testing the delivery of medical supplies
and equipment.

The concept of fully autonomous DFR for medical applications, including UAV
ambulances and patient transport drones, remains largely unrealized. The tech-
nological foundation for full autonomy is likely in place; however, regulations and
concerns related to safety and privacy have thus far presented a roadblock in the
further development and implementation of this technology. Significant advance-
ments have been made in computer vision algorithms applicable to medical scene
assessment, yet there is insufficient evidence of these technologies being effectively
integrated into the commercial DFR market. This highlights a gap between research
and industry implementation.

Reasons for this gap include challenges related to quality assurance and the
lack of application-specific training datasets for AI/ML models. With FAA regula-
tory updates passed in 2023, fully autonomous UAVs able to operate beyond visual
line-of-sight may not be far out. Addressing the challenges to computer vision for
fully autonomous medical DFR scene assessment through demonstrated research
advancements, improved regulatory frameworks, integration of quality assurance
measures, and public engagement are recommended pathways for advancing the use
of UAS in medical emergency first response and addressing the apparent gap be-
tween research grade computer vision technologies and autonomous medical scene
assessment needs.
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Appendices

A Source Summary - Uncrewed Aerial Systems and
Drones as a First Responder

Sources used in this work are summarized below, organized by type and in chrono-
logical or alphabetical order where appropriate.

A.1. General Uncrewed Aerial Systems

• Cohn et al. (2017): “Commercial drones are here: The future of unmanned
aerial systems” - This report by McKinsey & Company providing an in-depth
analysis of the commercial drone market, focusing on the value chain, in-
vestment trends, and regulatory challenges. It highlights the potential appli-
cations of drones in various sectors, including emergency response, environ-
mental monitoring, and industrial inspections. The report also discusses the
technological advancements needed to fully realize the benefits of UAVs and
the strategic considerations for stakeholders in the industry. [6]

• Abbas et al. (2023): “A Survey: Future Smart Cities Based on Advance Con-
trol of Unmanned Aerial Vehicles (UAVs)” - This paper provides a survey
of UAV applications in future smart cities, emphasizing the integration chal-
lenges, potential applications, and control theory challenges and solutions for
effective UAV deployment in urban environments. [7]

• FAA Re-authorization Act (2024): This website provides the full text of the
Federal Aviation Administration (FAA) Reauthorization Act of 2024, which
outlines the reauthorization of the FAA through Fiscal Year 2028 and includes
provisions for UAS operations beyond visual line of sight, powered lift aircraft
operations, and various measures to support advanced aviation and autonomy.
[117]

A.2. General Drones as a First Responder

• King et al. (2023): “Drone as First Responder Programs: A New Paradigm in
Policing” - This document from MITRE Corporation outlines the implemen-
tation and benefits of using drones in emergency response scenarios. These
programs, known as DFR (Drone as First Responder), involve dispatching
drones ahead of police units to provide real-time situational awareness. The
drones are equipped with video cameras and other sensors to relay critical
information to officers, enhancing decision-making and safety. The document
discusses the origins, benefits, and challenges of DFR programs, highlight-
ing faster response times, improved safety, and cost-effectiveness compared to
traditional methods. However, it also addresses concerns regarding privacy,
regulatory restrictions, and community acceptance. The report emphasizes
the need for transparency, community engagement, and adherence to best
practices to ensure the success and sustainability of these programs [2].
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• MITRE Corporation (2023): “First Responder Drone Initiatives” - This doc-
ument outlines several key initiatives designed to enhance the capabilities of
first responders through the use of drones. These initiatives include devel-
oping drones for persistent overwatch, specialized training for drone pilots,
tools for selecting appropriate drones, and adapters for hazardous materials
detection. The goal is to improve situational awareness, reduce resource re-
quirements, and increase safety for both first responders and the communities
they serve. [3]

• Expo UAV (2023): This website describes “DRONERESPONDERS Public
Safety Summit,” a two-day event focused on educating and preparing first
responder UAS program managers and remote pilots for public safety UAS
operations. The summit includes case studies, workshops, and networking
events. [24]

• NASA (2023): This website describes the NASA Partnership with
AIRT/DRONERESPONDERS to advance automated air safety systems for
UAS in the national airspace, enhancing emergency response operations
through automated safety management systems. [25]

• NIST and PSCR (2023): This website describes “First Responder UAS Chal-
lenges,” a series of competitions hosted by NIST and the Public Safety Com-
munications Research Division. These challenges are designed to advance UAS
technology for public safety applications, specifically focusing on scene assess-
ment, search and rescue, and emergency response. The competitions offer
participants the opportunity to demonstrate their innovative solutions in var-
ious scenarios, such as 3D mapping and indoor navigation, which are critical
for enhancing first responders’ situational awareness and effectiveness in emer-
gency situations. [26]

• Dooley et al. (2024): “Blue Unmanned Aircraft Systems for First Responders
Focus Group Report” - This Department of Homeland Security (DHS) report
provides an overview of discussions between emergency first responders and
representatives from the DHS’s National Urban Security Technology Labora-
tory’s SAVER program. The report distills the outcome of primary discussion
objectives such as gathering assessment criteria, possible evaluation scenarios,
product suggestions and product selection specifications for future SAVER as-
sessments related to the integration of small UAS in public safety operations
such as search and rescue, firefighting, and post-incident reconstruction. Top
assessment criteria identified include camera’s visual acuity, flight duration,
command and control link quality, latency, and time to redeploy, in addition to
other recommendations for assessment criteria such as integration with emer-
gency response protocols. The report highlights the importance of capability,
deployability, and usability in UAS platforms, in addition to the Department
of Defense’s (DoD) Blue UAS Cleared List, which supports responder agencies
in acquiring compliant UAS that meet DoD standards. [8].
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• Department of Homeland Security: This webpage from the Department of
Homeland Security (DHS) discusses the use of small unmanned aerial sys-
tems (UAS) by first responders for public safety tasks like search and rescue,
firefighting, and post-incident analysis. It highlights the “Blue UAS Cleared
List” created by the Department of Defense, which includes vetted drones that
comply with DoD policies, aiding responder agencies in acquiring reliable UAS
technology. See also the related focus group report. [27]

• My Drone Services: This website provides a comprehensive overview of how
drones are being integrated into public safety operations. It details the types of
drones used, their applications in law enforcement, firefighting, and emergency
medical services, and discusses funding sources and regulatory considerations.
[16]

A.3. Medical Drones as a First Responder

• Johnson et al. (2021): “Impact of Using Drones in Emergency Medicine:
What Does the Future Hold?” - This 2021 article explores the expanding role
of drones in enhancing emergency medical services, focusing on their use for
rapid delivery of defibrillators, blood products, and emergency medications.
It highlights the current applications, challenges related to regulation and
technology, and future opportunities for integrating drones into EMS systems
to improve response times and patient outcomes [5].

• Sanz-Martos et al. (2022): “Drone applications for emergency and urgent care:
a systematic review” - This paper examines the use of drones in emergency
and urgent care, highlighting their benefits such as faster victim location,
preliminary triage, and safe operation in hazardous conditions. The study
concludes that while drones offer significant advantages over traditional meth-
ods, further research and community education are needed to enhance their
integration into emergency healthcare systems. [9]

• Roberts et al. (2023): “Current summary of the evidence in drone-based
emergency medical services care” - This review article explores the potential
of using drones to deliver time-sensitive medical supplies such as automated
external defibrillators (AEDs), naloxone, antiepileptics, and blood products
in emergency medical situations. The study highlights the promising data
indicating that drones can reduce the time to intervention, which is crucial
for improving patient outcomes in emergencies like cardiac arrests and opioid
overdoses. However, it also addresses existing barriers and knowledge gaps,
emphasizing the need for further research to integrate drones effectively into
emergency medical services (EMS) systems. The authors call for real-world
functionality demonstrations and studies to fully realize the potential of drones
in EMS. [10]

• Drone Emergency Response (2023): “Drones in Emergency Response: Deliv-
ering Narcan and AEDs” - This article discusses the use of drones to provide
emergency medical responses, including delivering Narcan for opioid overdoses
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and AEDs for cardiac arrest, highlighting recent initiatives and programs in
the U.S. that aim to speed up life-saving treatments. [118]

• Ambulance Drone Evolution (2023): “The Evolution of UAVs: The Ambu-
lance Drone” - This article explores the development and potential of ambu-
lance drones, which aim to enhance emergency medical services by rapidly
delivering critical supplies like defibrillators to the scene of medical emergen-
cies, or conducting patient transport, thereby reducing response times and
improving survival rates. [115]

• Surman and Lockey (2024): “Prehospital Drones: Applications and Implica-
tions for Emergency Medical Services” - This paper discusses the increasing
utilization of UAVs in pre-hospital emergency medicine. It highlights their
roles in rapid delivery of medical supplies, such as defibrillators and blood
products, to improve response times and patient outcomes in emergencies.
The review also covers challenges and future research areas. [31]

• Field (2024): “Zipline’s Milestone: 1 Million Commercial Drone Deliveries”
- This Forbes web article reports on the company Zipline reaching the mile-
stone of one million commercial drone deliveries, highlighting the company’s
innovative use of drones to deliver medical supplies and other products, and
discussing its plans for future expansion and technology advancements. [114]

B Source Summary - Datasets

• ISPRS (2013): “ISPRS Test Datasets for Urban Classification and 3D Re-
construction” - This document provides detailed descriptions of two non-UAV
aerial imagery datasets: Vaihingen and Toronto. The datasets support com-
puter vision tasks such as scene classification and 3D building reconstruction,
and are designed to enhance the development and evaluation of aerial image
processing algorithms. [79]

• Robicquet et al. (2016): “Forecasting Social Navigation in Crowded Complex
Scenes” - This 2016 paper presents a large-scale dataset capturing images and
videos of various targets, such as pedestrians, bikers, skateboarders, cars, and
buses, navigating in real-world outdoor environments of a university campus.
This dataset, collected by researchers at Stanford University, aims to improve
trajectory forecasting and target tracking by incorporating social interactions
and behaviors in complex scenes. [44]

• Mueller et al. (2016): “A Benchmark and Simulator for UAV Tracking” -
This 2016 paper introduces UAV123, a large-scale dataset and benchmark
for evaluating visual tracking algorithms specifically in UAV-based scenarios.
It includes 123 high-resolution video sequences captured from a low-altitude
aerial perspective, totaling over 110,000 frames. The dataset is designed to
address the unique challenges posed by UAV tracking, such as abrupt camera
motion, scale variations, and occlusions. [70]
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• Schroeder et al. (2018): “Optical Flow Dataset and Benchmark for Visual
Crowd Analysis” - The CrowdFlow dataset is introduced in this paper. Crowd-
Flow is an annotated synthetic optical flow dataset for visual crowd analysis,
to address challenges in crowd behavior analysis and benchmarking optical
flow algorithms. [71]

• Zhu et al. (2018): “VisDrone-VDT2018: The Vision Meets Drone Object
Detection in Image and Video Challenge Results” - The VizDrone dataset
is introduced in this 2018 paper. VizDrone is a large-scale annotated drone
acquired visual object detection and tracking benchmark aimed at advancing
visual understanding tasks on the drone platform, highlighting the challenges
and solutions in object detection and tracking in urban/suburban environ-
ments. [81]

• Du et al. (2018): “UAVDT: A Benchmark for Object Detection and Tracking
in UAV Videos” - This paper introduces the UAVDT benchmark, a large-scale
annotated dataset for object detection and single/multiple object tracking in
urban scene UAV-captured videos. [80]

• Kyrkou and Theocharides (2019): “AERIAL Image Dataset for Emer-
gency Response (AIDER)” - This paper introduces AIDER, and ERNet, a
lightweight CNN for aerial image classification, to highlight real-time disaster
management using UAVs. AIDER trained ERNet is demonstrated on a UAV
with both an embedded and remote image classification processing configura-
tion. [63]

• Perera et al. (2019): “Drone-Action: An Outdoor Recorded Drone Video
Dataset for Action Recognition” - This paper introduces a dataset aimed at
supporting research in aerial human action recognition. The dataset is de-
signed to capture detailed human body movements in outdoor settings, provid-
ing valuable data for applications such as surveillance, situational awareness,
and gait analysis. [72]

• Aruna Kumar et al. (2020): “P-DESTRE: A Fully Annotated Dataset for
Pedestrian Detection, Tracking, Re-Identification, and Search from Aerial De-
vices” - The P-DESTRE dataset, described in this 2020 article, was created by
researchers from the University of Beira Interior (Portugal) and JSS Science
and Technology University (India). It aims to facilitate research on pedestrian
detection, tracking, re-identification, and search from aerial data. The dataset
was collected using DJI Phantom 4 drones flown over university campuses to
simulate real-world urban environments. It includes detailed annotations to
support various research tasks, enabling the development of robust models for
pedestrian identification from aerial footage. [74]

• Lyu et al. (2020): “UAVid: A Semantic Segmentation Dataset for UAV Im-
agery” - This paper introduces the UAVid dataset, a high-resolution UAV
semantic segmentation dataset designed for urban scene understanding. [82]
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• Yu et al. (2020): “Scale Match for Tiny Person Detection” - TinyPerson, the
benchmark dataset described in this paper, is introduced along with the “scale
match” technique for detection of small objects in a frame (perhaps less than
20 pixels in size). The emphasis is on the identification of distant persons
especially in complex real world environments. [73] The TinyPerson dataset is
also referenced in another relevant paper by the same authors which describes
the Tiny Object Detection Challenge [43].

• Li et al. (2021): “UAV-Human: A Large Benchmark for Human Behavior
Understanding with Unmanned Aerial Vehicles” - This paper presents a com-
prehensive dataset aimed at advancing the field of human behavior analysis
using UAVs. [75]

• Wen et al. (2021): “DroneCrowd Dataset: A Large-scale Drone-captured
Dataset for Crowd Analysis” - The DroneCrowd dataset is introduced in this
paper. DroneCrowd is a large-scale annotated drone-captured dataset for
crowd analysis, highlighting the challenges and solutions in density map esti-
mation, localization, and tracking of objects in crowded scenes using drones.
[68]. DroneCrowd is one of the MULTIDRONE Datasets (see [69]).

• Nguyen et al. (2023): “AG-ReID.v2: A Fully Annotated Dataset for Aerial-
Ground Person Re-Identification” - This paper introduces a comprehensive
dataset designed for person re-identification (ReID) tasks, encompassing im-
ages from both aerial (UAV) and ground sources (CCTV and wearable cam-
eras). This dataset contains over 100,502 images and 1,615 unique identities,
annotated with 15 soft-biometric attributes. The dataset addresses the com-
plexities of aerial-ground ReID, providing significant variations in viewpoint,
resolution, and lighting conditions. [62]

• Rahnemoonfar et al. (2023): “RescueNet: A High-Resolution UAV Semantic
Segmentation Dataset for Natural Disaster Damage Assessment” - This paper
introduces the RescueNet dataset, a high-resolution UAV semantic segmenta-
tion dataset for natural disaster damage assessment taken after the landfall of
hurricane Michael, highlighting its applications and utility in improving scene
understanding and damage assessment in post-disaster scenarios. [76]

• Bernal et al. (2023): “NOMAD: A Benchmark for Human Detection under
Occluded Aerial Views in Search and Rescue Missions” - This paper introduces
the NOMAD dataset, a benchmark for human detection under occluded aerial
views, designed to improve the effectiveness of aerial search and rescue missions
by addressing the challenges of occlusion in emergency response scenarios. [38]

• Scheele et al. (2024): “LADI v2: Multi-label Dataset and Classifiers for Low-
Altitude Disaster Imagery” - This paper introduces a curated collection of
approximately 10,000 disaster images captured in the United States by the
Civil Air Patrol from 2015 to 2023. The images are annotated for multi-label
classification by trained volunteers, aiding in emergency management opera-
tions. The paper also compares the performance of two pretrained baseline
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classifiers against state-of-the-art vision-language models in multi-label classi-
fication tasks. [77]

• The Open MULTIDRONE Datasets website, hosted by the Aristotle Univer-
sity of Thessaloniki, provides access to 36 UAV video datasets (including the
DroneCrowd dataset [68]) created within the MULTIDRONE project. These
datasets, totaling approximately 260 GB, support research in visual detection
and tracking of objects such as bicycles, boats, and human crowds. [69]

• Papers with Code: This website provides a comprehensive and organized
repository of datasets used in machine learning research. The platform cate-
gorizes datasets across various domains such as computer vision, natural lan-
guage processing, and audio processing. Each dataset entry includes relevant
details such as its name, description, associated tasks, and links to papers that
utilized the dataset, facilitating easy access for researchers. The website also
features tools for searching and filtering datasets by different criteria, enhanc-
ing the ability to find specific datasets for various AI/ML applications. [67]

• Shaip: The Shaip website provides a collection of open datasets for AI/ML
training purposes. These datasets cover various domains such as automotive,
healthcare, finance, and general AI. Each dataset is designed to enhance ma-
chine learning models by providing high-quality, annotated data. The website
details offerings like image and video datasets, audio and speech datasets, and
text and document datasets. [66]

C Source Summary - Artificial Intelligence/Machine
Learning

Several original papers publishing specific object detection algorithms are relevant
to this section of the source summaries were referenced in this writing. These papers
are not summarized here due to the obvious nature of their content [34, 35, 37, 39–
41,43,45–48,50,52,53,55,57,58,65].

• Lopez-Fuentes et al. (2018): “Review on Computer Vision Techniques in
Emergency Situations” - This paper provides an overview of how computer
vision technologies can be applied to various emergency scenarios. It catego-
rizes emergencies into natural and human-made, detailing the computer vision
methods used for prevention, detection, response, and understanding of these
situations. The review highlights situational awareness and the role of different
sensors and algorithms in enhancing emergency management. [11]

• Chen et al. (2019): “RRNet: A Hybrid Detector for Object Detection in
Drone-Captured Images” - This paper presents a novel hybrid object detection
model called RRNet, specifically designed to handle the unique challenges of
object detection in images captured by UAVs (drones). The primary challenges
addressed include the varying scales and densities of objects in urban scenes.
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This is achieved primarily via a hybrid detection approach (combining anchor-
free detection methods with a re-regression module) and adaptive resampling
augmentation. [54]

• Du et al. (2020): “VisDrone-DET2020: The Vision Meets Drone Object
Detection in Image Challenge Results” - This paper presents the outcomes
of the VisDrone-DET2020 challenge, held in conjunction with the European
Conference on Computer Vision (ECCV) 2020. The challenge focused on
advancing object detection in images captured by drones, addressing unique
challenges such as small object sizes, diverse object categories, and complex
backgrounds. [42]

• Kyrkou and Theocharides (2020): “EmergencyNet: Efficient Aerial Image
Classification for Drone-Based Emergency Monitoring Using Atrous Convolu-
tions” - This 2020 paper extends the deep learning-based approach introduced
in [63] for aerial image classification for drone-based emergency monitoring,
proposing a further developed CNN architecture known as EmergencyNet, and
referencing the dedicated aerial image dataset known as AIDER for emergency
response applications. [64]

• Ramachandran and Sangaiah (2021): “A review on object detection in un-
manned aerial vehicle surveillance” - This article provides a comprehensive re-
view of the methods and applications of object detection in UAV surveillance.
The study categorizes existing object detection techniques into traditional im-
age processing and deep learning methods, summarizing their applications in
various fields such as agriculture, disaster management, and security. The au-
thors propose a secure onboard processing system to enhance the robustness
of object detection frameworks in precision agriculture, with the intention of
mitigating identified research gaps. [12]

• Nguyen et al. (2022): “The State of Aerial Surveillance: A Survey” - This
review paper provides an overview of the state of aerial surveillance, focusing
on RGB imaging sensor data analyzed by computer vision and deep learning
for tasks such as detection, tracking, identification, and action recognition.
These tasks primary cover “human-centric” applications such as border pa-
trol, search and rescue, maritime surveillance, protest monitoring, drug traf-
ficking monitoring, military IED tracking, and crime fighting. It highlights
the unique challenges faced in aerial surveillance compared to ground-based
methods, discusses the available public datasets for each task, and reviews
the approaches and techniques used to address these challenges. The paper
also identifies gaps in current research and suggests future directions for the
field. [4]

• McEnroe et al. (2022): “A Survey on the Convergence of Edge Computing
and AI for UAVs: Opportunities and Challenges” - This paper provides a
comprehensive analysis of the convergence of edge computing and artificial
intelligence (AI) for unmanned aerial vehicles (UAVs). It discusses the bene-
fits, such as lower latency, improved energy efficiency, and enhanced security
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and privacy, while also addressing the challenges of resource constraints, net-
work reliability, and implementation difficulties in deploying edge AI for UAV
applications. [13]

• Zou et al. (2023): “Object Detection in 20 Years: A Survey” - This sur-
vey paper provides a comprehensive review of the technological evolution of
object detection from the 1990s to 2022. It covers milestone detectors, key
datasets, metrics, fundamental building blocks of detection systems, and re-
cent state-of-the-art methods. The survey highlights the transition from tradi-
tional handcrafted feature-based detectors to deep learning-based techniques,
emphasizing advancements in accuracy and speed. It also explores speedup
techniques, the integration of contextual information, and the evolution of loss
functions and non-maximum suppression methods, aiming to offer readers an
understanding of the field’s progress and potential future directions. [14]

• Setyanto et al. (2023): “Near-Edge Computing Aware Object Detection: A
Review” - This review paper provides a comprehensive overview of current ob-
ject detection methods with a focus on their deployment on near-edge devices
like drones and autonomous vehicles. The paper discusses the challenges of im-
plementing computationally intensive object detection algorithms on resource-
constrained edge devices and explores various model compression and opti-
mization techniques to address these limitations. It emphasizes the need for
balancing model efficiency and accuracy in real-time applications where pro-
cessing capabilities and energy consumption are critical concerns. [15]

• Han et al. (2024): “SSMA-YOLO: A Lightweight YOLO Model for Ship De-
tection in Drone-Aerial Images” - This paper proposes a lightweight YOLO
model with enhanced feature extraction and fusion capabilities. The proposed
model enhances the YOLOv8n architecture to address the challenges of de-
tecting ships in satellite remote sensing images, where ships often appear with
a small pixel area, leading to insufficient feature representation and subopti-
mal performance. The complexity of backgrounds and vessel clustering further
complicates detection. [49]

• Sagar et al. (2024): “BayesNet for remote sensing” - This paper introduces
BayesNet, a Bayesian neural network-driven CNN model designed for re-
mote sensing scene understanding with quantifiable uncertainties, highlighting
its application and performance across multiple UAV-based remote sensing
datasets. Four datasets of interest to Aerial Aid are referenced in the pa-
per. [78]

D Source Summary - Patents

Relevant patents references in this work are summarized below, organized by type
and in chronological or alphabetical order where appropriate.

• Kumar et al. (2018): “Controlling Autonomous Vehicles to Provide Auto-
mated Emergency Response Functions” (US 2018/0144639 A1) - This patent
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outlines methods and systems for controlling UAVs for autonomous emergency
response. The system uses a computing platform to receive vehicle data, detect
emergencies, and dispatch autonomous vehicles to execute tasks such as deliv-
ering supplies, providing medical functions, and capturing incident data. [33]

• Walker et al. (2020): “Unmanned Aerial Vehicles in Medical Applications”
(US 10,814,978 B2) - This patent outlines methods and systems for using
UAVs to enhance medical emergency responses. The patent details UAV capa-
bilities for delivering medical equipment like automated external defibrillators
(AEDs), assessing patient conditions, providing real-time communication with
first responders, and coordinating with other UAVs. [32]

• Burks et al. (2022): “Systems and Methods for Tracking, Evaluating, and
Determining a Response to Emergency Situations Using Unmanned Airborne
Vehicles” (US 2022/0177130 A1) - This patent describes various embodiments
of a fully autonomous drone designed for purposes of emergency scene assess-
ment. The drone, or drones, would be deployed and recovered using auto-
mated deployment and docking technologies covered in the patent. The drone
is also equipped with various sensors and communication systems to provide
real-time situational awareness and support to first responders. Additional
features are described such as automatic charging and the ability to relay crit-
ical information to emergency personnel, improving the speed and effectiveness
of emergency response. [59]

• Trundle and Slavin (2023): “Drone-Augmented Emergency Response Ser-
vices” (EP 3 356 857 B1) - This patent describes methods and systems for
utilizing a network of drones and control systems to perform emergency mon-
itoring, response, and communications tasks. Surveillance data collected by
drones is processed using a “monitoring application server” which performs
tasks including threat determination, such as identification of unauthorized
persons, implying although not directly specifying some use of artificial in-
telligence or computer vision. Drones can perform tasks such as delivering
medical supplies, conducting surveillance, and relaying critical information to
law enforcement officials. [60]

E Source Summary - Commercial Vendor Websites

Relevant websites of commercial vendors referenced in this work are summarized
below, organized by type and in chronological or alphabetical order where appro-
priate.

• AI Robotics Drones: AI Robotics Drones Solutions provides various UAV
solutions for urban, defense, industrial, and surveillance applications. Their
drones are designed for 24/7 autonomous operation, offering real-time video,
data analytics, and integration with other systems. [21]
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• AIRT: AIRT Inc focuses on using drones for public safety and disaster re-
sponse. Their DRONERESPONDERS program enhances emergency manage-
ment through UAS operations. [23]

• Argus Rising: Argus Rising provides specialized drone training for first respon-
ders, covering various aspects of UAV operations including law enforcement
and fire rescue applications. [30]

• BRINC Drones: BRINC Responder Drone is designed for public safety, pro-
viding features like real-time video, thermal imaging, 2-way communication,
and emergency payload delivery. [19]

• Draganfly: Draganfly’s DFR platform provides comprehensive UAV solutions
for first responders, enhancing emergency response through real-time data
capture, surveillance, and efficient scene assessment. [17]

• EHang Autonomous Aerial Vehicle: This webpage details EHang’s Au-
tonomous Aerial Vehicle (AAV) technology, focusing on its design, functional-
ity, and applications in urban air mobility, including passenger transportation,
logistics, and emergency response services. [116]

• Paladin Drones: Paladin Drones provides Drone as a First Responder (DFR)
technology, offering real-time situational awareness and resource allocation for
emergency response. [18]

• PELA Systems: PELA Systems scene assessment focuses on providing tools for
real-time data capture, unmanned device deployment, and communication in-
frastructure to protect first responders and the public. Their PELAmesh range
integrates instrumentation, visual, and communication protocols for compre-
hensive scene assessment. [20]

• Skyfire Consulting: The website “Drone First Responder” offers turnkey so-
lutions for Drone First Responder (DFR) programs, enhancing emergency
response with drones to improve situational awareness and decrease response
times. [28]

• UAV Coach: “Drone as a First Responder (DFR) Guide” provides a com-
prehensive overview of Drone as a First Responder (DFR) programs, their
benefits, and how to start one. [29]
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