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NASA Langley Research Center Structural Dynamics Branch
• Additional research on small satellites 

and deployable structures such as 
solar arrays, communication antennas 
and solar sails

• Large deployable booms (5-30 m) are 
critical for small satellite and must 
provide stiffness, thermal stability, and 
reliability after being stowed for many 
years.

• A project campaign named Gravity Off-
loading and Analysis of Long 
Imperfection-sensitive Elements 
(GOALIE) was initiated to set up 
capabilities to better understand the 
mechanical behavior of long slender 
booms. 

https://www.nasa.gov/directorates/stmd/tech-demo-missions-program/roll-out-solar-array-technology-benefits-for-nasa-commercial-sector/
https://youtu.be/OTdDDbRvHv8

https://www.nasa.gov/directorates/stmd/tech-demo-missions-program/roll-out-solar-array-technology-benefits-for-nasa-commercial-sector/
https://youtu.be/OTdDDbRvHv8
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Triangular Rollable and Collapsible (TRAC) boom
• Triangular rollable and collapsible (TRAC) 

booms use a geometry where two curved 
flanges are connected at their upper 
portion. 

• The flanges flatten out in the stowed 
configuration for efficient packing and 
open when deployed. 

• TRAC booms are made with carbon 
composite materials due to the high 
stiffness to weight ratio for small satellite 
applications. 

https://patents.google.com/patent/US7895795B1/en

https://patents.google.com/patent/US7895795B1/en
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Objective
• Establish capability for testing a 30 m tall 

composite boom in a vertical configuration. 
• Only one building on site large enough to 

complete full scale test.  
• Test a 7 m subscale article to identify test 

methods and instrumentation to apply to a 
full-scale article (30 m). 

• Use digital image correlation (DIC) to 
obtain shape, displacement and strain 
data along the length of the boom.

• Other techniques such as fiber optic strain 
sensing (FOSS) and laser scanners were 
used to capture localized strain and shape 
respectively of the entire boom during 
loading. 

Subscale TestResearch facility
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GOALIE Subscale Test
• Three load cases of interest

• Load case A: Bending out of plane
• Load case B: Bending in plane
• Load case C: Axial Compression

• Locations of measurement tools were 
driven by pre-test analysis predictions. 

LOADING 
MECHANISM

SUBSCALE 
ARTICLE

Case A

Case BCase C
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DIC Initial Setup Considerations
• Camera and Lens Selection

• Limited stand-off distance
• High aspect ratio of test article
• Number of cameras and locations
• Speckle pattern
• Lighting
• Inherent twist in the test article (Initial shape)
• Predicted large displacement at the tip

• Calibration and Synchronization
• Calibration of cameras on ground and as installed.
• Triggering/Sync multiple camera systems and 

other instrumentations
• Merging data systems into one coordinate system
• High-speed cameras at anticipated buckle location
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DIC Layout
• Pre-test analysis showed regions of interest 

at the root and tip of the boom. 
• Four overlapping stereo camera pair  for 

DIC from the root of the boom up to 4m. 
• Additional DIC system looking at the tip of 

the boom. 
• High speed DIC system positioned at the tip 

and anticipated buckle location.
• T-slot aluminum grid system assembled on 

two sides of the tower for mounting cameras 
and lighting. 

 

4 systems 

Tip system 
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DIC Configuration
12-MP camera
16-mm lens
~ 120 pixels/in

12-MP camera
16-mm lens
~ 90 pixels/in

6.4-MP camera 
8.5-mm lens
~100 pixels/in

6.4-MP camera 
8.5-mm lens
~ 100 pixels/in

0.9m

1.2 m

1.2 m

1.2 m

1.4 m

0.9 mROOT

MIDSPAN

Camera Lens Standoff Field of View Spatial 
Resolution
(pixels/mm)

Optimal 
Speckle 

Size

12 MP 16 mm 0.9 m 0.6 x 0.92 m 4.65 1 mm

12 MP 16 mm 1.4 m 0.81 x 1.22 m 3.46 1.5 mm

6.4 MP 8.5 mm 1.4 m 0.81 x 1.22 m 2.52 2.25 mm

• High resolution cameras (12 MP, 0.5 Hz) were used for the 
first two systems. 

• Low resolution cameras (6.4 MP, 0.5 Hz) were used for the 
rest of the low-speed systems. 

• High speed cameras at (1 MP, 1 kHz) were used to monitor 
buckle events.
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Calibration
• As installed, camera calibration with grid 

could not be performed due to location 
and test article installation. 

• Grid calibration was performed at ground 
level of the tower.

• After calibration, stereo camera pairs were 
remounted in their final test location. 

• Bow-tie markers on speckled PVC pipe 
were used for pole correction. 

• Pole correction images were obtained 
prior to the start of each test. 
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Coordinate System Alignment
• A method known as multi-view registration 

from rigid body motion was used for aligning 
the coordinate system of five low speed 
systems. 

• 3 PVC pipes, 3 m each, were connected to 
span the total field of view of the five camera 
systems. 

• Speckle pattern printed on vinyl was adhered 
to PVC for the multi-view correlation and 
computing coordinate transformation. 

Sys. 1

Sys. 2

Sys. 3

Sys. 4

Load case A

Sys. 1 Sys. 2

Sys. 3 Sys. 4
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Coordinate System Result
• Coordinate system transformation applied to all 

systems. 
• Transformation errors were larger than expected. 

(>200 μm)
• 0.075 m diameter PVC pipe didn’t provide sufficient 

stiffness for accurate transformation. (>1 PVC 
adapter)

• Recommend using flat structure with large surface 
area for multi-view registration from rigid motion.

SYS 1 SYS 2

SYS 3 SYS 4

SYS 5
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Results
• Load case A, bending out-of-plane.
• Test article loaded to 50% of 

predicted tip displacement (185 mm) 
before buckle. 

• Data obtained from speckled 
mounting bracket to monitor 
boundary condition. 

• Maximum deflection of 18.7 mm in 
the X direction observed in root 
system. 

Cross-section

Load case A

X

Y
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Results
• Load case B, bending in-plane
• Test article loaded to 50% of 

predicted tip displacement (124 
mm) before buckle. 

• Maximum deflection of 5.6 mm in 
the Z direction observed in root 
system. 

Cross-section

Load case B

X

Y
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Results
• Load case C, compression
• Test article loaded until 

buckling. 
• Displacement data captured in 

the root DIC system during 
buckle event. 

Cross-section

Load case C

X

Y
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Conclusion
• Multiple DIC systems were successfully 

implemented on long slender 7 m 
subscale article.

• DIC systems were merged into one 
coordinated system using muti-view 
registration of rigid motion with lessons 
learned for future application. 

• DIC system captured the buckle event of 
the test article.

• Future work includes comparing DIC data 
with other techniques such as FOSS to 
guide test-analysis correlation effort. 

Sys. 1

Sys. 2

Sys. 3

Sys. 4

Load case ALoad case C Load case B
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