

Qualitative Data Coding of User Experience With an Urban Air Mobility Fleet Manager Interface

Gregory Costedoat, San José State University Research Foundation Gita S. Hodell, NASA Ames Research Center Robert E. Larson, ASRC Federal Data Solutions, LLC

Introduction

Background

- Market boom projected in Unmanned Aerial Systems (UAS) and electric Vertical Takeoff and Landing (eVTOL) aircraft
 - Passenger transportation (e.g., NUAIR, 2021)
 - Cargo transportation (e.g., Wolter et al., 2023)
 - Wildfire response (e.g., Martin et al., 2021)
- Human and Autonomy Team (HAT): A HAT could be responsible for an organization's entire fleet of UAS (not just a single vehicle)
- Fleet Manager (FM): As the use of autonomous systems increases, there will be a need to manage multiple aircraft simultaneously

Image Credit: NASA/Joby Aviation

High Density Vertiplex

Project Description

- The High Density Vertiplex (HDV) was created to address issues associated with air taxis flying in urban environments
 - Vertiplex: A network of takeoff and landing areas, similar in nature to heliports
- Conduct live and simulated flight tests to study terminal area eVTOL operations in a prototype **Urban Air Mobility (UAM)** ecosystem
- HDV implemented a highly automated airspace management system and automated tools; **Fleet Manager Interface (FMI)**

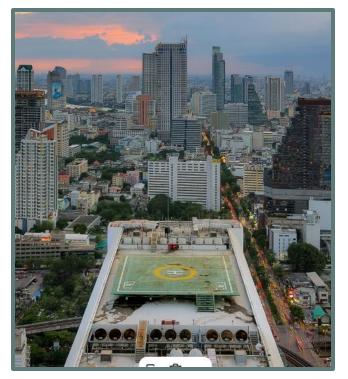


Image Credit: Canva

Fleet Manager Interface

Components

- Map: Displays airspace
- Schedule Page: For scheduling flights
- **Operations Page:** Provides status updates about flights
- **Missed Approach:** Tool that partially automates a nominal flight procedure
- **Notifications:** Alert indicating that an action is required

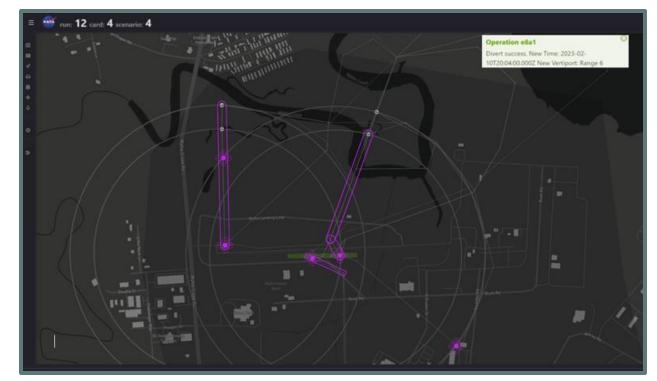


Image Credit: NASA/Hodell et al. (2024)

Fleet Manager Interface

Human Factors Assessment of FMI

- Multiyear project, UX research identified info requirements to improve situational awareness and decision support for FMs
- Previous work on HDV produced results that were useful for obtaining a *global* sense of the FMI's acceptability
- The present UX assessment seeks to highlight specific aspects of the UI that could be improved via open-ended questionnaires

Image Credit: Canva

Participants and Apparatus

Participants

- **Six participants** recruited from NASA Ames Research Center acted as Fleet Manager
- Backgrounds included engineering, flight ops, user research, and software development

Apparatus

- The FMI was used as the primary workstation for participants in the FM role
- Designed to integrate with external systems and make operational context available

Image Credit: NASA/Hodell et al. (2024)

Procedures

Study Runs

- Five study runs, each lasted 30 mins, consisted of a 20-min flight scenario and 10 min of questionnaires
- Participants used the FMI to control multiple aircraft in a live/virtual flying environment
- Flight Scenarios:
 - Nominal
 - Missed Approach
 - Speed Change
 - Divert
 - Multi-Aircraft Divert

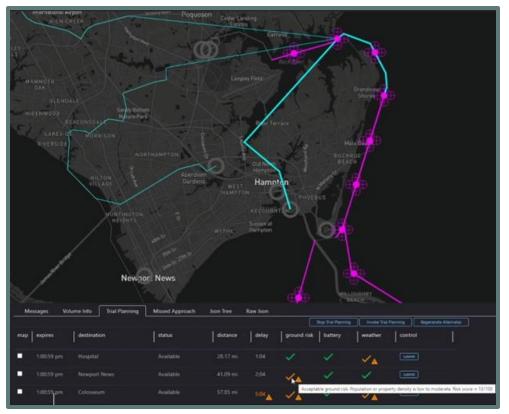


Image Credit: NASA/Hodell et al. (2024)

Measures

Questionnaires

- Between-Runs Questionnaires: Customized to the scenario that was run last, assessed the FMI on numerous topics
- **Post-Run Questionnaire:** Adapted from the Post-Study System Usability Questionnaire (PSSUQ; Lewis, 1992)
- Open-ended response boxes for comments and feedback
- Response topics included
 - Usability and user experience
 - Understandability and confusion
 - Confidence in decision making
 - Features that should be modified/removed



Image Credit: Canva

Qualitative Data Coding

Overview

- Qualitative Data Coding: Process of methodically labelling language-based data, readily highlights patterns/trends
- Inductive Coding: Codes developed based on the language in the dataset (Linneberg & Korsgaard, 2019)
- **Deductive Coding:** Uses pre-defined codes that are developed prior to scoring the dataset (Linneberg & Korsgaard, 2019)

Image Credit: Canva

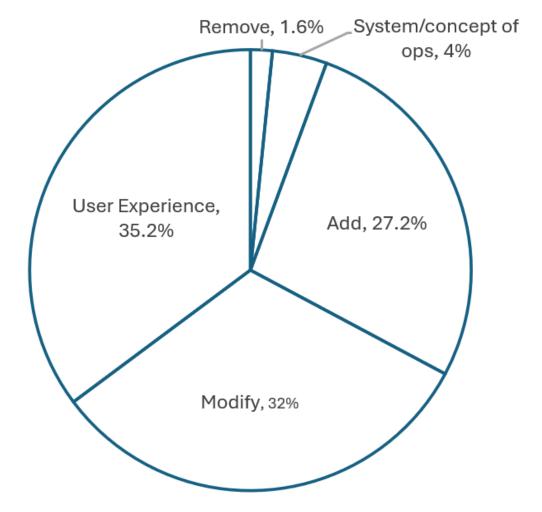
Directive String Coding

Qualitative Data Coding for HDV

- **Directive String Coding (DSC):** Developed for analyzing the open-ended HDV responses
- DSC implemented a **blended approach**, using both inductive and deductive coding
- A "string" of parent codes and subcodes were assigned to each question and response

Action: *Add* > Point of Interest: *Map* > Keyword: *Information* > Description: *Vehicle's callsign*

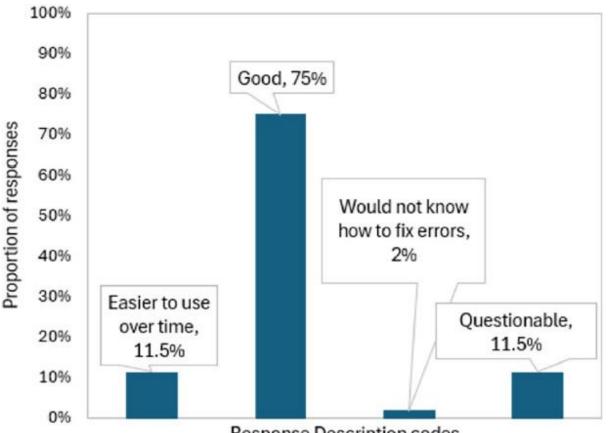
Parent code	Subcodes			
Action	Add (to UI) Modify (UI) Remove (from UI) System/concept of operations User experience			
Point of interest	Missed approach Operations page General FMI Map Notifications/messages			
Keyword	User experience Data visualization Functionality Automation/AI Click count Decision making Display/layout Feedback (from UI) Functionality Information Process/steps			
Description	Brief clarification/specifying explanation			



Action Parent Code

Distribution of Responses

- Largest proportion of responses were coded as User Experience
- Smallest proportion of responses were coded as Remove
- Suggests that very little should be removed from the FMI
- The existing components of the UI should be modified or added to



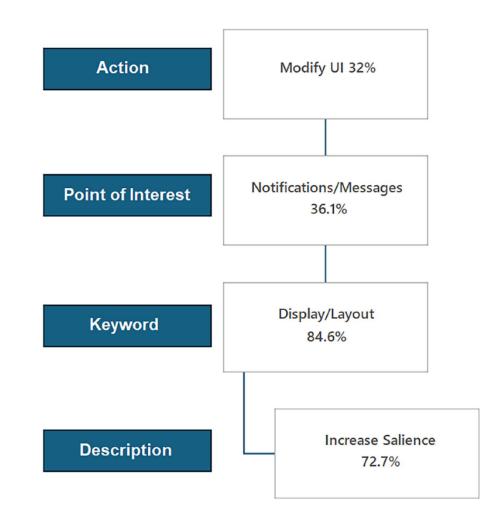
User Experience

Results

#ASPIRE24

- 86.5% User Experience feedback was positive
 - "Good" (75%)
 - Easier to use over time (11.5%)
- Corroborated by the interpretation of the numerical PSSUQ scores
- FMI usability score was better than the normalized overall PSSUQ rating

Response Description codes



Modify

Results

- Second largest proportion of responses were coded as Modify
- The top Point of Interest code was Notifications / Messages
- The primary Keyword was Display/Layout
- For Description, the largest proportion of responses involved increasing salience

Action: *Modify* > Point of Interest: *Notifications* > Keyword: *Display* > Description: *Increase Salience*

Discussion: Fleet Manager Interface

Main Findings

- User experience was overwhelmingly positive, this suggests that the FMI may be a suitable asset for continued research
- Notifications/messages should be more salient, with pts reporting that they look like irrelevant pop-ups or could be missed entirely
 - As human operators begin to manage multiple aircraft, there will be heavy reliance on automated notifications (FAA, 2023)
- Information across multiple screens and displays should be consolidated
 - Map was the most monitored screen, pts wanted more info on the map to reduce need to switch between screens

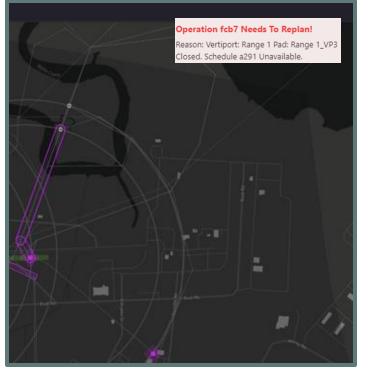


Image Credit: NASA/Hodell et al. (2024)

Discussion: Directive String Coding

Main Takeaways

- DSC should be viewed as a strategy for organizing qualitative data in a way that creates actionable feedback for future consideration
- DSC has not been formally compared to other qualitative data coding techniques or validated rating scales
- Consistent with previous qualitative data coding methodology (e.g., Blair, 2015), should be assumed that modifications to DSC will be needed to meet the needs of different studies/datasets

Comment	Action	Point of Interest	Keyword	Description
Would be higher if I could figure out how/why certain pop-ups open, but it felt like pure luck at times (had to like triple click the "x" to get the pop-up to close)	UI Modify	Мар	Functionality	Opening and closing data-tags
Not sure what is meant by "different" It's easily missed the first few times using the GUI due to the multiple horizontal rows of information, maybe if it were a different color or somehow more easily identifiable, that could be useful	UI Modify	Missed approach	Display/layout	Row banding
Perhaps, the "Generate missed approach" button could be located more to the left, since I tend to visually search for things from left to right	UI Modify	Missed approach	Display/layout	Move "generate" button to left
It is very easy and straightforward to access the Missed Approach tab from the Operation submenu. Different visualization styles/options can be taken into account to enhance the tab visualization but this represents a minor consideration.	Ul Modify	Missed approach	Display/layout	Enhance tab visualization
Only change I would like to see is after a missed approach is engaged, I would like the submit button to be greyed out or turn green showing positive submission on top of a notification.	UI Modify	Missed approach	Feedback	Submit button should change

Conclusions

Summary

- Participants who assumed the role of FM were surveyed on their user experience with the FMI, open-ended responses were analyzed using the DSC qualitative data coding technique
- DSC allowed researchers to develop a rich and detailed understanding of the FMI UX by organizing comments into concise, actionable feedback
- Overall, the FMI appears to be a viable asset worth researching further, with some of the main findings suggesting that notifications/messages be made more salient and the information across multiple screens consolidated when possible

Image Credit: NASA/Kyle Jenkins

Blair, E. (2015). A reflexive exploration of two qualitative data coding techniques. *Journal of Methods and Measurement in the Social Sciences*, 6(1), 14-29. <u>https://doi.org/10.2458/v6i1.18772</u>

Federal Aviation Administration. (2023). Urban air mobility (UAM) concept of operations. https://www.faa.gov/sites/faa.gov/files/Urban%20Air%20Mobility%20%28UAM%29%20Concept%20of%20Operations%202.0_0.pdf

Lewis, J. R. (1992). Psychometric evaluation of the Post-Study System Usability Questionnaire: The PSSUQ. Proceedings of the Human Factors Society 36th Annual Meeting, 36(16), 1259-1263. <u>https://doi.org/10.1177/154193129203601617</u>

Linneberg, M. S. & Korsgaard, S. (2019). Coding qualitative data: A synthesis guiding the novice. Qualitative Research Journal, 19(3), 259-270. <u>https://doi.org/10.1108/QRJ-12-2018-0012</u>

Martin, L., Arbab, Y., & Mercer, J. (2021). Initial exploration of STEReO (Scalable Traffic Management for Emergency Response Operations) system user requirements for safe integration of small UAS. IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), 1-8. <u>https://doi.org/10.1109/DASC52595.2021.9594419</u>

Northeast UAS Airspace Integration Research Alliance, Inc. (2021). High-density automated vertiport concept of operations. <u>https://ntrs.nasa.gov/api/citations/20210016168/downloads/20210016168_MJohnson_VertiportAtmtnConOpsRprt_final_corrected.pdf</u>

Wolter, C. A., Davikoff, K. V., & Rorie, C. (2023). Pathfinding for airspace with autonomous vehicles (PAAV) tabletop 4 report. National Aeronautics and Space Administration, <u>https://ntrs.nasa.gov/api/citations/20230006884/downloads/NASA%20TM%2020230006884.pdf</u>

