

Ceramic Matrix Composites: The Next Material Revolution?

Italian Technological District of Composite Materials and Structures (IMAST) Workshop Capri, Italy October 2-4, 2024

David E. Glass, Ph.D. Senior Technologist, Advanced Structural / Thermal Systems Applied Materials for Space & Hypersonics (AMSH) NASA Langley Research Center, Hampton, VA 23681

Approved for Public Release

• Introduction

- Highlighted ceramic matrix composite (CMC) sectors
- Challenges & opportunities
- Concluding remarks

What are Composites?

NASA

- Two or more constituents combined on macro scale
 - Often comprised of a matrix (binder) and reinforcement
- Types of reinforcement
 - Continuous or long fibers
 - Unidirectional, woven, braided, or random architecture
 - Random or short fibers
 - Particulate, flakes, or fillers
- Benefits
 - Light-weight
 - Tailorable to different applications
 - Strength / stiffness
 - Coefficient of thermal expansion (CTE)
 - Hardness, fatigue life, damage tolerance

- Common composite examples
 - Reinforced concrete and masonry
 - Composite wood such as plywood
 - Polymer matrix composites (PMC)
 - Ceramic matrix composites (CMC)

B787 PMC Fuselage

Credit: "N1015X Air Tahiti Nui Boeing 787-9 Dreamliner 26 " by New Yorkair licensed under <u>CCA 4.0</u>.

Composite plywood

Credit: "Spruce Plywood" by Bystander licensed under <u>CCA 3.0</u>.

WORKSHOP | CAPRI | 3 OCTOBER 2024

PMC Composite Bicycle Credit: "Composite Bike (3665606309)" by Paul Hudson licensed under <u>CCA 2.0</u>.

Ceramic Matrix Composites (CMCs)

- CMC = Ceramic (or carbon) fiber in a ceramic matrix
 - Material nomenclature is "fiber/matrix"

- Environmental barrier coating (EBC) (possible)
 - Fiber: silicon carbide (SiC), carbon (C), oxide, etc.
 - Fiber-matrix interface coating (possible)

Matrix: SiC, C, oxide, etc.

- Common examples
 - Oxides: Oxide/alumina-silicate, oxide/alumina-mullite
 - Carbides: SiC/SiC, C/SiC, C/C-SiC
 - Carbon/carbon: C/C
- Characteristics
 - Moderate density
 - High use temperature
 - Chemical resilience
 - Excellent mechanical capability
- "Game changer" for high-temperature applications

Credit: GE Aerospace, used with permission

WORKSHOP | CAPRI | 3 OCTOBER 2024 4

- Analogous to that of PMCs in the mid-1980s
- Commonly viewed as promising, but...
 - Too many problems, unknowns, and risks
 - Immature manufacturing techniques and supply chain
 - Immature supply chain
 - Exotic
 - Complex to analyze and implement
 - Too expensive and therefore unrealistic for "realworld structures"
- Is this perception valid?

CMC brake discs, calipers, and pads are <u>NOT</u> complex, immature, or risky

Credit: J. Chenenko, used with permission

- Offer increased efficiency and *decreased* complexity for elevated-temperature applications
- Have reached an inflection point in maturation
 - Viable predictive and design capabilities
 - Proof of profitability in multiple industries
 - Actively developing supply chain
 - Technological advances/improvements in manufacturing
 - Can be tailored to application
 - Decreased costs with increased quality and throughput
- Analogous to CFRP composites in the mid-80s CMCs are poised for explosive growth...

Passport engine oxide/oxide mixer and nozzle

Credit: "EBACE 2019, Le Grand-Saconnex (EB190671)" by Matti Blume licensed under <u>CCA 4.0</u>.

Cost Perceptions and Cost Realities of CMCs

• CMCs have a reputation as too expensive

- Acquisition costs can cause hesitation in adoption of CMCs, even if life-cycle costs are reasonable
- Costs must be balanced against drivers for CMC technology

Investment in industrialization for high-pull business cases improves future business cases

PMC Business Case Evolution 1980's to present

Credit: "British Aerospace EAP at the Farnborough Air Show, 1986" by Mean as custard licensed under <u>CCA 3.0</u>.

Credit: "Tennis Racket and Balls" by Vladsinger licensed under <u>CCA 3.0</u>.

Business case for CMCs in aviation drove GE investment

Used by permission of GE Aerospace: Approved for external publication (July 2024)

WORKSHOP | CAPRI | 3 OCTOBER 2024 7

Sector Level of Industrialization / Capitalization

S.J. Lewis, "The use of carbon fibre composites on military aircraft," Composites Manufacturing, Vol. 5 No. 2, 1994.

WORKSHOP | CAPRI | 3 OCTOBER 2024 8

CMCs are Both Enablers and Benefit-Multipliers

SR-71

CMCs enable new technologies and products

• Spacecraft, aircraft, defense, and nuclear and other power generation components are some currently identified examples

CMC implementation results in system benefits

 CMC components enable a system with lower weight, higher performance, higher efficiency and improved safety while decreasing overall complexity – a benefit multiplier

Example: Environmental Benefit-Multiplier

CMCs can be crucial to meeting environmental challenges

• Pollution, dwindling resources, and increasing population

CMCs can play essential roles in implementation of environmentallyfriendly technologies

- Environmental impact of CMC production must be balanced with system benefits
- Many energy-generation supporting subprocesses require thermal conversion; higher efficiency processes drive demand for higher temperature materials
 - Examples: high temperature syngas synthesis for hydrogen production and carbon capture, fuel cell parts such as bipolar plates and end plates
- Decreased emissions
 - Improved efficiency in aircraft, ships and existing powerplants
 - Light weight vehicle structures capitalize on the above, further improving fuel efficiency and extending range
- High fatigue and corrosion resistance: Fewer replacements, fewer emissions with manufacturing and transport, less waste in all applications
- Turbines and all high-temperature processes in current and future power generation; CMCs can facilitate efficiency, longevity, lower cooling power, fewer

replacements and overall value chain increases

Outline

Introduction

Highlighted CMC sectors

- Automotive
- Energy
- Defense
- Aviation
- Space and hypersonics
- Challenges & opportunities
- Concluding remarks

CMCs are currently making in-roads in multiple key industrial sectors

Automotive

Brakes Credit: "PCCB Brake Carrera GT" by Nrbelex licensed under <u>CCA 3.0</u>.

Nuclear fuel rods

Credit: General Atomics Electromagnetic Systems (GA-EMS), used with permission

Defense

Rocket control vanes

Credit: "IRIS-T air-to-airmissile" by Owly K licensed under <u>CCA 3.0</u>.

Aviation

Aircraft engine shrouds

Credit: "ORNL History (44684257470)" by ORNL History licensed under <u>CCA 2.0</u>.

Space and Hypersonics

ESA Space Rider Credit: "Space Rider mission" by ESA©ESA, <u>ESA Standard License</u>

Automotive CMC Applications

Objectives

- Reduced exhaust gas emissions
- Lower fuel consumption
- Decreased vehicle weight
 - ... to enhance vehicle safety and performance

Applications

- Motorsport headers, manifolds, and exhaust pipes
- Clutch discs
- Brake discs (also applicable to aviation)

Key benefit is thermal performance

- Dimensional stability
- Durability, wear resistance, and strength
- Frictional consistency
- Resistance to thermal shock

Plus, reduced weight

Automotive exhaust manifold (metallic shown; CMCs in use)

Credit: "Exhaust manifold" by <u>http://www.zircotec.com</u>, no license required.

Automotive brake disc

Credit: "Toyota TF103 Front Brake Disc 01" by Hatsukari715, no license required.

Example: Automotive Brakes

In the early 1980s, CMC brake adoption began in aircraft and high-performance automobiles

- C/C brakes introduced to Formula 1 by Brabham, used by all manufacturers by end of decade
- Now common in Formula 1, Le Mans, and other racing classes
- In the early 2000s, use extended to advanced C/SiC and C/C-SiC brakes to first motorcycles and then automobiles
 - Excellent wear resistance
 - Low vibration/noise
 - Oxidation resistance
 - Low dust (environmental)
 - 2002 Ferrari Enzo: One of the first production road cars to use CMC brake discs
 - Commonly used in high-performance sportscars such as Porsche, Ferrari, etc.
 - Increasing usage in commercial luxury cars such as Mercedes and Audi and in high-performance motorcycles
 - "At last, ceramic brake disks are designed to last the entire lifetime of a car." Krenkel 2008

Ferrari FXX Using CMC Brakes Credit: "Ferrari FXX (8925990630)" by emperornie licensed under <u>CCA 2.0</u>.

Increasingly popular in high-end consumer cars

Credit: "PCCB Brake Carrera GT" by Nrbelex licensed under <u>CCA 3.0</u>.

Energy CMC Applications

Objectives

- Improve energy-generation reliability and performance, thereby...
 - Reducing emissions
 - Decreasing maintenance downtime
 - Increasing output
 - Improving safety

Applications

- High-efficiency turbines and generators (potential)
- Concentrated solar power
- Nuclear reactors
 - Plasma-facing components
 - Cladding
 - Control rods

Drivers of CMCs in nuclear applications

- Limited temperature degradation
 - Improved safety during loss of coolant
- Low material corrosion
 - Impurity corrosion from water/oxygen
 - Mass-transfer induced corrosion
 - Transmutational products (HF/F₂) corrosion
- Low irradiation degradation
 - Radiation hardening and embrittlement
 - Radiation induced phase instabilities
 - Irradiation creep
 - Volumetric swelling from void formation
 - High-temperature He embrittlement

Nuclear applications require utmost safety and reliability

Credit: General Atomics Electromagnetic Systems

Ent (GA-EMS), used with permission WORKSHOP | CAPRI | 3 OCTOBER 2024 ¹⁴

Example: General Atomics EMS Fast Modular Reactor (FMR)

FMR reactor uses SiC/SiC CMC to enable reactor operation at higher temperatures for greater efficiency

Used in control rods, reactor cladding, and reactor core structure

SiC/SiC CMC material can withstand higher temperatures and resist oxidation and irradiation better than metallic alloy solutions

- Higher fuel burn-up
- Increased fuel cycle length
- Less dry cask storage
- Increased thermal margin

Credit: General Atomics Electromagnetic Systems (GA-EMS), used with permission

WORKSHOP | CAPRI | 3 OCTOBER 2024 ¹⁵

Defense CMC Applications

Objectives

- Low-weight systems
- High speed
- High temperature
- Better maneuverability
- More navigable/communicable
- Able to transport increased payloads
- More durable

Applications

- Transparent sensor windows
- Thermal protection systems (TPS) and hot structures
- Propulsion components
- Armor (potential)

UHT: Ultra high temperature MMC: Metal matrix composite

CMCs enable performance under extreme environments

Credit: "AGM-88E AARGM" by Boevaya mashina licensed under <u>CCA 4.0</u>.

Example: Thrust Vector Control Vanes

- NASA
- NAMMO (Norway) is flying C/C-SiC jet vanes for thrust vector control on European Iris-T, Iris-T SL, and Exocet missiles
- Rocket motor, 5 in. (127 mm)
- C/C-SiC vane
 - Licensed from DLR (German Aerospace Center) and modified in-house
 - Lighter weight and higher abrasion resistance than refractory metal
 - Near net shape
 - Stagnation point 4400°F 4940°F (2400°C 2700°C) at Mach 5
 - Lasts as long as motors (seconds)

Exocet under wing Credit: "Exocet AM39 P1220892" by David Monniaux licensed under <u>CCA 3.0</u>.

Iris-T under wing Credit: "IRIS-T air-to-air-missile" by Owly K licensed under <u>CCA 3.0</u>.

Iris-T control vanes Credit: "Luftwaffe Eurofighter Typhoon - Iris-T" by Georgios Pazios, no license required. WORKSHOP | CAPRI | 3 OCTOBER 2024 ¹⁷

B. Heidenreich, et al., "C/C-SiC Materials for Highly Abrasive Resistant Structures", Proceedings of 31st
International Conference on Advanced Ceramics & Composites, Daytona Beach, FL, Jan 22-27, 2007.
E. Orbekk, "Novel TVC System Utilizing Guide Vanes with Jet Flap's Into a High efficiency Compact
Nozzle", 41st AIAA Joint Propulsion Conference, July 10-13, 2005, Tucson, AZ, AIAA-2005-4499.

Aviation CMC Applications

Objectives

- Improve efficiency of air transportation: increase fuel savings and reduce emissions
 - Decrease vehicle weight
 - Increase engine efficiency higher temperature operation for more complete combustion

• Applications

- Combustor shrouds, flaps, and seals
 - C/SiC, oxide/oxide, and SiC/SiC
- Turbine engine blades
 - SiC/SiC
 - ~200 lb (90 kg) weight savings per mid-size turbine engine
- Aircraft brakes
 - C/C and C/SiC
 - 500-1000 lbs (225-450 kg) per plane weight savings
- Acoustic exhaust nozzles and mixers
 - Oxide/oxide
 - Potential of 1.0% fuel savings

737 C/SiC brake disc

Credit: "Boeing 737 Next-Generation Carbon Brake PAS 2013 " by Julian Herzog licensed under <u>CCA 4.0</u>.

GE90-115B Turbofan (CMC blades and shrouds)

Credit: "GE90-115B Turbofan 9397" by Chris Light licensed under <u>CCA 4.0</u>.

WORKSHOP | CAPRI | 3 OCTOBER 2024 18

Example: SiC/SiC Turbine Blades

CMCs increase efficiency for customer fuel savings

WORKSHOP | CAPRI | 3 OCTOBER 2024 20

WORKSHOP | CAPRI | 3 OCTOBER 2024 21

Space and Hypersonics CMC Applications

Objectives

- Develop viable single-use and reusable space and hypersonic flight technologies
 - High-temperature survivability well over 3000°F (1650°C)
 - Low weight extremely critical for flight vehicles
 - Hot structures provide ~ 25% weight savings over insulated cold structure

Applications

- Re-entry vehicle heat shields and TPS
- Hypersonic hot structures
 - Wings, leading edges, and control surfaces
 - Fuselage (future)
- OEMs have identified a potential business case for intercontinental and trans-oceanic hypersonic flight capabilities, e.g., HYPLANE (Hypersonic Aerospaceplane)

Need for a strong, light-weight, high-temperature material points to CMCs

CMC X-38 body flaps Credit: "CMC-X38-Bodyflaps" by MT Aerospace AG, Augsburg, Germany licensed under CCA 3.0.

Examples: ESA IXV and Space Rider

Successful IXV flight test in 2015

- 100-minute mission duration
- Approached Mach 25 during reentry

Petroceramics (Italy) providing C/C-SiC parts for Space Rider

- Body-flap assembly
- Hinge TPS
- Hinge
- Nose cap
- Shingle TPS

C/C-SiC hot structure Credit: "IXV is being prepared for launch" by M. Pedoussaut, ©ESA, <u>ESA Standard License</u>

Credit: "Space Rider" by ESA-Jacky Huart ©ESA, <u>ESA</u> <u>Standard License</u>

WORKSHOP | CAPRI | 3 OCTOBER 2024 22

"IXV mission recap" ESA, https://www.esa.int/Enabling_Support/Space_Transportation/IXV/IXV_mission_recap

Example: CMC Rocket-Nozzle Extensions

Composite nozzle extensions provide significant advantages for a variety of upper stage, in-space, and lander propulsion systems

- Weight reduction ~50% savings versus metallic extensions
- Improved thermal design margins 500°F to 2000°F (260°C to 1100°C)
- Less complex designs and/or manufacturing processes possible
- Substantial reduction in overall costs versus metallic design

Numerous potential applications

- NASA: Space Launch System (SLS), in-space, and lander systems for crewed and robotic exploration.
- USAF Evolved Expendable Launch Vehicles: Atlas, Delta, Falcon, Vulcan, etc.
- Commercial space industry: Both engines and vehicles

RL10B-2 C/C nozzle extension Credit: NASA WORKSHOP | CAPRI | 3 OCTOBER 2024 23

- Introduction
- Highlighted CMC sectors
- Challenges & opportunities
- Concluding remarks

Challenges to Widespread Implementation

High cost of CMC products

• Highly dependent upon application

Manufacturing

- Most sectors are not sufficiently industrialized for high CMC production rates or quality requirements
 - Lack of automation, machining, furnaces, and other processing equipment

Limited data sets

- Expensive test coupons and unrefined test methods
- Proprietary data sets
- Inconsistent manufacturing processes
- Availability of large quantities of continuous ceramic fibers, particularly SiC

PMC industry overcame significant implementation challenges

Credit: "Largest Autoclave in the World" by ASC Process Systems, no license required.

Business cases are developing that help address these challenges

Opportunities

CMCs are poised to be the next material revolution

- Evolving advanced manufacturing capabilities
- Efficiency-improving, cost-lowering, high-value, enabling technology
- Demonstrated predictive and design capabilities

Potential for disruptive change

- Environmentally-friendly energy and mobility sectors
- Emerging applications across a variety of sectors
- Increasing awareness and acceptance
- Major worldwide benefits
- Significant economic returns for leading countries and companies
- Collaboration and cooperation between researchers, manufacturers, and end-users can enable key advances to facilitate rapid adoption of CMCs

Power-station turbogenerator

Opportunity for revolutionary changes in the energy sector

Credit: "Turbogenerator01" by Siemens licensed under <u>CCA 3.0</u>.

General Atomics EMS concept for costeffective self-sustaining fusion system Credit: General Atomics Electromagnetic Systems (GA-EMS), used with permission WORKSHOP | CAPRI | 3 OCTOBER 2024 ²⁶

WORKSHOP | CAPRI | 3 OCTOBER 2024 27

National Institutes

- National institutes play a key role in facilitating adoption of CMCs
- National Composites Centre (UK)
 - Centre of excellence for composites research and development
 - Centre goals
 - World leader in composite technology
 - Accelerate the development and uptake of digital technologies for sustainable composites
 - Grow the market for composites by driving innovation through collaboration and partnerships

• Ceramic Composites Network (Germany)

- Intensify the development and dissemination of CMCs for the benefit of German society and industry
- More than 60 institutional members from leading companies and institutes throughout Germany

licensed under <u>CCA 3.0</u>.

- Introduction
- Highlighted CMC sectors
- Challenges & opportunities
 - Concluding remarks

Concluding Remarks

- CMCs can be the next material revolution
 - Rapidly maturing class of materials with potential to cause disruptive change across a wide variety of sectors
- Enabling technology and benefit-multiplier
- Strongly contributing to implementation of environmentally-friendly technologies
- Providing significant economic benefits to countries and companies adopting CMCs
- Pace of advancement currently hampered by lack of awareness, lack of acceptance, and manufacturing challenges
 - Advancements in manufacturing technology will strengthen business opportunities
- Tremendous opportunity to assume a leadership role and provide wide-reaching benefits

