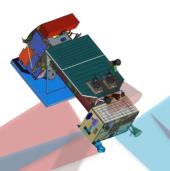


Insights and Observations From Operating a Geostationary Laser Communication Relay Mission: Operational Lessons from NASA's Laser Communications Relay Demonstration and Associated Optical Ground Stations

Jonathan Woodward^a, David J. Israel^b, Richard L. Butler^b, John D. Moores^c, Sabino Piazzolla^d, Patricia Randazzo^e, Lena E. Braatz^f 26 September 2024

LCRD Mission Background

- LCRD is a technology demonstration mission and is NASA's first end-to-end laser communication relay
- The LCRD payload is hosted on a GEO spacecraft and includes two Optical Space Terminals and a data interconnect switch; the spacecraft provides an RF link
- LCRD mission is supported by two Optical Ground Stations, located on Table Mountain, California and Haleakalā, Hawai'i and a RF ground station in New Mexico



LCRD Laser and RF Network

LCRD GEO Laser links:

- -2 Optical Space Terminals and data switch
- -Terminals support simultaneous bidirectional operations with independent data rates

ILLUMA-T and ISS

- ILLUMA-T installed on the ISS (Nov 2023-June 2024)
- Downlink information rate up to DPSK up to 1.24 Gbps, Uplink rate up to 155 Mbps

LCRD GEO RF link:

- -Satellite provided RF antenna
- -Support simultaneous bidirectional operations with independent data rates

NASA-WSC

- RF Ground Station located at NASA's White Sand's Complex (NM)
- Ka-band Downlink information rate up to 622 Mbps

OGS-1

- OGS-1 located at NASA/JPL's Table Mountain Facility (CA)
- Uplink/Downlink information rate DPSK up to 1.24 Gbps; PPM up to 311 Mbps
- Operated by JPL

OGS-2

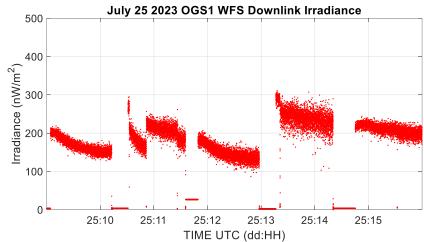
- OGS-2 located at Haleakalā, Maui (HI)
- Uplink/Downlink information rate up to 1.24 Gbps DPSK

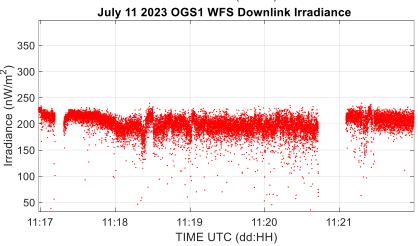
Approach on Lessons Learned

- Operational lessons come from the experiences of the LCRD operations teams during day-to-day operations
 - These lessons may help drive Mission Operational Concepts and processes for projects considering using laser communication
 - We note differences in operations between laser and RF communication systems where appropriate
- Lessons cover
 - Operational Activities
 - Differences in operational processes and adjustable parameters between laser and RF communication systems
 - Payload System Troubleshooting Activities
 - A series of common troubleshooting steps used for Laser Communication
 - LCRD Ground System Lessons and Operational Considerations
 - Space-to-ground links and ground station operational availability

LCRD Operational Activities –Ephemeris Generation

- LCRD ephemeris generation cadence
 - Ephemeris data needs to be up to date, and terminal clocks need to be wellsynchronized
 - Narrow laser beamwidth requires more accurate ephemeris than is needed with an RF system
 - LCRD orbit determination (OD) is performed daily
 - This cadence is much more rapid than usually required for RF systems.
 - Link acquisition performance drops the older the ephemeris gets
 - Post-maneuver ODs can take greater than 12 hours for GEO satellites
 - During the time between maneuver and OD, LCRD is drifting away from the pre-maneuver orbit, which can cause missed contacts.
 - Some ephemeris products contain the predicted maneuver information, and it is recommended to use these products
- Loading target ephemeris (for both flight and ground terminals)
 - LCRD pointing files are updated daily



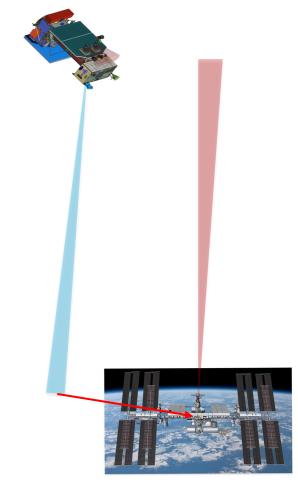


LCRD Operational Activities –Thermal Control

- LCRD payload performance is greatly impacted by temperature variations
 - Maintaining a narrow operational range on the satellite baseplate heaters minimizes bus thermal impacts on the Optical Module
 - Excursions of only a few degrees outside of calibrated range can affect:
 - Wavelength drift, which impacts signal quality
 - Optical head alignment (impacting downlink pointing) and target irradiance
 - Thermal profiles change through the year due to orientation of the host vehicle with respect to the Sun
 - Certain periods of the year (e.g. around the summer solstice) may have a greater thermal impact on pointing vs others

Received Irradiance at OGS-1 WFS with and without pointing loss due to thermal effects

Payload System Troubleshooting Activities



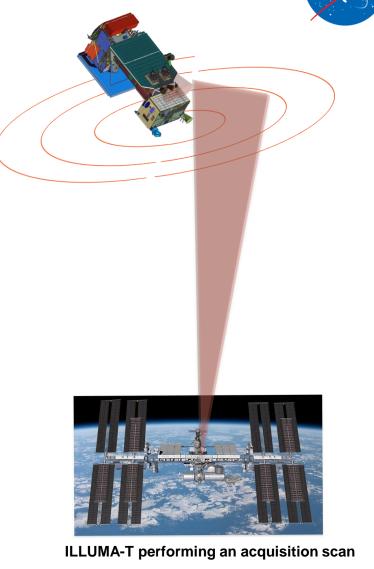
Negative acquisition troubleshooting

- Troubleshooting steps for "can't acquire" or "loss of comm" are very similar to gimballed Kaantennas
- Narrow tolerances require finer precision on pointing and tracking for both ends of the link
 - This is especially apparent after launch when trying to perform first set of pointing calibrations to account for launch shift

Timing epochs (and errors)

- Due to high pointing precision, an incorrect conversion from one epoch to another can easily cause a miss of target
 - Leap seconds are easy to get incorrect
 - ISS travels nearly 300 km in 37 seconds (current delta between UTC and International Atomic Time (TAI))
 - Ephemeris errors affect links with orbiting platforms more than ground stations
- LCRD has not encountered this issue on-orbit, but did during initial testing during ground integration

The ISS moves nearly 300 km in 37 seconds. An incorrect epoch causes mis-pointing and negative acquisition.



Payload System Troubleshooting Activities

- Products for troubleshooting
 - Pointing accuracies were the most challenging issue encountered during payload and ground station commissioning
 - Missions should have flexible, pre-canned scanning profiles available for both ground and flight
 - Scanning profiles should include both open- and closedloop acquisition scans
 - Real-time telemetry
 - Diagnostic telemetry modes that sample and report at rates exceeding the Nyquist frequency of relevant dynamics (atmospheric fading, pointing jitter, feedback loops, etc.) are extremely valuable for troubleshooting and optimization
 - Under sampling can mask performance issues
 - System state metrics are useful, as are high speed telemetry dwells but have associated overhead to process or store these data

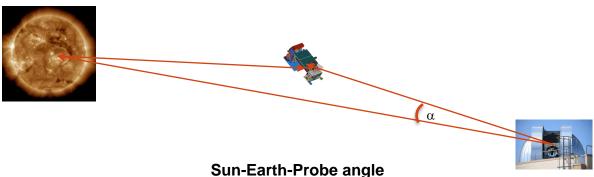
LCRD Ground System Lessons

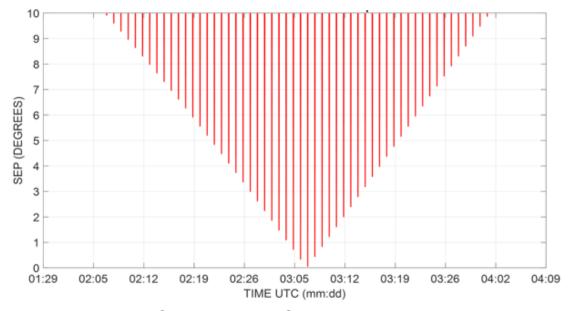
NASA

- Storm fronts and other atmospheric conditions such as smoke from wildfires or snowstorms can bring multiple-day outages
 - Ground Stations located lower than the cloud line will have this impact more often, or if the stations are located on the windward/prevailing side of a mountain range
- The strongest optical turbulence occurs at ground station local noon
 - Strong optical turbulence affects the quality of the downlink signal and the adaptive optics corrections
- Ground station microclimates may not be captured in regional forecasts
 - A frequent, quickly disappearing morning fog at one of the LCRD ground stations is an example
- Changing weather patterns will affect station availability
 - OGS-1 had record drought and record snowfalls in the same year

OGS-1 dome winter 2024 (Credit: NASA/JPL)

OGS-1 summer 2024 during wildfire event (Credit: NASA/JPL)





LCRD Ground System Operational Considerations

- Ground Station operational restrictions
 - Optical turbulence effects on laser links and beam propagation are stronger at lower elevation angles
 - Optical ground stations have a higher minimum elevation angle than traditional RF stations
 - This limits contact duration for low Earth orbiters, deep space and cislunar missions
 - Heavenly Body Orientation
 - Sun-Earth-Probe (SEP) impacts are seasonal
 - Low SEP angle can cause degradation of the Signal-to-Noise Ratio (SNR) at the receiver
 - Thermal and optical keep-out zones are required to prevent damage from pointing to close to the Sun
 - Keep-out zones vary depending on ground station configuration and location
 - Think of this as a "moving antenna mask in the sky"
 - Diagram to the right shows the SEP angle at OGS-1 in spring 2023
 - OGS-1 had daily outages for close to 2 months
 - OGS-1 Keep out zones are SEP <10 degrees
 - These outage periods occur twice a year

SEP angle at OGS-1 Feb-Apr 2023

Conclusions

- Two years of successful LCRD mission operations have yielded numerous operational lessons
- LCRD mission operations have demonstrated key differences in the operational processes needed for laser communication systems vs. RF communication systems
- Laser communication systems require higher precision flight dynamics products and a higher cadence of activities vs. RF communication systems
- Laser communications architectures will need to be configurable to accommodate future growth of laser communication networks

Acknowledgments

NASA-GSFC	Jean-Pierre Chamoun, Nick Cummings, Andrew DeAbreu, Nicolaas du Toit, David Hahn, Lori Jones, Karen Keadle-Calvert, Dutch Lamberson, Matt McGinnis, Greg Menke, Bill Muscovich, Tim Singletary, Mark Sinkiat, John Smith, Kenny Sterling, Miriam Wennersten
NASA-WSC LCRD Mission Operations Center (LMOC)	Michelle Alba, Karen Black, Richard Blair, Frank Chavez, Scott Crosier, Richard Garcia, Julian Hayes, Adam Isleib, Jameal Landrum, Ezra Rivera, Scott Stephens, Andrew Wyatt
OGS-1 (JPL-OCTL)	Mark Brewer, William Buehlman, Christine Chen, Preston Hooser, Vachik Garkanian, Tom Roberts
OGS-2 (AMOS)	Cheron Fernandez, Steven Spenser

A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

This material is based upon work supported by NASA under Air Force Contract No. FA8702-15-D-0001.

