Improved Characterization of Ceramic Matrix Composites for Flight Vehicles

Bryan (Kubi) Kubitschek NASA Langley Research Center

10/02/24

----->>>Introduction

Current Research Focus

Collaboration Ideas

Using Non-Destructive Evaluation for New Data

Research Focus

1. Improved experimental data

- Improved simulation inputs, like pin displacement in all three directions
- Able to measure linear and non-linear material behavior in 3-D

2. Improved material simulation

New empirical measurements = new simulations

Interface 2 Interface 4 Interface 5 Interface 6 Interface 9

Per-ply damage (in-situ)

X-Ray Capability

North Star Imaging X-3000

- System Capabilities
 - X-ray Energies from 10 kV 240 kV
 - Overall Maximum System Resolution: ~500 nm
 - 19.5 in Diameter x 24 in tall nominal part envelope
 - Typical scan resolution for a coupon size scan is approximately 8-20 um
 - Typical scan energies: 60kV & 180 μA

Detector

- Perconel Elmer Detector
 - Digital X-ray Detector Flat panel (DDA)
 - Dimensions
 - Standard: 16 in. W x 16 in. H
 - Vortex: 16 in. W x 24 in. H
 - MosaiX: 23.5 in. W X 38 In. H

- Pin displacement
- Per-ply delaminated area
- Total delaminated area

Other NASA Langley Capabilities

Other NDE Experience/Resources

- In-Situ Inspection System (ISTIS) for AFP
- Access to 4 other micro-x-ray CT machines
- Ultrasound
- Eddy Current
- Microwave
- Terahertz Imaging
- Fiber Optic Strain and Shape Sensing
- Nano and MEMS sensor fabrication
- Raman Spectroscopy
- Carbon Nano Sensors
- Computational NDE

A) Diagram of typical Advanced Fiber Placement (AFP) end effectorB) Diagram of thermal camera monitoring heat flow

A depiction of the effect of defects on the temperature profile when the substrate acts as a through transmission conductive heat source

Collaboration Ideas

Research Focus Areas

Validation of Numerical Simulations for In-situ Testing

Objective

 Utilize uncertainty quantification (UQ) to validate a model of damage in curved-beam interlaminar tension (CB-ILT) and asymmetric four-point-bend (A4PB)

Approach

- Mechanically test CB-ILT and A4PB inside of a micro-x-ray computed tomography (CT) machine
- Use digital image correlation (DIC) to measure 2D rigid body motion
- Use micro-x-ray CT to measure 3D rigid body motion and damage

Accomplishments / Status

 Testing has been completed and UQ simulations are currently be conducted

New tool

 This material model quantifies uncertainty better than most others and, as such, can facilitate the study of complex failure modes in other CMC materials.

Fastener NDE Quality Assurance

> Objective

- Provide the community with reference-style document summarizing fastener performance in composite joints to facilitate a more streamline joint design
- Tackle the last two remaining challenges for CMC fasteners:
 - Machine quality
 - Cost

Approach

- Develop alternative fastener design that does not require the high labor costs associated with high-end machining
- Characterize the machine quality of the

Accomplishments / Status

Published a code to quantify the thread quality from x-ray CT images

Plans

- Fabricate threaded fasteners that do not require post-heat treat machining
- Correlate quality of the quick fabrication with fastener tensile and shear properties

CT scan of a CMC fastener

The DETECT software identifying and characterizing a defect from faster machining

> Introduction

Current Research Focus

Collaboration Ideas

Two Project Ideas

NASA

1. Allowable and Critical Damage Classification (ACDC)

- Project ACDC will determine:
 - The allowable damage that the design ultimate loads can be sustained
 - The critical damage threshold defines the state of damage that must be detectable to ensure that the structure possess adequate residual strength to sustain the design limit load

2. Rapid Assessment of Material Properties (RAMP)

- RAMP Method will use computed tomography (CT) images of various as-built conditions of the CMC material and correlate internal features to material properties. To accomplish this, the project will use:
 - Micro-x-ray CT
 - Finite Element Modeling (FEM)
 - Deep Neural Network (DNN)

3. In-situ Micro-x-ray CT at temperature

Allowable and Critical Damage Classification

🕨 Goal

• Set the critical damage threshold for various CMCs

> Objective

- Must determine what permits as allowable damage
 - The allowable damage that the design ultimate loads can be sustained
- Must determine what the critical damage threshold
 - The critical damage threshold defines the state of damage that must be detectable to ensure that the structure possess adequate residual strength to sustain the design limit load

> Approach

• Use in-situ micro-x-ray CT mechanical testing to measure damage growth for fracture critical components

Various features within C/C

RAMP Method

Objective

 Correlate the inherent defects within the CMC to the material response

> Approach

- Treat the material as homogenous with pores acting as defects
- Establish the correlation of the distribution of porosity to the material properties by using micro-x-ray CT and finite element analysis (FEA)

Application

 Use deep neural networks (DNN) to predict the material properties of complex component by changing the pores distribution reflecting that component

Enable Digital Volume Correlation

Objective

- Increase the voxel resolution in CT scans to enable the use of digital volume correlation (DVC) to characterize material strength and strain
- Eventually perform tests at elevated temperature

Purpose

• To further characterize ply-level behavior in both thermal protection systems and refractory composites

Approach

- Redesign current test stand to position the specimen closer to the X-ray Source
- Perform a parametric study to optimize the best CT scan parameters, DVC software's, and reconstruction

Accomplishments / Status

• Initial DVC tests has begun

New Tool

In progress

DVC of C/SiC compression test at 1000°C [1]

Furnace with mechanical loading and x-ray capabilities [2]

Guohao, Niu Et al., "Internal Damage Evolution Investigation of C/SiC Composites using In-Situ Tensile X-Ray Computed Tomography Testing and Digital Volume Correlation at 1000°C.", Beijing Institute of Technology, Beijing, PR China Composites: Part A 163, Oct. 2022. [1]

Rongqi Zhu Et al., "In-Situ Quantitative Tracking of Micro-crack Evolution behavior inside CMCs under load at high temperature" A deep learning method", Beijing Institute of Technology, Beijing, PR China, Acta Materialia 255, June 2023.[2]

Potential Collaboration

- Assess different segmentation techniques to determine the sensitivity of measure crack growth
 - Various image analysis with AI/ML
 - Semantic segmentation
 - Gray Scale segmentation
- Conduct a round robin of quantifying flaw size in different variants of C/C, C/SiC, C/C-SiC, and SiC/SiC
- Conduct a sensitivity study on various infield NDE techniques to determine the feasibility of detecting damage
- Conduct round robin test on anticipated critical components
 - Open hole tension
 - Mode-I and Mode-II fracture tests

Portable Shearography