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Creating Camera Controls for First-Person  
Camera in VulkanSceneGraph 

 
Kristie O’Brien* and Bryan W. Welch 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Summary 
The way users interact with a virtual, three-dimensional (3D) scene is heavily influenced by the way the 

camera used to view the scene is controlled. A first-person camera is a common form of camera control for 
computer programs. Its role is to create an immersive viewer experience, which allows users to traverse a 
scene as they might in the real world. Allowing for the implementation of the first-person camera makes for 
a more holistic, well-rounded way to interact with the visualization program. Accomplishing this involves 
mathematical calculations that define how the camera should be moved for the computer system. These 
movements equate to the rotation, translation, and scale of the changes. It should be noted that a computer 
does not inherently process what movement directions (left, right, up, or down) mean. The mathematical 
equations used define these principles in a way the computer can process. Further aspects to consider are 
detecting when the camera has moved and how far. This is most frequently accomplished through user 
|input through external devices. These devices, for the purpose of this report, include mouse input and  
keyboard input. Additionally, the in-development program this report is referencing works with the 
VulkanSceneGraph (VSG) library to create the scene and build the base of the camera controls. Although 
VSG is a powerful library with many capabilities, additional Application Programming Interfaces (APIs) 
might be needed during development to produce the desired results, as is the case in this program. Through 
combining proper mathematical calculations, utilizing additional APIs, and implementing the existing VSG 
library capabilities, implementing first-person camera controls is possible in a 3D scene. 

Nomenclature 
3D three-dimensional 
API Application Programming Interface 
GCAS Glenn Research Center Communications Analysis Suite 
VSG VulcanSceneGraph 
WinAPI Windows API 

Introduction 
In the scope of the NASA Glenn Research Center Communications Analysis Suite (GCAS), users can 

primarily interact with the three-dimensional (3D) rendering of our solar system in two key ways (Ref. 1). The 
first is with an object-relative camera. The second is with a first-person camera, which will be the primary 
focus of this report. The first-person camera allows for a high level of freedom of movement, designed to 
mimic a person observing a scene from multiple perspectives (Ref. 2). For example, on the surface of a node 
object such as a planetary or lunar object, the camera would allow users to observe and move about on the 
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surface of that node as they might in the real world on an actual planetary object. GCAS allows for several 
planetary objects and their respective moons to be modeled and observed through these cameras (Ref. 1). As of 
this writing, the version of GCAS currently in development utilizes the VulkanScreenGraphic (VSG) library to 
render its scenes. This modern, cross platform, high-performance scene graph library is built upon the Vulkan 
graphics/compute API. The software is written in C++17. The source code is published under the MIT 
License. The VSG library has some built-in camera object functionality and a base for camera controls that 
can be modified to fit certain aspects of a complex camera system. However, custom functionality and more 
extensive modifications are required to implement a first-person camera.  

Foundational Data 
Before diving further into the particulars of camera development for GCAS, some key aspects of how a 

computer infers a camera must be addressed. It should be noted that a computer program does not 
instinctively know directions, orientation, position information, or what it means to change these aspects of 
looking around a scene (Ref. 3). These must be defined within the program itself. Despite programming 
languages and libraries having their own unique and particular ways of defining camera structures, the use 
of the LookAt function’s input argument vector elements is one commonly known way. Such elements can 
be defined differently between programs and libraries, but most are comprised of the following base 
components: 

 
• A vector of the camera’s position in the world 
• A vector of the camera’s target 
• A vector of the camera’s upward direction 
 
Figure 1 offers an example of these components. The camera’s position in the world is just what its 

name implies: it is the position in the world where the camera is currently stationed (Ref. 3). This can be 
thought of much like a person’s coordinates on a map. The vector of the camera’s target is typically the 
direction in which the camera is looking (Ref. 3). For example, imagine a person sitting stationary at a 
desk, first looking straight ahead at a wall. Then, the person moves their head and is now looking up at 
the ceiling. The person is still in the chair, so their position has not changed, but what they are looking at 
has. This example allows visualizing the basic difference between position and target. Finally, there is the 
vector of the camera’s upward direction. This is basically the vector that points upward from the camera, 
defining its orientation relative to other objects (Ref. 3). These elements can then be combined to define 
the basic directional, placement, and observation data for the camera These elements will also be the 
foundation of working with changes in these camera variables that are caused by movement. 

 

 
Figure 1.—Basics of three component vectors for working 

with camera direction and position information. 

https://www.khronos.org/vulkan/
https://en.wikipedia.org/wiki/C%2B%2B17
https://vsg-dev.github.io/vsg-dev.io/LICENSE.md
https://vsg-dev.github.io/vsg-dev.io/LICENSE.md
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WinAPI and the Importance of Mouse Cursor Position 
Now, with the three basic vectors in mind, it is important to understand they can be transformed to 

show changes in the camera’s position and directions. As in the example of a person sitting at a desk and 
turning their head to look at something new, a camera on a computer can figuratively turn its 
metaphorical head to look at other objects or areas of a scene. However, unlike a person, the computer’s 
camera has no built-in frame of reference to instruct it how far to turn. This must also be defined. One 
way of doing this is by measuring how much something related to the movement event moves with each 
movement iteration. In the case of the GCAS system, mouse controls are used to capture movement event 
information for the camera (Ref. 2). In theory, the camera should be able to look wherever the mouse is 
pointing. There are a few ways this can be accomplished. One way is simply to capture the mouse’s 
location and have the camera’s target vector follow it. However, this could produce issues when the 
mouse goes too close to the edge of the screen, thus restricting movement. For more natural movement, 
allowing for more freedom of movement, another method is used that involves placing the mouse cursor 
at the center of the screen, moving the mouse in the desired direction, then, after the move event is 
concluded, placing the mouse once more in the center of the screen. This allows for the difference 
between the mouse’s new location compared to the center to be gathered each time the mouse moves. 
Although some VSG methods allow capturing mouse input, a more streamlined approach that allows for 
ease of implementation with a client window can be found with the Windows API (WinAPI). The 
WinAPI allows mouse input to be captured along with mouse position information. From there, the 
WinAPI has built-in commands to find the center of the client screen and place the mouse position at that 
center. The difference found between mouse locations can then be used to justify how much the mouse 
has moved. This allows the computer to have a working frame of reference for how much the camera 
should change its target vector. 

The Math Behind the Method 
The three basic vectors from LookAt might make up the foundation of the math that must be done, 

but three basic vectors do not make the math itself. These vectors can be used in a variety of ways to 
produce varied outcomes in terms of how a camera moves about a 3D environment. However, alone, they 
are only the building blocks of the math. The mathematical equations will use these vectors to understand 
and apply the appropriate changes. First and foremost, it must be fully understood that the first-person 
camera in the scope of GCAS must function like a person walking around a scene. For the purpose of this 
report, consider the situation where a person might be walking around the surface of a planetary object. 
This object might not be a perfectly round sphere, but it will still be spherical in nature under the scope of 
a 3D shape. With this in mind, it is important to understand how the camera is expected to behave. The 
camera must appear to be standing vertically relative to the planet in such a way that it mimics a human’s 
view on the surface of a planet, regardless of where they are on the surface (Ref. 3). As such, the camera’s 
orientation must be relative to the object on which it is standing (Ref. 3). This orientation is controlled by 
the up vector discussed in previous sections. Figure 2 offers an example of what this looks like; note that 
the up vector is always positioned perpendicular to the planetary object’s position. This ensures that the 
camera is always oriented such that it is sitting on the surface of the planetary object.  
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Figure 2.—Camera positions with their corresponding target and up 

vectors. 
 
 
Mathematically speaking, the camera’s up vector will be the perpendicular vector of the camera’s 

position as it is relative to the surface of the planetary object, like the up vector in a local topocentric 
coordinate frame. But from here, it must be understood what must be done to the other aspects of the other 
two elements. Both the camera’s position vector and what the camera is looking at might change. To account 
for changes in the position vector, the user will use keyboard inputs to control the position of the camera at a 
given time. Distinct keys are bound to change the reference position of the camera forward, backward, left, or 
right (Ref. 3). The target vector changes are controlled by the mouse as described previously.  

Because a computer system does not have a frame of reference for movement, such movement must 
be defined. In order to move forward, backward, left, and right, the computer needs definitions for the 
position, the direction of the movement, and the speed of the movement. Without a context for speed, the 
camera could move very fast or very slow in disproportionate movements. Therefore, having a speed 
variable assisting with updating the position is essential. Putting all of these together, it is possible to 
obtain the following mathematical equations. 

Necessary Variables 

position = camera position coordinates 
direction = direction component of a camera 
speed = constant value for speed of the camera’s movement. 
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Equations for Forward, Backward, Left, and Right 

If the camera is moving forward, use this equation: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒) 

If the camera is moving backward, use this equation: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

If the camera is moving left, use this equation: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

If the camera is moving right, use this equation: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

The scenario described handles the base movement, but that leaves changes in viewing vectors from a 
common reference position unaddressed. Rotation is the key here as, just like when someone turns their 
head, the movement is not always simply forward and backward or side to side. Remember: the amount 
of rotation is determined by how far the mouse moved from the center of the screen during a movement 
event. The resulting difference can then be broken up into x and y coordinated for their corresponding 
differences. These differences are then used to calculate the proper angles for rotation. 

Necessary Variables 

position = camera position coordinates 
target = the direction in which the camera is looking  
∆𝑥𝑥 = x variable difference from mouse position to screen 
∆y = y variable difference from mouse position to screen 
up = camera up vector 
target = camera target vector 
Center = center of the client screen 
xAngle = angle of rotation for x in radians 
yAngle = angle of rotation for y in radians 
xRotation = rotation matrix for x 
yRotation = rotation matrix for y 
right vector = right vector related to the camera 

Steps for Rotation 

To create x rotation, rotate by xAngle around the camera up vector 
To create y rotation, rotate by yAngle around the camera right vector 
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Equations for Rotation 

Rotate first with respect to x: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 –  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  ∙ (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

Calculate the right vector related to the camera target: 

 right vector = ‖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑢𝑢𝑢𝑢‖ 

Rotate next with respect to y: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 –  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)  ∙ (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

Results and Discussion 
The results in the implementation of the rotations as described allow for smooth, complete rotations 

and the ability to move about a scene. The type of rotation chosen works with two different angles around 
two different axes for rotation to avoid what’s known as gimbal lock. Gimbal lock might occur in various 
locations when moving about a spherical or sphere-like object due to the nature of the vectors and their 
normalized components. As a result, gimbal lock would result in incomplete or locked movements at 
certain locations. For example, gimbal locking might occur with more regularity at polar regions on a 
planetary object. This is like how in real-world navigation, there can be no specific assignment of 
longitude for latitude at the true North or South Pole. This is because the latitude values would be either 
positive or negative 90° at the different poles. In the real world, this information plays a role in 
navigation. In terms of computer programming in this instance, this information informs instances of 
gimbal locking in cameras. This is not ideal for the type of camera created here. Given the issue of 
spherical angles at the true poles (either north or south), where longitude is undefined, an alternate 
process was needed to support camera control. The rotation calculations work to control input from the 
mouse, allowing the camera to turn much as a person might turn their head. Meanwhile, the key controls 
allow for the camera’s position to be updated in the scene, much as one might walk around a room. The 
results allow for a much more holistic viewing experience of the GCAS scene. This in turn allows for 
more detailed site analysis within GCAS as the user has the option to move freely within the world  
space. This type of rotation while looking on the horizon of an object in space can be seen in Figure 3 to 
Figure 5. Note that these images were taken on the surface of the Moon within GCAS. Figure 3 shows a 
horizon view with the camera turned toward the left side of the screen. Figure 4 shows the same kind of 
horizon view, but the camera has been turned slightly to the right, allowing the view to be focused more 
toward the center of the screen. The final figure, Figure 5, shows the camera view now rotated toward the 
right side of the screen. As such, it can be seen how the view operates and works within the actual system 
without gimbal lock while allowing for a horizon view on a nearly spherical surface. 
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Figure 3.—Horizon view on lunar surface looking toward left of screen. 

 

 
Figure 4.—Horizon view on lunar surface looking toward center of screen. 
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Figure 5.—Horizon view on lunar surface looking toward right of screen. 

Concluding Remarks 
This report summarizes software development efforts to enable camera control in a new Glenn 

Research Center Communications Analysis Suite (GCAS) three-dimensional (3D) visualization 
environment. Camera control processes were determined to enable first-person views from a fixed 
location, along with the ability to rotate about that location and to move away from that location. The 
efforts were about trying to use existing processes within the VulkanSceneGraph capability to replicate 
some of the existing first-person camera view/control capabilities within the browser-based GCAS 3D 
visualization software. It is hoped that these efforts are able to influence future development in support of 
viewing the 3D scene about the location of orbital nodes or vehicle-based nodes. 
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