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ABORT TRAJECTORY DESIGN STRATEGIES
FOR THE ARTEMIS MISSIONS

Brian McCarthy*, Josh Geiser†, Matt Bolliger‡, Daniel Owen§, and Damennick
Henry¶

NASA’s Artemis campaign plans to send astronauts to the lunar surface for the first time
since 1972. The campaign relies on the Orion crew capsule to ferry the crew from Earth to
an L2 9:2 lunar synodic resonant Near-Rectlinear Halo Orbit (NRHO) before descent to the
lunar surface. This investigation examines a process to construct various abort families dur-
ing transit from Earth to the NRHO using the Earth-Moon Circular Restricted Three-Body
Problem (CR3BP). The initial trajectories are constructed using the CR3BP and categorized
in families. A process is then summarized to transcribe and converge trajectories from the
CR3BP into a higher-fidelity model. Ultimately, an effective methodology to develop, clas-
sify and converge these aborts in higher-fidelity is critical to the Artemis program in the event
of an anomaly during the crew transit.

INTRODUCTION

In November 2022, the Artemis I mission launched to test the Orion crew capsule, representing the first
component of the campaign to develop a sustaining human presence in cislunar space.1 Artemis II, the first
crewed mission of the Orion vehicle, is planned for November 2025; it will fly a free-return trajectory around
the Moon. Subsequently, the first crewed landing on the lunar surface since 1972 is planned on Artemis III,
leveraging an Earth-Moon L2 Near-Rectilinear Halo Orbit (NRHO) as the staging location for Orion and
the Human Landing System (HLS) before descent to the lunar surface.2 The Artemis IV+ missions plan to
include the lunar Gateway station within the concept of operations en route to the lunar surface. Each of
these missions is increasingly complex and demands extensive trajectory analysis to ensure accomplishment
of all the mission objectives. One aspect of the trajectory design problem for the Artemis campaign is un-
derstanding and constructing aborts along each of the nominal missions in the event of an anomaly. Many
abort trajectory options are constructed, optimized, and analyzed prior to launch to provide an understanding
of the times-of-flight and propellant costs to return to Earth. In this investigation, methodologies are exam-
ined to construct abort trajectories along various phases of the mission, transcribe them into an optimization
process, and ultimately optimize in a higher-fidelity model. To construct initial families of trajectories, the
Earth-Moon Circular Restricted Three-Body Problem (CR3BP) is leveraged to characterize the fundamen-
tal motion of the abort trajectory options and provide an initial guess to a higher-fidelity dynamics model.
Methods of constructing initial abort trajectory geometries are discussed using periapsis Poincaré maps. A
multi-parameter continuation algorithm is discussed to construct families of ∆v optimal abort trajectory solu-
tions in the CR3BP. Examples of various abort geometries are discussed for various phases along an Artemis
III+ mission profile, with a focus on the more dynamically sensitive regions. Lastly, a transcription process is
discussed that uses information from the CR3BP initial guesses to perform optimization in a higher-fidelity
model. Development of various initial guesses and a methodology to transition the initial guesses is critical
to analyzing all of the abort trajectory options for the Artemis campaign. A streamlined process ultimately
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provides decision makers more options and shorter processing time to execute in the event of an anomaly
requiring an abort.

Several previous investigations have studied the lunar abort problem. During the Apollo program, several
techniques were examined, depending on the phase of the mission.3 The performance of two-impulse returns
were analyzed during translunar coast using the Apollo service propulsion system (SPS).4 Single and multi-
impulse aborts were also investigated for non-free return trajectories.5 More recently, for the Constellation
program, Condon et al. investigated translunar abort capabilities for various lunar mission configurations.6

Condon et al. also examined the abort capabilities in relation to various lunar landing sites.7 Earth-return
trajectory planning techniques were investigated by Whitley et al. as well as Williams et al. using a patched
conic approach.8, 9 Robinson and Geller developed an Earth-return targeting algorithm using various conic
approximations.10 Dong et al. summarized a method to construct lunar abort trajectories using an approach
based on pseudostate theory.11 During the Artemis I mission, abort planning was developed for all phases
along the mission to test the Orion capsule in a distant retrograde orbit (DRO).12, 13 To augment these previous
methods, the current investigation employs techniques in the CR3BP to facilitate the generation of abort
trajectories for various locations along an Artemis reference mission.

ARTEMIS III+ MISSION PROFILE

The crewed missions after Artemis II plan to operate in a 9:2 lunar synodic resonant NRHO before and
after the lunar surface sorties. This orbit offers advantageous eclipse avoidance properties, low stationkeeping
costs, extended visibility of the lunar south pole, constant line of sight with Earth and access to the lunar
surface. The transit trajectory to arrive along the 9:2 NRHO requires three major maneuvers: a translunar
injection maneuver (TLI) to depart Earth, an outbound powered flyby (OPF) at the lunar flyby, and the NRHO
insertion maneuver (NRI) that allows Orion to insert into the NRHO. Two representative reference trajectory
are rendered in Figure 1, with different outbound transit times-of-flight. Depending on the mission and the
launch date, the time-of-flight from TLI to NRI varies between 5 and 11 days. Understanding the abort
capabilities along various reference trajectories is critical to assessing the risk for all of the crewed Artemis
missions beyond Artemis II, since each mission plans to use a similar transit trajectory. This investigation
focuses on constructing various abort trajectory families for dynamically sensitive regions of the transit,
where the gravitation forces of the Earth and Moon must both be considered. Specifically, the region of
the transit after the TLI maneuver and before arrival into the NRHO. There are two main drivers when
considering aborts during any of the Artemis III+ missions: propellant required to execute the abort to return
safely to Earth and the amount of consumables the crew has for the duration of the mission. The amount of
propellant, or ∆v, available for an abort changes during the mission, depending on which maneuvers have
been executed. As major maneuvers are executed along the reference trajectory for a nominal mission, there
is less propellant available to execute an abort. The crew consumables drive the time-of-flight requirements
for aborts as well. For example, if an anomaly occurs that requires an abort to Earth, it is assumed that the
crew has approximately 21 days of consumables within the Orion capsule starting from launch. However,
if a depressurization of the capsule occurs, the amount of crew consumables is reduced. Similarly, if the
propulsion system is affected by the anomaly that requires the abort, the duration of the burns and/or the
amount of propellant available may be reduced. All of these factors must be considered when selecting an
abort option should one be required; therefore, an extensive understanding of the full abort trajectory solution
space is critical in the event of an anomaly.

DYNAMICAL MODELS

Two dynamical models are leveraged in this investigation, the Circular Restricted Three-Body Problem
(CR3BP) and a Sun-Earth-Moon ephemeris model. The CR3BP offers higher fidelity and additional be-
haviors in comparison to the two-body model. In this model, two gravitational bodies, denoted P1 and P2,
remain in circular Keplerian orbits about their mutual barycenter (i.e., center of mass). A third body, P3,
moves under the gravitational influence of the two larger bodies and is assumed to be massless. The model
is defined relative to a rotating coordinate system, where the +x̂ direction is defined from the barycenter
toward P2. The +ẑ direction is defined parallel to the direction of the orbital angular momentum vector for
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(a) (b)

Figure 1. Representative Artemis III+ reference trajectories with (a) short outbound
duration and (b) long outbound duration, rendered in the Earth-Moon rotating pul-
sating frame.

P1 and P2; the ŷ direction completes the orthonormal triad. The position and velocity of P3 relative to the
barycenter in the rotating frame are defined as x⃗ =

[
x y z ẋ ẏ ż

]T
, where the first three and the last

three elements are the position and relative velocity components, respectively. The equations of motion for a
particle moving in the CR3BP are a set of three, second-order scalar differential equations of motion,

ẍ− 2ẏ =
∂U∗

∂x
ÿ + 2ẋ =

∂U∗

∂y
z̈ =

∂U∗

∂z
(1)

The pseudo-potential is a scalar defined solely as a function of position and the CR3BP mass parameter,
µ = M2/(M1 +M2), where M1 and M2 are the masses of P1 and P2, respectively.14 The pseudo-potential
function takes the following form,

U∗ =
x2 + y2

2
+

µ

r
+

1− µ

d
(2)

where d =
√
(x+ µ)2 + y2 + z2 and r =

√
(x− 1 + µ)2 + y2 + z2 represent the distances of P3 relative

to P1 and P2, respectively. The CR3BP admits a single integral of the motion, commonly denoted the Jacobi
Constant (JC). The Jacobi Constant is a function of the pseudo-potential and the relative velocity magnitude
expressed in the rotating reference frame,

JC = 2U∗ − v2 (3)

where v =
√
ẋ2 + ẏ2 + ż2. The Jacobi Constant is an energy-like quantity that characterizes motion in

a CR3BP system and remains constant for all time over any ballistic arc propagated in the CR3BP. One
advantage of the CR3BP model is that the system is time invariant, which is important for developing families
of aborts that are agnostic to launch epoch. The CR3BP is also a good approximation for a multi-body
environment and the trajectory characteristics generally persist when transitioning results to a higher-fidelity
ephemeris model.

The ephemeris force model offers a higher-fidelity gravity force representation on the spacecraft by in-
corporating the ephemeris states of various celestial bodies. The interpolated position and velocity state
corresponding to these bodies are extracted from the ephemerides on the JPL NAIF server.15 The analysis
performed in the ephemeris model reinforces the result found in the CR3BP and represents a more realistic
cislunar environment to execute a scenario during an Artemis mission.

OPTIMIZATION METHODS AND CONTINUATION

In this investigation, families of solutions are assessed in the CR3BP to understand the fundamental motion
associated with cislunar abort trajectories and how to classify different families dynamically. Subsequently,
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an optimization algorithm is paired with a multi-parameter continuation scheme to construct these families
of solutions. The optimization method is summarized by Kaufman as well as Goodman, but is included
for completeness to describe how it is paired with a multi-parameter continuation scheme developed by
Henderson.16–18 Consider a free-variable/constraint formulation of a differential corrections problem, where
X̄ is defined as the free-variable vector and F̄ is the constraint vector

X̄ =
[
x1 x2 . . . xn

]T
(4)

F̄ =
[
F1 F2 . . . Fm

]T
= 0̄ (5)

where xi is the ith free-variable of n total free-variables, and Fj is the jth scalar constraint of m total scalar
equality constraints. It is also assumed that m < n, such that there are more free-variables than constraints.
Next, consider a cost function, f , that is a function of the free-variables. An additional set of constraints are
formulated to minimize or maximize f , defined,

F̄opt = ∇̄f · null(DF̄ )T = 0̄ (6)

where ∇̄f is the gradient of the cost function and null(DF̄ ) is an n×n−m matrix representing the nullspace
basis of the Jacobian matrix of the differential corrections problem defined in Equation (4). The derivative of
the optimality constraints with respect to the free-variables is defined,

DF̄opt

DX̄
= ∇̄2f · null(DF̄ ) + ∇̄f · D(null(DF̄ ))

DX̄
(7)

where ∇̄2f is the Hessian of the cost function and the term D(null(DF̄ ))
DX̄

is summarized by Goodman using a
QR decompisition to compute the nullspace basis of the Jacobian matrix.17 Alternatively, automatic differen-
tiation can be leveraged to compute the derivative for ease of implementation. In this investigation, a singular
value decomposition coupled with automatic differentiation is used to compute the nullspace basis and as-
sociated derivatives. By utilizing this optimization technique, the need to provide an initial guess for the
Lagrange multipliers and to solve their associated costate equations during each iteration of the corrections
process is removed in contrast to a typical SQP method.

The differential corrections process summarizes a method to solve for a single solution; however, in this
investigation, families of solutions are of interest to classify various abort types. Trajectories within each
family are characterized by two parameters, the total time-of-flight from the first abort maneuver to the entry
interface state, i.e., the end of the in-space abort trajectory near Earth, defined tabort, and the time along the
reference trajectory that the first abort manevuer is executed, defined tref. These two variables are appended
to the free-variable vector in Equation (4) such that there are n + 2 free-variables. The resulting boundary
value problem is defined,

X̄fam =
[
x1 x2 . . . xn tref tabort

]T
(8)

F̄fam =
[
F1 F2 . . . Fm F̄opt

]T
(9)

where F̄fam is a vector of length n and X̄fam is of length n + 2. The optimization constraints are computed
using the first n free-variables and do not include tref and tabort because a locally optimal solution is desired
for a given tref and tabort in a family of solutions. The targeting problem defined in Equations (8) and (9) now
has two degrees of freedom where a two-parameter family of solutions exists in the vicinity. To compute the
family of solutions, a multi-parameter continuation method is used that extends pseudo-arclength continua-
tion to problems with a tangent space greater than 1-dimension. This extends a similar scheme applied to
NRHO rephasing to a problem with a higher-dimensional tangent space.19

Similar to pseudo-arclength continuation, the multi-parameter continuation scheme maps a family of solu-
tions by leveraging the tangent space (i.e. the null space of DF̄fam) around previously computed solutions to
calculate new solutions. More specifically, the procedure also sucessively computes orthogonal projections of
vectors within a known solution’s tangent space to continue along the family. The families considered in this
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work are two-dimensional and therefore have two-dimensional tangent spaces. Given that Nfam ∈ Rn+2×2

is a matrix with an orthonormal basis of the tangent space around a previously computed point X̄∗
fam as its

columns, the orthogonal projection must satisfy

F̄con = NT
fam(X̄fam − X̄∗

fam −Nfams̄) = 0̄ (10)

where s̄ ∈ R2 is a vector determining both the size and direction of the continuation step. Note that F̄con
yields two more constraints that can be solved simulataneously with F̄fam to yield an n + 2 × n + 2 system
of equations. Effectively, F̄con is simply a higher-dimensional analog to the pseudo-arclength continuation
constraint. Thus, the constraint in Equation (10) is appended to the constraint vector in Equation (9),

F̄mpc =
[
F1 F2 . . . Fm F̄opt F̄con

]T
(11)

where now the dimension of X̄fam and F̄mpc are equal and the solution is solved using Newton’s method.

The key additional complexity associated with multi-parameter continuation is the determination of the
continuation direction (i.e. the direction of s̄). Unlike pseudo-arclength continuation which continues along
a curve of solutions in a single direction, the two-parameter continuation scheme must continue in multiple
directions to compute a surface of solutions. To determine the continuation direction, the polygon update
procedure developed by Henderson is leveraged.18 In the algorithm, polygons are defined within the tangent
spaces of computed points and the vertices are used as continuation directions. As new points are computed,
the polygons are updated to define new directions. Henderson proves that the continuation provides coverage
of the entire family given that the size of the continuation step (i. e. the magnitude of s̄) is small relative to
the curvature of the solution surface. In this work, Henderson’s curvature condition is not checked explicitly,
but the step size is controlled heuristically based on the number of Newton iterations it takes to converge.
Leveraging this algorithm to construct families of trajectories ensures that all solutions within the family are
dynamically linked, i.e., they are constrained using Equation (10) to be on the same smooth manifold and
thus allows each abort family to be uniquely classified.

ABORT INITIAL GUESS CONSTRUCTION PROCESS

Initial guesses for abort trajectories are constructed in the Earth-Moon CR3BP. First, an initial set of
trajectory segments are constructed using periapsis Poincaré maps in the Deep Space Trajectory Explorer
(DSTE) software tool.20–23 The process of constructing these segments is to understand what trajectory
geometries exist that may serve as a viable abort. First, an initial trajectory or set of initial trajectories that
have unique geometries are constructed in the CR3BP using a series of Poincaré maps. One of these initial
trajectories is then used to seed a targeting problem that targets the local minimum impulsive ∆v solution in
the CR3BP. Once the individual local minimum ∆v solution is converged, it is used to seed a multi-parameter
continuation scheme to find the family of locally optimal solutions that possess similar characteristics.18, 24

Lastly, these initial guesses are stored according to their time-of-flight and abort ∆v1 time of ignition (TIG).
The time-of-flight and TIG information is ultimately used when selecting the proper initial guess to transition
to a higher-fidelity model. This investigation focuses on aborts that are initiated after TLI, but before arrival
in the NRHO, including aborts where an NRI burn is not executed. This outbound section of the mission is
challenging from an abort perspective for several reasons. First, the crew are departing away from the Earth
and the propellant cost to “turn around” immediately is high. Second, depending on the type of anomaly that
requires an abort to Earth, the crew may have limited life support systems and may not be able to utilitize
HLS or Gateway to extend life support before returning to Earth. Lastly, the regions near OPF, beyond OPF
and up through NRI are dynamically senstive. Once Orion performs the OPF burn, the spacecraft is moving
nearly perpendicular to the Earth-Moon plane at a high energy, which is not a preferential geometry from the
perspective of an abort to Earth. Subsequently, nearly all direct-to-Earth aborts that are constructed near this
region of the trajectory require a return powered flyby with a low perilune altitude to be within the propellant
budget of the Orion vehicle. Conversely, since the Orion capsule will not have performed any other major
maneuver, other than OPF and TLI before reaching the NRHO, the majority of the propellant onboard will
still be available in the event of an abort. The abort generation techniques are applicable to a range of phases
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of the mission; however, aborts to Earth that occur while the crew is in the NRHO are going to be the topic
of a future investigation.

Constructing the Seed Trajectory in the CR3BP

To build out a family/set of initial guesses, an initial trajectory or set of trajectories must be constructed
in the CR3BP to seed the multi-parameter contination process. The process to construct a seed trajectory
depends on where along the reference trajectory the abort is initiated, as certain abort geometries are going
to be more effective during different phases. Also, it is advantageous to construct various seed trajectories
that have different characteristics for a given section of the reference. By having a variety of seed trajectories
along a given reference section, a more complete picture of the solution space is understood when the families
of initial guesses are fully constructed. A variety of sets/families of initial guesses for a given section of the
reference trajectory provides flexibility if unforseen constraints arise when the abort is declared, for example,
an anomaly reducing the performance of the propulsion system. The seed trajectories are constructed using
periapsis Poincaré maps, which have been effectively leveraged by previous researchers for trajectory design
in multi-body systems.22, 25–28 Since the transit time between TLI and NRI can vary between 5-11 days
depending on the launch opportunity, a reference trajectory is selected that approximately represents the mean
possible transit times, i.e., an approximately 8-day transit. Next, that reference trajectory is transformed into
a set of non-dimensional states in the Earth-Moon rotating frame. This reference trajectory in the Earth-Moon
rotating frame serves as the reference from which all of the aborts are constructed in the CR3BP.

TLI to OPF Abort Initial Guesses

The segment between TLI and OPF encompasses the transit from Earth orbit to the powered flyby by the
Moon, i.e., the blue segment labeled “Outbound Transit” in Figure 1. One-burn and two-burn abort strategies
are used during this section of reference trajectory. To generate a single burn abort seed trajectory, an Earth-
centered periapsis Poincaré map is leveraged in the Earth-Moon CR3BP. First, at each of the discretized states
that comprises the reference trajectory, a range of maneuver directions and magnitudes are applied and those
states are propagated forward for 14 days. An example of how a trajectory is discretized in the DSTE in the
Earth-Moon rotating frame is rendered in Figure 3(a). Trajectories whose first perigee encountered is above
6578 km are removed along with trajectories that do not possess a perigee within the 14 day timepsan. Three
example remaining trajectories are rendered in the DSTE in the Earth-Moon rotating frame in green along
with the example reference trajectory (red) in Figure 2(a). The green dots indicate where the abort burn is
initiated along the reference trajectory. These single-burn trajectories can also be modified with a second
maneuver to increase the flexibility to satisfy entry interface conditions.

As the vehicle gets close to the OPF maneuver along the reference trajectory, the dynamics get more
sensitive and require alternate strategies. This class of abort trajectory leverages two lunar flybys to return to
Earth at a relatively low ∆v cost. These are similar to backflip orbits constructed by previous researchers.29–31

An example of this trajectory is rendered in Figure 2(b). To generate a backflip seed trajectory, an Earth-
centered periapsis map was also used. Similarly to the trajectories constructed in Figure 2(a), the reference
trajectory is discretized and maneuvers are applied in a variety of directions and magnitudes between 1 and
300 m/s. the section of the trajectory that is discretized is just before OPF, where the dynamics begin to get
more sensitive due to lunar gravity. To isolate the backflip orbits, the discretized states with ∆v’s applied are
propagated for 30 days and the second perigee encountered is checked to ensure that it is within a 10,000 km
radius of the Earth. These criteria filter out trajectories similar to those found in Figure 2(a), while keeping
the trajectories with a backflip geometry. The ballistic backflip abort trajectory rendered in Figure 2(b) is
an example of single-burn abort; however, additional maneuvers can be include, such as at the second lunar
flyby, to make it a two-burn solution and potentially reduce the overall maneuver cost.

OPF to NRI Abort Initial Guesses

The segment along the reference trajectory from OPF to NRI presents more challenges given the energy
and direction of the segment. For example, consider the trajectory segment between OPF and NRI from
Figure 1. The Deep Space Trajectory Explorer (DSTE), a multi-body trajectory design software tool, is used
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Figure 2. (a) Three TLI to OPF abort initial guess trajectories that leverage one burn
to return to Earth. (b) Backflip abort example in the CR3BP (the white dot indicates
the start of the abort). All trajectories are rendered in DSTE in the Earth-Moon
rotating frame.

to find these initial segments. Generally, for this OPF to NRI phase of the mission, a low-altitude, powered
flyby of the Moon is required to leverage the Oberth effect and reduce ∆v costs. Subsequently, the first
abort maneuver attempts to change the energy of the trajectory such that the next periapsis is at a low altitude.
Additionally, the velocity vector at the flyby must be in the -y direction in the Earth-Moon rotating frame such
that a possible return-to-Earth segment is aligned properly. Following these two criteria, potential trajectory
arcs are constructed using a periapsis Poincaré map. The OPF to NRI trajectory segment is discretized into
a set of states along the segment, and a range of maneuver directions and magnitudes (between 1 and 700
m/s) are applied to each of the states. The states are then propagated forward for 14 days and trajectories that
have a perilune radii below 10,000 km radius are recorded. Three trajectory arcs are rendered in Figure 3(b)
in the Earth-Moon rotating frame in DSTE that attempt to characterize the dominant trajectory geometries,
label Abort arc A, B, and C. The colored dots in Figure 3(b) correspond to the departure location off of the
reference trajectory (red). Two of the geometries (Abort arcs A and B) possess perilunes over the north pole
of the Moon, while the third trajectory geometry (Abort arc C) possesses a perilune over the south pole of
the Moon. Using the final perilune state along each of these three segments, another maneuver is applied and
propagated until reaching a perigee within 50,000 km of the Earth. This second segment serves as initial guess
for the return powered flyby (RPF) to entry interface segment to complete the Earth-return abort. Information
from these two segments is used to construct a constrained, feasible trajectory in the CR3BP.

ABORT TRAJECTORY FAMILIES

Construction of an initial seed trajectory in the CR3BP ultimately serves to feed a continuation/optimization
method described in the previous section to develop a family of abort trajectories. One-, two-, and three-burn
abort families are constructed using these seed trajectories and ultimately serve as the initial guesses for tran-
sition to higher fidelity. For all of the cases, a representation of the reference trajectory needs to be included
in the targeting problem. Subsequently, a spline over the 8-day transit reference trajectory, used previously
to generate the seed trajectories, is constructed which provides a function that takes in non-dimensional time
along the reference and returns the 6-element state at that time along the reference. Splining provides a
smooth, differentiable function representation of the reference trajectory such that first node of the abort tra-
jectory can be constrained anywhere along the selected reference. Families of one-burn aborts are constructed
between TLI and OPF, as well as families of backflip orbits within this section of the reference trajectory. For
aborts that occur post-OPF, two-burn and three-burn abort families are constructed and compared.
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Figure 3. (a) Discretized reference trajectory to create the initial conditions that
generate a periapsis Poincaré map in the DSTE. The section of the reference shown
is approaching OPF and the segment between OPF and NRI, rendered in the Earth-
Moon rotating frame. (b) Three arcs that encounter a low perilune after the first ∆v
is initiated.

TLI to OPF Abort Families

Two classes of aborts are investigated for the section of the reference trajectory between the TLI and OPF
maneuvers, First, families of one-burn return aborts are constructed from TLI to OPF. For one-burn aborts,
a single ∆v is performed to return the vehicle back to the Earth entry conditions. One-burn abort generally
possess a higher ∆v than an equivalent two-burn abort, but they are preferred from an operational perspective
since only a single deterministic maneuver is required. Free-variable and constraint vectors for a one-burn
abort are defined,

X̄ =



∆v̄1
x̄+
1

x̄−
2

t1
βtref, max

βtref, min

tref
tabort


F̄ =



sin(γ)− r̄−2 ·v̄−
2

||r̄−2 ||·||v̄−
2 ||

||r̄−2 || − hEI
r̄1 − r̄ref(tref)

v̄1 − (v̄ref(tref) + ∆v̄1)

x̄−
2 (− t1

2 )− x̄+
1 (

t1
2 )

tabort − t1
tref − tref, max + β2

tref, max

tref − tref, min − β2
tref, min


(12)

where ∆v1 is the impulsive abort maneuver, x̄+
1 is the post-abort maneuver state, x̄−

2 is the final state along
the abort trajectory, t1 is the abort time-of-flight, and βtref, max and βtref, min are slack variables that bound the
time along the reference between tref, min and tref, max, which are approximately 12 hours and 8.5 days after
launch, respectively. In the constraint vector, γ = −5.8◦, which is the flight path angle at the end of the abort
trajectory, hEI = 122 km is the altitude at the end of the trajectory, r̄ref(tref) and v̄ref(tref) are the position and
velocity along the reference trajectory at tref, and tabort is the desired abort time of flight. The graphic in Figure
4 illustrates an example of a one-burn abort targeting problem. Using the seed trajectory from Figure 2(a)
corresponding to 303 m/s, a family of locally optimal ∆v trajectories is constructed, where the cost function
is the magnitude of the ∆v. Examples of one-burn aborts as well as the ∆v as a function of time-of-flight and
time of ignition (TIG) along the reference for the abort maneuver are plotted in Figure 5. The colored dots
on the left side correspond to the location of the abort maneuver along the reference trajectory (black) and
the numbers next to those dots correspond to where on the ∆v plot the abort trajectory is represented. Two
families are classified in the set of one-burn aborts, where the upper section of the ∆v plot on the right in
Figure 5 corresponds to trajectories that have perilunes on the far side of the Moon. The remaining trajectories
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possess perilunes that are on the near side of the Moon relative to the Earth. While these examples are not
the only one-burn aborts initial guesses available, they provide insight into the dynamics when a single abort
maneuver is allowed.

Figure 4. One burn abort targeting scheme. The closed circles represent the start of
a trajectory segment and the open circles represent the end of a trajectory segment.

Figure 5. Examples of one-burn aborts (left) and the abort ∆v as a function of time
of flight and abort maneuver TIG (right).

The one-burn aborts that have been constructed in Figure 5 generally remain near the Earth-Moon plane.
However, as demonstrated in Figure 2(b), there is a class of trajectories that leverage two lunar flybys and
extend below the Earth-Moon plane. This class of trajectories are denoted backflip aborts, as they are similar
to backflip orbits studied in previous investigations.29–31 The backflip aborts are generally more ∆v efficient
as the vehicle approaches the OPF maneuver near the Moon, where the ∆v required for one-burn aborts
from Figure 5 begins to increase substantially. When considering a backflip abort, the segment between
each of the lunar flybys generally takes around 14 days, since the vehicle’s orbit is in nearly a 1:1 resonance
with the Moon. Given the longer time-of-flight, this class of aborts is generally only feasible for shorter
outbound transits along the reference trajectory. Additionally, while the seed ballistic backflip abort trajectory
rendered in Figure 2(b) is an example of single-burn abort, additional maneuvers are included to expand the
solution space. Specifically, two-burn and three-burn variations of this backflip orbit have been investigated
as potential abort trajectory families. In the two-burn case, the second burn is placed about halfway between
the first perilune flyby and apolune, approximately 3.6 days after the first burn. This solution requires a total
of 89 m/s of ∆v and has a 22-day time-of-flight. To generate a family of return trajectories leveraging this
solution, a multiple-shooting and natural parameter continuation scheme is implemented. This continuation
scheme aims to produce a family of returns with lower times-of-flight. The free-variable vector contains the
∆v components of the two maneuvers, as well as the times-of-flight of the two abort arcs: the arc between the
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first abort ∆v and the second abort ∆v, and the arc between the second abort ∆v and the return to Earth. The
total time of flight, however, is constrained; after the differential corrector delivers a solution, the time-of-
flight of the next solution is decremented by a small amount (18 minutes) and converged using the previous
solution as an initial guess. There is also a constraint on the Earth distance at the end of the second abort
arc. This constraint ensures only that the abort trajectory returns to Earth, i.e., it does not specify a particular
location on the surface and the return distance is constrained to 6528 km. Finally, the multiple-shootering
scheme includes constraints enforcing continuity between segments; the first arc is split into two segments,
and the second arc is split into four segments.

The results of this continuation process are shown in Figure 6. The total time of flight was reduced from
22 days to 19 days; however, the ∆v required to shorten the times-of-flight are quite large. At this stage
in the continuation process, the differential corrector was not able to converge solutions with fewer than 40
iterations, and due to the large ∆v required, analysis efforts focused on a new variation of the backflip abort.

(a) (b)

Figure 6. Results of the two-burn backflip abort continuation process. (a) Time of
flight and ∆v results of each solution (the color axis is identical to the y-axis). (b)
Converged abort trajectories in the nondimensional Earth-Moon rotating frame. The
colors of the trajectories in (a) map to the marker colors in (b).

A three-burn variation of the backflip orbit was also investigated. This variation placed a burn at the
first perilune flyby, between the two existing maneuvers in the two-burn backflip returns. A similar natural
parameter continuation strategy was implemented, with the burn components and timing of the perilune burn
added to the free-variable vector. The time decrement between solutions is increased to 80 minutes. Further,
the continuation process was amended with a 1 m/s velocity increment to the flyby burn applied at subsequent
solutions of the continuation process. This increment was added because preliminary testing indicated that
increasing velocity at perilune resulted in shorter times of flight. The results are plotted in Figure 7. As with
the two-burn variation, even small improvements to the overall time of flight require large maneuvers. This
continuation process was stopped after a time of flight decrease of about 1.5 days due to hitting iteration limits
in the differential corrector as well as the large maneuver cost. Generally, given the longer times-of-flight for
the backflip aborts, they tend to violate the limit for available consumables onboard the Orion crew capsule.
However, understanding the characeteristics of the backflip aborts provides a more complete picture of the
available options if an anomaly occurs.

Post-OPF Abort Families

After the outbound powered flyby maneuver is executed along the reference trajectory, the vehicle follows a
path out of the Earth-Moon plane until the NRHO insertion maneuver. This section of the reference trajectory
is a challenging region to design aborts because the vehicle is moving away from the Moon at high energy,
nearly perpendicular to the Earth-Moon plane, and after two major maneuvers, TLI and OPF, have been
executed. However, various abort options are constructed that leverage a lunar flyby to return to Earth. First,
a two-burn abort is investigated that leverages the cislunar dynamics that, after the first abort maneuver, bends
the trajectory back towards a flyby over the south pole of the Moon. An example of one of these trajectories
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(a) (b)

Figure 7. Results of the three-burn backflip abort continuation process. (a) Time of
flight and ∆v of each solution (the color axis is identical to the y-axis). (b) Converged
abort trajectories in the nondimensional Earth-Moon rotating frame. The colors of
the trajectories in (a) map to the marker colors in (b).

is rendered in Figure 9(a) using the seed trajectory constructed in the DSTE from abort arc C in Figure 3(b).
A set of free-variables, X̄ , constraints, F̄ and cost function, J , are defined for this two-burn abort,

X̄ =


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∆v2
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t2
x̄1
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2
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2
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βtref, max
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tref
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

F̄ =


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||r̄3||·||v̄3||

||r̄3|| − hEI
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v̄1 − (v̄ref(tref) + ∆v̄1)

r̄+2 − r̄−2
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2 (− t1

2 )− x̄1(
t1
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x̄3(− t2
2 )− x̄+

2 (
t2
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r̄−2 · v̄−2
tabort − (t1 + t2)

tref − tref, max + β2
tref, max

tref − tref, min − β2
tref, min

||r̄−2 || − h∆v2 − β2
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

J = ||∆v̄1||+ |∆v2| (13)

where ∆v̄1 and ∆v2 are the abort maneuvers, t1 is the time-of-flight from the first abort burn to the second
abort burn, t2 is the time-of-flight from the second abort burn to the Earth entry state, x1 is the post-∆v̄1 state,
x̄−
2 is the pre-∆v̄2 state, x̄+

2 is the post-∆v̄2 state, x̄−
3 is the Earth-entry state, and βtref, max and βtref, min are the

slack variables that bounding the segment of the reference trajectory that the abort is initiated along, βalt, min
is a slack variable for the minimum altitude at the second abort burn, and tref is the time along the reference
trajectory that the first abort maneuver is initiated. Within the constraint vector, tabort is the desired time-
of-flight of the abort, γ is the flight path angle at entry interface of the abort trajectory, defined as −5.8◦ in
this investigation, hEI is the desired altitude at entry interface, ||r̄3|| is the Earth-centered position magnitude
at entry interface, r̄i and v̄i are the position and velocity components of the state x̄i, respectively, r̄ref(tref)
and v̄ref(tref) are the position and velocity along the reference trajectory, respectively, at tref, x̄i(t) is the state
x̄i propagated in the CR3BP for time t, tref, max and tref, min are the minimum and maximum times along the
reference trajectory that first abort maneuver is allowed to occur, h∆v2 is the minimum altitude that ∆v2 is
allowed to occur, and v̂−2 is the velocity direction at x̄−

2 . Higher-fidelity in-space abort trajectories require
the final state to be constrained to a horizontal and vertical target line; however, to ensure that initial guess
trajectories are launch and return epoch agnostic, only a subset of the target line constraints are imposed.
These constraints included in the initial guess are the approximate flight path angle and altitude.32 A diagram
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of the targeting process is illustrated in Figure 9(a). Also note that the two-burn targeting example includes
an altitude constraint. For the two-burn abort geometry constructed in this investigation, the maneuver cost
is driven down by how low the lunar flyby altitude is at x̄2; therefore, a slack variable, βalt, min, is included to
prevent solutions from passing below 100 km altitude from the lunar surface.

Using the targeting problem defined in Equation (13) paried with optimization and multi-parameter con-
tinuation from Equation (11), families of two-burn aborts are generated. The total abort cost as a function of
the abort time-of-flight and TIG after OPF is plotted on the right in Figure 8. Note that there are two surfaces
of solutions in the ∆v plot in Figure 8. The top surface represents aborts that possesses a final state that is
descending, i.e., the z-component of velocity is negative at the final state, and the bottom surface represents
aborts that have a final state that is ascending, i.e., the z-component of velocity is positive. Examples of two-
burn aborts are rendered on the left in Figure 8, where colored dot represents the location along the reference
trajectory where the first abort maneuver is executed. The number next to each of the dots corresponds to
where the associated trajectory is in the ∆v plot on the right in Figure 8. These families of two-burn aborts
also appear to incorporate motion similar to the stable/unstable manifolds of the L2 axial orbits or L2 Lis-
sajous orbits. Also note that there are no abort trajectories with a less than 10.7 day time of flight, which
limits the feasibility of this type of abort geometry given the crew life support system constraint of 21 days.
These generally are feasible for reference trajectories that have shorter transit times.

Figure 8. Examples of two-burn aborts (left) and the abort ∆v as a function of time
of flight and abort maneuver TIG (right).

In the post-OPF region of the trajectory, three-burn abort families that are constructed using the seed abort
arcs A and B are rendered in Figure 3(b). While there are classes of these trajectories that exist as two-burn
solutions, a third maneuver is included in the targeting problem to increase flexibility for these types of aborts.
For abort arc A and B from Figure 3(b), a maneuver is allowed at apolune of those arcs, but the manuever
direction is constrained such that it is perpendicular to the Moon-centered position vector. This constraint
allows the maneuver to be strictly a plane change maneuver at apolune to provide the correct orientation
of the orbit plane before the final powered lunar flyby to return to Earth. For the three-burn aborts in the
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post-OPF region, the set of free-variables, constraints, and cost function, J , are defined,

X̄ =



∆v̄1
∆v̄2
∆v3
t1
t2
t3
x̄2

x̄3

βtref, max

βtref, min

tref
tabort



F̄ =



sin(γ)− d̄3(t3)·v̄3(t3)

||d̄3(t3)||·||v̄3(t3)||
||d̄3(t3)|| − hEI
r̄1(t1) · v̄1(t1)

r̄2 · v̄2
r̄1(t1)− r̄2

v̄1(t1) + ∆v̄2 − v̄2
r̄2(t2)− r̄3

v̄2(t2) + ∆v3v̂2(t2)− v̄3
t1 + t2 + t3 − tabort


J = ||∆v̄1||+ ||∆v̄2||+ |∆v3| (14)

where x̄2 and x̄3 are the states after the second and third maneuvers, ∆v̄1 and ∆v̄2 are the first two maneu-
ver vectors, ∆v3 is maneuver mangitude of the third maneuver, ti is the time-of-flight of the ith segment,
and r̄i is the Moon-centered position associated with x̄i, v̄i is the velocity associated with state x̄i, d̄i is
the Earth-centered position vector associated with state x̄i and x̄(ti)i is the state after x̄i is propagated for
time ti. Note that an apse is constrained before and after the second maneuver. These two constraints en-
force ∆v2 to be perpendicular to the Moon-centered position vector, i.e., the maneuver can change the plane
and/or increase/decrease the energy of the trajectory only. A diagram of the targeting problem is illustrated
in Figure 9(b). The three-burn targeting problem also only leverages forward shooting, as compared to for-
ward/backward shooting for the one-burn and two-burn aborts. This convention was selected to reduce the
number of free-variables and constraints to decrease runtime when generating the families of aborts.

(a) (b)

Figure 9. (a) Two burn abort targeting scheme. (b) Three-burn abort targeting
scheme. The closed circles represent the start of a trajectory segment and the open
ciricles represent the end of a trajectory segment.

The targeting problem defined in Equation (14) is paired with the multi-parameter continuation process
to generate families of two different three-burn abort families. The total abort ∆v is plotted as a function
of abort time-of-flight and the ∆v̄1 TIG relative to OPF for each family in Figures 10 and 11. The family
generated using the seed trajectory associated with abort arc A in Figure 3(b) is defined as Family A and the
family that is generated using abort arc B is defined as Family B. Family A is characterized by ∆v1 generally
being in the anti-velocity direction and times of flight less than 12 days. The family is only generated for TIGs
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up to 48 hours after OPF. Three examples of abort trajectories from Family A are plotted on the left in Figure
10, also zooming in to show the region near the Moon. The example trajectories evolve as the TIG after
OPF increases, where the plane change imparted by ∆v2 at apolune of all of the aborts is more noticeable for
example 2 and 3. The colored arrows in the zoomed in view in Figure 10 indicate the direction of motion of the
trajectory. The red region in Figure 10 indicates TIGs that occur after NRI, i.e. post-NRI. These trajectories
in the post-NRI region serve as initial guesses in the event of a missed-NRI burn. Similar data is plotted after
Family B is constructed in Figure 11(a), where two perspectives of the same data are shown. The post-NRI
region is highlighted in red and several example abort trajectories are plotted in Figure 11(b). The integer
number next to the ∆v value indicates how the trajectories correspond in the zoomed view. Note that surface
of solutions in Family B wraps around such that there is more than one solution for a given combination
of time-of-flight and ∆v1 TIG. Trajectories 1 and 2 in Figure 11(b) represent solutions that possess nearly
the same ∆v and the same time-of-flight, but have TIGs at different times, where solution 2 is on the back
side of perspective of the surface shown on the right in Figure 11(a). These two trajectories possess different
behavior in the vicinity of the Moon. The apolune of solution 1 is at a higher altitude than the apolune of
solution 2, and the plane change is more significant in solution 2 at apolune than in solution 1. Family B,
compared to Family A, is characterized by the first abort maneuver having a significant component in the
-y-direction, causing trajectory to travel nearly perpendicular to the Earth-Moon plane after ∆v1. Family
B also generally has longer times-of-flight than Family A and there are no solutions in Family B that have
time-of-flight less than 12 days. Family A and B combined cover a significant set of the time-of-flight/TIG
space, providing an understanding of potential abort options for the region after the OPF maneuver.

Figure 10. Family A three-burn abort family. Example trajectories are plotted in the
Earth-Moon rotating frame on the left and the total abort ∆v is plotted as a function
of time-of-flight and TIG after OPF. Note that the red line on the ∆v plot indicates
when the NRI TIG occurs. The trajectories that are constructed in the region with
higher TIGs than the NRI TIG can be leveraged in the case of a missed NRI.

The families of two-burn and three-burn aborts constructed in the CR3BP in this investigation are not the
exhaustive set of potential abort geometries. However, given the methods used to construct these aborts, they
provide a broad understanding of some of the dominant motion in the region. To visualize how all of these
families compare to one another, the ∆v as a function of time-of-flight and TIG are plotted for all of the
post-OPF families in Figure 12. Note that all of the families possess solutions with times-of-flight of 12 days;
thus, multiple initial guesses can be delivered to from the same TIG after OPF to return the crew to Earth.
The ability to have multiple abort options for a given TIG/time-of-flight combination provides flexibility in
the event that one of the initial guesses fails to converge in the higher-fidelity model, an eclipse occurs along
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(a)

(b)

Figure 11. (a) Two perspectives of ∆v plotted as a function of time-of-flight and
the first abort burn TIG for Family B (b) Four examples of abort trajectories from
Family B. Note the integer next to the ∆v value in the view on the left indicates what
corresponds in the zoomed in view on the right.

a particular abort trajectory, or that there is an anomaly preventing the ability to execute one of the abort
geometries.

TRANSCRIPTION AND CONVERGENCE IN HIGHER-FIDELITY

Effective methods to generate initial guesses are ultimately required to seed a higher-fidelity optimization
process. The CR3BP provides insight into the fundamental motion in the Earth-Moon vicinity. However,
the higher-fidelity convergence process is also critical to ensure that an initial guess trajectory persists in a
model that more accurately represents the dynamics that are experienced during the mission. In this investi-
gation, a process is summarized that describes the transition from the Earth-Moon CR3BP to a higher fidelity
ephemeris model to validate the initial guess solutions constructed. Ultimately, the initial guesses should
provide an approximation of the total abort maneuver cost and time-of-flight such that inituition is built be-
fore the transition to higher-fidelity, which generally requires more computational resources than initial guess
construction.

High-Fidelity Tools – Copernicus and Damocles

The convergence process is conducted using the Copernicus software package. Copernicus is a generalized
spacecraft trajectory design and optimization tool33, 34 capable of producing optimal trajectories with a variety
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Figure 12. Total abort maneuver costs as a function of time-of-flight and TIG after
OPF for the ascending and descending arrival two-burn families and three-burn Fam-
ily A and B.

of constraints and variety of model fidelities. It was used extensively by the Artemis mission design team to
support Artemis I preflight analyses as well as on-console in Mission Control Center (MCC) throughout the
26-day mission. Copernicus continues to be used heavily to support mission design efforts for Artemis II,
Artemis III, and Artemis IV+ due to its versatility to handle a wide range of trajectory profiles.

The Artemis mission design team also actively develops and utilizes a package known as Damocles to
automate Copernicus optimization tasks. Damocles, a suite of Python-based scripting utilities, allows trajec-
tory “scans” of millions of nominal and off-nominal trajectories to be setup, optimized, and analyzed all in
a highly parallelizable and automated fashion.35 These trajectory scans represent individual trajectories as
unique nodes in a large Directed Acyclic Graph (DAG) defining the order of dependencies in which trajec-
tories can be converged. This framework ensures that each trajectory, represented by a unique combination
of scan parameters of interest, receives a reasonable initial guess for convergence. However, by using an ex-
ternal initial guess process to seed individual nodes, the scan DAG becomes much more parallelizable due to
fewer dependencies (i.e., edges) between nodes, thus runtime and convergence can be dramatically improved.

Table 1 provides an example of the various scan parameters used to define individual abort trajectories for
an Artemis III Damocles scan. These scan parameters define a highly multi-dimensional subspace of tra-
jectory solutions, with many different possible permutations of these parameters defining unique trajectories.
While the number of scan parameters increases the complexity of abort analyses, it provides preflight insights
into a vast number of potential abort scenarios and corresponding solution trajectories.

Transcription Process Between Models

Though the initial guess solutions modeled in the CR3BP provide reasonable estimates of abort capabili-
ties, they do not model all system constraints needed to define a feasible full-fidelity abort trajectory profile.
For example, the Copernicus/Damocles solutions implement a full polynomial spline defining the set of al-
lowable EI corridor entry states and has discrete time-of-flight constraints for minimum time between abort
burns to allow for thermal and operational constraints. A transcription process was developed to transition
initial guesses from the CR3BP into higher-fidelity Copernicus models. The transcription process and results
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Table 1. Abort scan parameters for Damocles scans

Scan Parameter Description

Launch Day Day of launch for “launch period” scans

Launch Time Epoch of launch for “launch window” scans

Mission Phase Current phase of the mission timeline in which abort occurs. E.g.,
“Post-TLI” or “Post-OPF”

Last Nominal Burn Percentage Com-
pleted

Percentage of last burn completed for missed/partial burn scenar-
ios. E.g., 0% for a missed-OPF abort, 1-99% for a partial-OPF
abort. 100% represents a nominal burn with an abort declared
sometime during the coast phase following the burn.

Number of Abort Burns Number of burns required for the abort profile. Typically 1-3
burns.

Abort Burn Engine Engine that abort burns occur. Typically OMSe or 8+X (if abort
caused by primary engine failure).

Entry Interface (EI) Day Integer day in which Entry Interface (EI) occurs. E.g., EI = 17
corresponds to an abort trajectory with 16.5 < EI MET < 17.5
days.

Abort Burn 1 (AB1) TIG Abort Burn 1 (AB1) Time of Ignition (TIG). Defines the point in
time in which the abort is officially initiated.

Abort Solution Family Additional scan parameter to distinguish different dynamical fam-
ilies of solutions.
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are also described in detail by Owen et al., but the process is summarized in this paper for completeness.36

An interface between initial guess data and high-fidelity input data was first developed to aid in the tran-
scription process. CR3BP initial guess data was converted to a database of solutions in the standardized
data-exchange JavaScript Object Notation (JSON) format. This JSON database contains thousands of indi-
vidual initial guess profiles, with each profile containing information on abort burn ∆v vectors, state vectors
at abort burns, and time-of-flights between states. With some state and frame transformations, this data is
converted into the set of free-variables, or Optimization Variables (OVs) required by Copernicus, to define
the controls of the constrained optimization problem.

Figure 13 details the transcription process for a single trajectory node (i.e., a unique combination of scan
parameters from Table 1) within a Damocles abort scan. First, the CR3BP initial guess database is populated
using the techniques described in previous sections. Using this database of information, Damocles calculates
an approximate time-of-flight for its current node (this is a function of the launch day, launch time, mission
phase, and EI day scan parameters) as well as the Abort Burn 1 (AB1) TIG scan parameter. Using these pa-
rameters, a least squares norm is used to determine the “closest” initial guess trajectory profile (as visualized
by Figure 14(a)) to the current trajectory node. Initial guess data from the chosen trajectory must then be
converted for use in Copernicus: ∆v vectors are converted to alpha/beta angles for finite burns in a VUW
maneuver frame, finite burn durations are calculated based on vehicle thrust and Isp values using the rocket
equation, EI state vectors are converted to geographic coordinates in a body-fixed frame, and event epochs
are converted from MET to absolute Ephemeris Times (ETs). Once the proper transformations are in place,
this data is input into Copernicus as a set of OVs. Lastly, the convergence routine is called and the abort
trajectory is optimized to minimize propellant consumption, an example of which is rendered in Figure 14 in
the Earth-Moon rotating pulsating frame. Note that the general shape of the trajectory is maintained between
the initial guess and the converged solution, and that forward-backward shooting is leveraged at each of the
abort burn nodes to alleviate sensitivity in the process of transitioning to higher-fidelity. Ultimately, the ini-
tial guess provides an approximation of the maneuver cost and the time-of-flight for the given profile, while
the higher-fidelity solution contains all system-level constraints imposed on the vehicle and ensures that an
optimal abort trajectory is constructed for the given set of scan parameters.

Figure 13. Flowchart of Damocles Transcription Process.

CONCLUDING REMARKS

This investigation summarizes a process to generate families of abort trajectories in the Earth-Moon
CR3BP for the upcoming Artemis missions. These families provide an understanding of the fundamental
motion that is ultimately used to construct aborts in a higher-fidelity model. Using Periapsis Poincaré maps
provides insight into the dominant motion through different regions of cislunar space such that seed trajec-
tories are constructed to build these families of solutions. The multi-parameter continuation and optimiza-
tion technique allows for the generation of locally ∆v optimal solutions to be constructed in a dynamically
sensitive solution space so that the abort families are classified based on their dynamical properties. The
transcription process demonstrates how the initial guesses from various families can be used to construct and
enforce system level constraints for a given mission. Lastly, optimization to a local propellant minimum solu-
tion in to a higher-fidelity Sun-Earth-Moon ephemeris model is achieved using the Copernicus and Damocles
tools. This investigation seeks to demonstrate effective strategies to generate, classify and converge aborts
in higher-fidelity models, allowing Artemis mission designers to make informed decisions pre-flight and in
mission operations. A robust abort generation process ultimately makes Artemis missions more flexible and

18



(a) (b)

Figure 14. (a) Pre-converged three-burn initial guess from CR3BP transcribed
into Copernicus. (b) Converged three-burn abort trajectory in Sun-Earth-Moon
ephemeris model.

provides an understanding of the trajectory options in the event of an anomaly to return the crew to Earth
safely.
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tory Design in Planet-Moon Systems,” AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado,
Aug. 2015.

[22] D. C. Davis, S. M. Phillips, and B. P. McCarthy, “Trajectory Design for Saturnian Ocean Worlds Orbiters
Using Multidimensional Poincaré Maps,” Acta Astronautica, Vol. 143, Feb. 2018, pp. 16–28.

[23] B. McCarthy, J. Petersen, and D. C. Davis, “Ballistic Lunar Transfer Design Using the Deep Space
Trajectory Explorer,” 33rd AAS/AAIA Spaceflight Mechanics Meeting, Austin, Texas, June 2023.

[24] D. Henry and D. J. Scheeres, “Fully numerical computation of heteroclinic connection families in
the spatial three-body problem,” Communications in Nonlinear Science and Numerical Simulation,
Vol. 130, March 2024, https://doi.org/10.1016/j.cnsns.2023.107780.

[25] B. McCarthy and K. Howell, “Four-body cislunar quasi-periodic orbits and their application to ballistic
lunar transfer design,” Advances in Space Research, Vol. 71, Jan. 2023.

[26] S. Scheuerle and K. Howell, “Tidal Attributes of Low-energy Transfers in the Earth-Moon-Sun System,”
AAS/AIAA Astrodynamics Specialist Conference, Charlotte, North Carolina, Aug. 2022.

[27] M. E. Paskowitz and D. J. Scheeres, “Robust Capture and Transfer Trajectories for Planetary Satellite
Orbiters,” Journal of Guidance, Control, and Dynamics, Vol. 29, Mar. 2006.

[28] M. E. Paskowitz and D. J. Scheeres, “Design of Science Orbits About Planetary Satellites: Application
to Europa,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1147–1158.

[29] M. Ceriotti and C. R. McInnes, “Design of Ballistic Three-Body Trajectories for Continuous Polar Earth
Observation in the Earth-Moon System,” Acta Astronautica, Vol. 102, October 2014, pp. 178–189.

[30] R. W. Farquhar and D. W. Dunham, “A New Trajectory Concept for Exploring Earth’s Geomagnetic
Tail,” Journal of Guidance and Control, Vol. 4, March 1981.

[31] C. Uphoff, “The Art and Science of Lunar Gravity Assist,” AAS/NASA International Symposium, Green-
belt, Maryland, April 1989.

[32] J. Rhea, “Exploration Mission Entry Interface Target Line,” techreport, NASA Johnson Space Center.
[33] J. Williams, A. Kamath, R. Eckman, G. Condon, R. Mathur, and D. Davis, “Copernicus 5.0: Latest

Advances in JSC’s Spacecraft Trajectory Optimization and Design System,” AAS/AIAA Astrodynamics
Specialist Conference, Portland, Maine, August 2019.

[34] C. A. Ocampo, “An Architecture for a Generalized Trajectory Design and Optimization System,” Inter-
national Conference on Libration Points and Missions, Aiguablava, Spain, June 2002.

[35] Q. Moore, B. Killeen, and J. Williams, “A New Architecture for Parallelization of Complex Spacecraft
Trajectory Optimization Scans,” AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Montana,
August 2023.

[36] D. Owen, M. Bolliger, G. Savidge, A. Heritier, and B. McCarthy, “A Framework for Moving Artemis
Abort Trajectories from the CR3BP to a High-Fidelity Ephemeris Model,” AAS/AIAA Astrodynamics
Specialist Conference, Broomfield, Colorado, August 2024.

20


	Introduction
	Artemis III+ Mission Profile
	Dynamical Models
	Optimization Methods and Continuation
	Abort Initial Guess Construction Process
	Constructing the Seed Trajectory in the CR3BP
	TLI to OPF Abort Initial Guesses
	OPF to NRI Abort Initial Guesses

	Abort Trajectory Families
	TLI to OPF Abort Families
	Post-OPF Abort Families

	Transcription and Convergence in Higher-Fidelity
	High-Fidelity Tools – Copernicus and Damocles
	Transcription Process Between Models

	Concluding Remarks
	Acknowledgements

