

Uncertainty quantification and sensitivity analysis in process-structure-property simulations for laser powder bed fusion additive manufacturing

Joshua D. Pribe¹, Patrick E. Leser², Brodan Richter², George Weber², Edward H. Glaessgen²

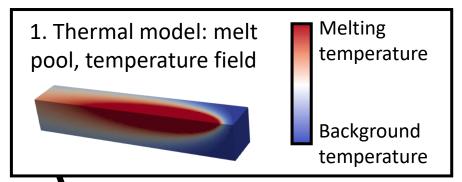
¹Analytical Mechanics Associates ²NASA Langley Research Center

Materials Science and Technology 2024
October 8, 2024

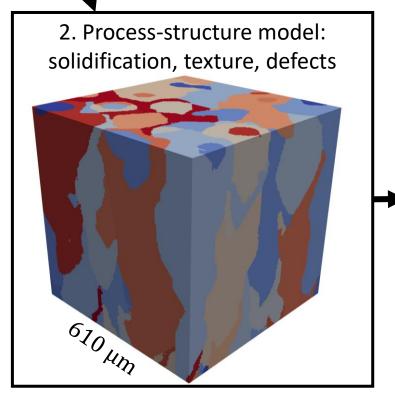
Outline

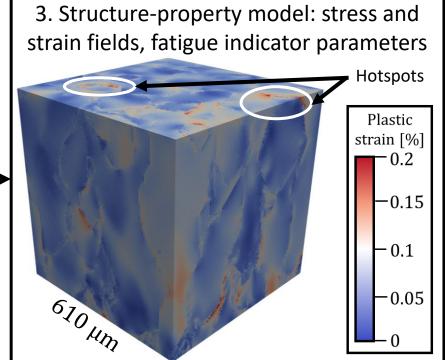
- Process-structure-property (PSP) model
 - Uncertainty quantification (UQ) challenges
- Multi-fidelity UQ for crystal plasticity
- Global sensitivity analysis (GSA) for process-structure model
 - Quantifying crystallographic texture
- Conclusions

PSP model



 PSP simulations: understand how additive manufacturing (AM) process changes/variations influence mechanical behavior





J.D. Pribe, B. Richter, P.E. Leser, S.R. Yeratapally, G.R. Weber, A.R. Kitahara, E.H. Glaessgen, "A process-structure-property simulation framework for quantifying uncertainty in additive manufacturing: Application to fatigue in Ti-6Al-4V", *Integr Mater Manuf Innov* 12 (2023) 231–250.

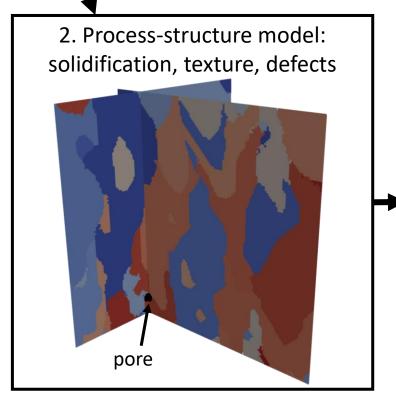
https://doi.org/10.1007/s40192-023-00303-9.

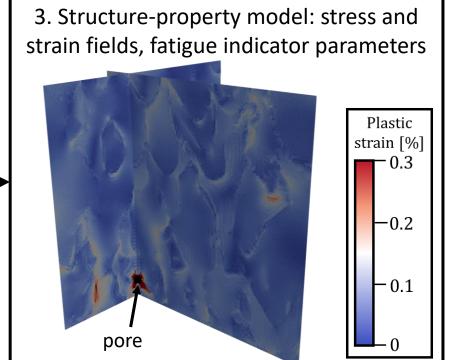
PSP model

1. Thermal model: melt pool, temperature field Background

temperature

- PSP simulations: understand how additive manufacturing (AM) process changes/variations influence mechanical behavior
- Materials with and without defects (here: pores)
- Need calibration, validation, and UQ to build confidence in models for use in qualification and certification processes

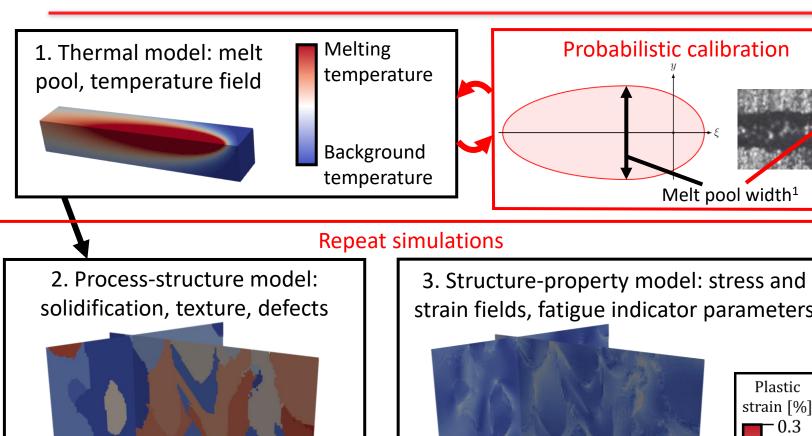


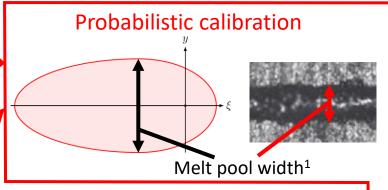


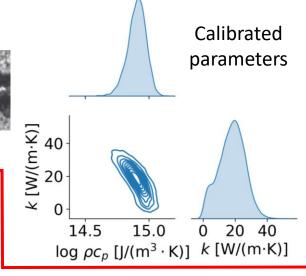
J.D. Pribe, B. Richter, P.E. Leser, S.R. Yeratapally, G.R. Weber, A.R. Kitahara, E.H. Glaessgen, "A process-structure-property simulation framework for quantifying uncertainty in additive manufacturing: Application to fatigue in Ti-6Al-4V", *Integr Mater Manuf Innov* 12 (2023) 231–250.

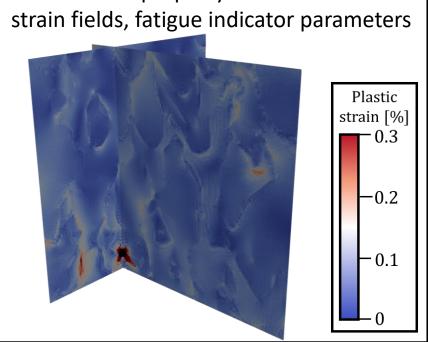
https://doi.org/10.1007/s40192-023-00303-9.

PSP model with UQ





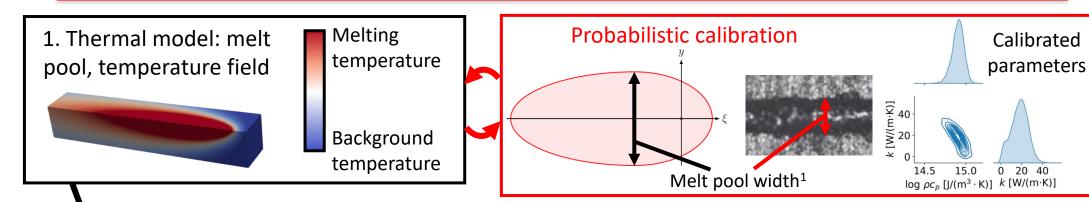


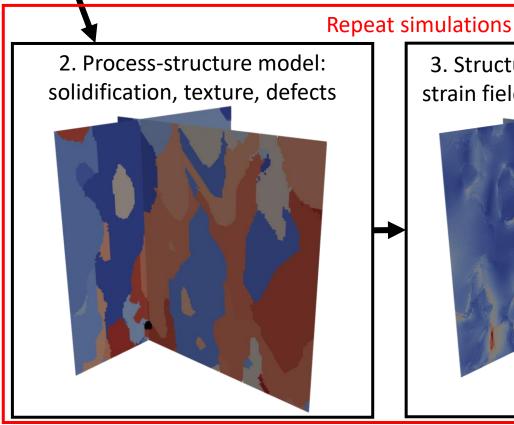


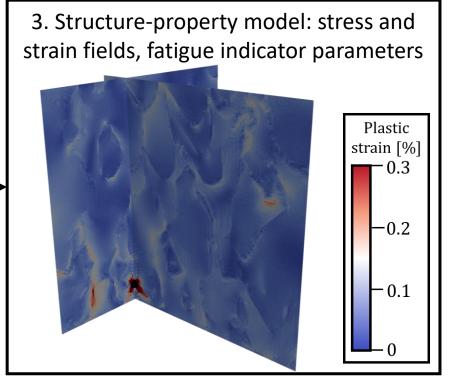
¹Image of melt pool cropped from Fig. 4 in P. Bidare, R.R.J. Maier, R.J. Beck, J.D. Shephard, A.J. Moore, An open-architecture metal powder bed fusion system for in-situ process measurements, Addit Manuf 16 (2017) 177-185. Used under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). © 2017 The

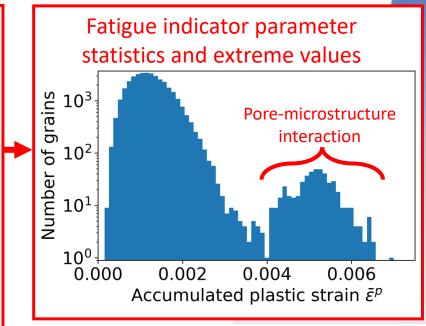
Authors. Published by Elsevier B.V.

PSP model with UQ









¹Image of melt pool cropped from Fig. 4 in P. Bidare, R.R.J. Maier, R.J. Beck, J.D. Shephard, A.J. Moore, An open-architecture metal powder bed fusion system for in-situ process measurements, Addit Manuf 16 (2017) 177-185. Used under CC BY 4.0 (https://creativecommons.org/ licenses/by/4.0/). © 2017 The Authors. Published by Elsevier B.V.

UQ challenges for PSP models

- Expensive high-fidelity models (simulations take minutes, hours, days, ...)
 - Uncertainty propagation with brute-force Monte Carlo is difficult
 - Probabilistic calibration may be intractable
- Numerous input parameters
 - Range from measurable properties to fitting parameters
 - Need to understand how uncertainty in these parameters affects predictions

UQ challenges for PSP models

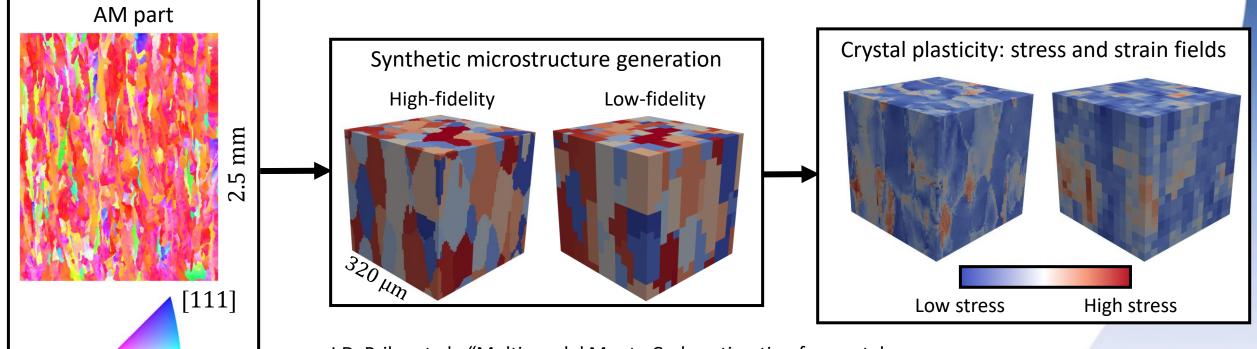
- Expensive high-fidelity models (simulations take minutes, hours, days, ...)
 - Uncertainty propagation with brute-force Monte Carlo is difficult → multi-fidelity UQ
 - Probabilistic calibration may be intractable
- Numerous input parameters
 - Range from measurable properties to fitting parameters
 - Need to understand how uncertainty in these parameters affects predictions → GSA

Outline

- Process-structure-property (PSP) model
 - Uncertainty quantification (UQ) challenges
- Multi-fidelity UQ for crystal plasticity
- Global sensitivity analysis (GSA) for process-structure model
 - Quantifying crystallographic texture
- Conclusions

Multi-fidelity UQ for crystal plasticity

Goal: use multi-fidelity methods to estimate crystal plasticity quantities of interest (QoIs) more efficiently



J.D. Pribe et al., "Multi-model Monte Carlo estimation for crystal plasticity structure-property simulations of additively manufactured metals", under minor revisions for *Computational Materials Science*

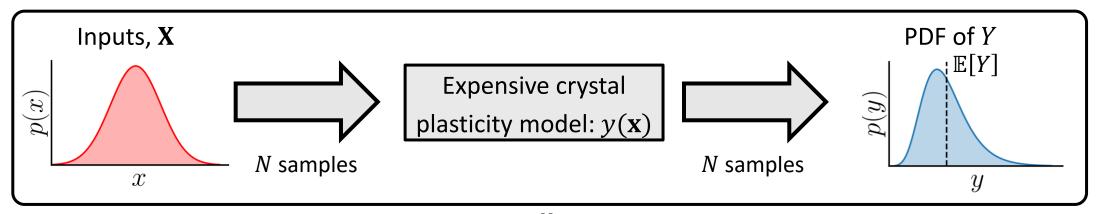
[001]

[101]

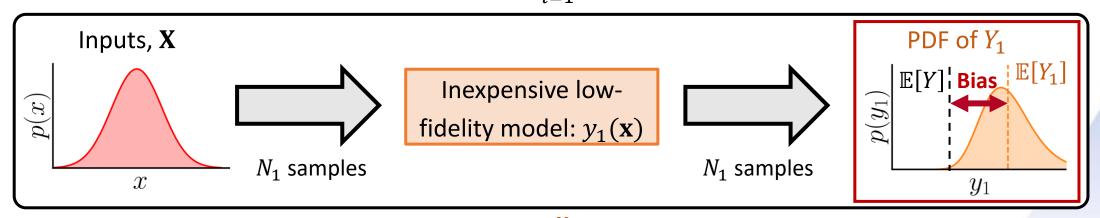
EBSD¹ of IN 718

Monte Carlo estimation

Problem: estimate the expected value, $\mathbb{E}[Y]$, for a QoI, Y



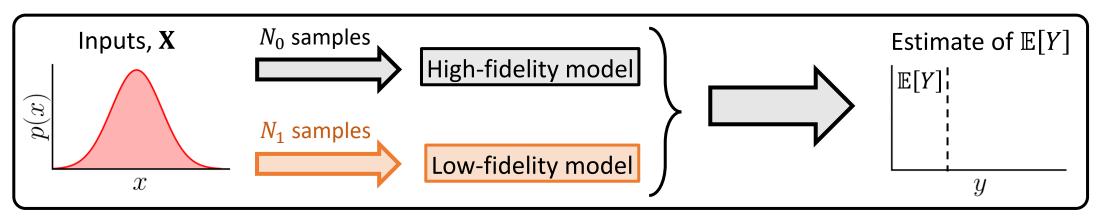
Monte Carlo estimate of $\mathbb{E}[Y]$: $\hat{Y}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} y(\mathbf{x}^{(i)})$ Slow convergence: $\mathbb{V}\operatorname{ar}[\hat{Y}] \propto 1/N$



Monte Carlo estimate of
$$\mathbb{E}[Y]$$
: $\hat{Y}_1(\mathbf{x}) = \frac{1}{N_1} \sum_{i=1}^{N_1} y_1(\mathbf{x}^{(i)})$ Fast, but generally biased

Multi-fidelity approach

Problem: estimate the expected value, $\mathbb{E}[Y]$, for a Qol, Y



Multi-model Monte Carlo estimator¹:
$$\tilde{Y}_{MM} = \hat{Y}(\mathbf{x_0}) + \alpha_1 \left(\hat{Y}_1(\mathbf{x_1^+}) - \hat{Y}_1(\mathbf{x_1^-})\right)$$
High-fidelity with sample set $\mathbf{x_0}$ sample sets $(\mathbf{x_1^+} \text{ and } \mathbf{x_1^-})$

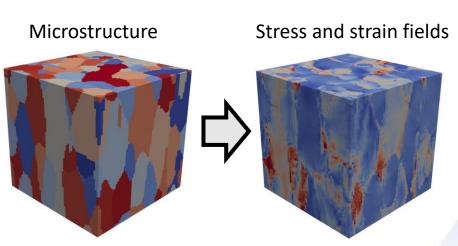
- Unbiased $(\mathbb{E}[\tilde{Y}_{MM}] = \mathbb{E}[\hat{Y}])$
- Optimize sample allocation, $\{x_0, x_1^+, x_1^-\}$, to minimize cost given a target variance
 - Equivalently: minimize variance given a target cost or budget

Multi-fidelity approach

- Low cost and high correlation with high-fidelity model are desirable
- Can extend to any number of low-fidelity models and Qols

$$\tilde{Y}_{MM} = \hat{Y}(\mathbf{x_0}) + \sum_{j=1}^{M} \alpha_j \left(\hat{Y}_j(\mathbf{x_j^+}) - \hat{Y}_j(\mathbf{x_j^-}) \right)$$
 M: number of low-fidelity models

- Application: propagating microstructure uncertainty through crystal plasticity models
 - Define high- and low-fidelity models and Qols
 - Estimate correlations between models
 - Predict variance reduction



Multi-fidelity UQ: Models

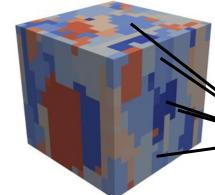
Three-dimensional full-field simulations

EVPFFT – 64

(high-fidelity)

EVPFFT – 32

EVPFFT - 16



EVPFFT: elasto-viscoplastic fast Fourier transform model¹

- Calculate stress and strain for all voxels
- Generate low-fidelity models by coarsening the discretization

Extract grain-average quantities (size, aspect ratio, crystallographic orientation)

Model names refer to resolution (EVPFFT – 64 has $64 \times 64 \times 64$ voxel resolution with 5- μ m voxel size)

VPSC²: self-consistent homogenization-based formulation

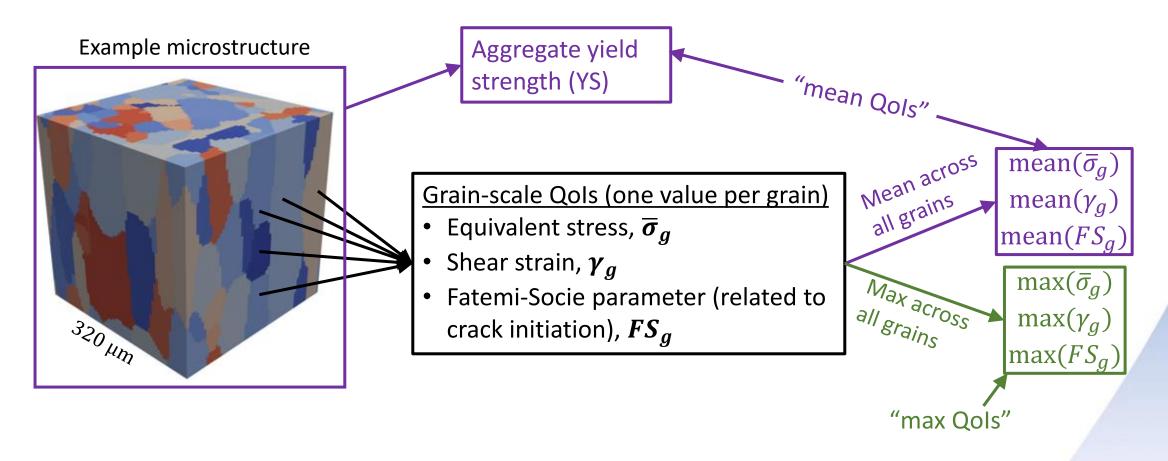
- Solve for **grain-average** stresses and strains
- Different linearization schemes → three

models: VPSC-affine, VPSC-FC, VPSC-tangent

¹R.A. Lebensohn et al., Int J Plast. 32–33 (2012) 59–69. https://doi.org/10.1016/j.ijplas.2011.12.005.

Multi-fidelity UQ: Qols

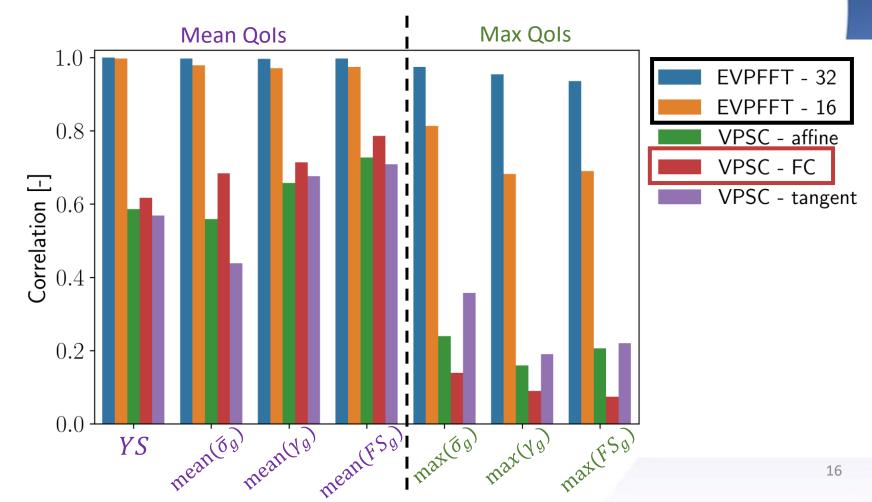
Qols: key aspects of micromechanical behavior



Multi-fidelity UQ: Model correlations

- Coarse full-field models
 - Better correlation than homogenized models
 - Higher correlation for mean Qols; then drop off for max Qols
- Homogenized models
 - VPSC-FC is best VPSC model for all mean Qols; unclear which are most useful overall

Correlation with high-fidelity model (EVPFFT-64) for each QoI



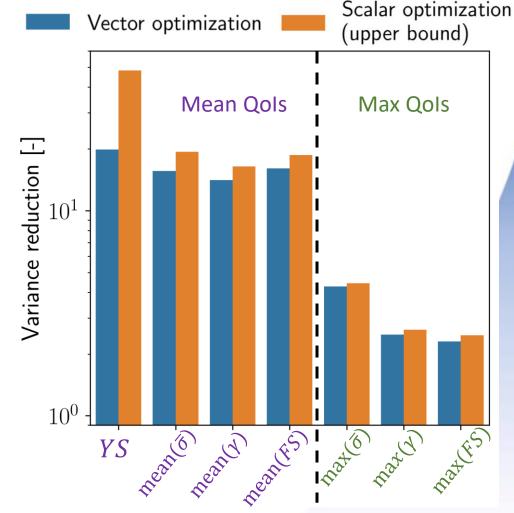
Multi-fidelity UQ: Variance reduction

- Scalar optimization: upper bound; optimize separately for each individual Qol
- Vector optimization: optimize for all Qols at once

- $\sim 10 \times \text{variance reduction for mean Qols};$ much less for max Qols
- Vector optimization does not reach upper bound
 - Different optimal sample allocations for mean Qols and max Qols

J.D. Pribe et al., "Multi-model Monte Carlo estimation for crystal plasticity structure-property simulations of additively manufactured metals", under minor revisions for *Computational Materials Science*

Variance reduction relative to standard MC for a budget of 100 high-fidelity runs

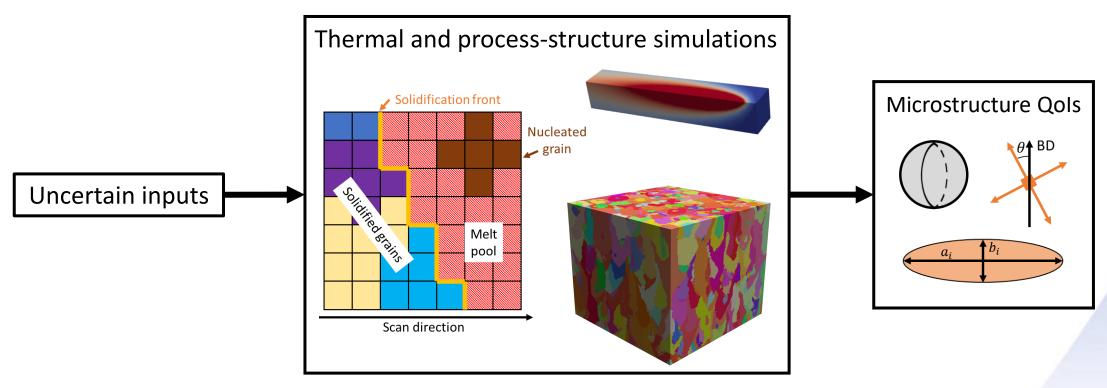


Outline

- Process-structure-property (PSP) model
 - Uncertainty quantification (UQ) challenges
- Multi-fidelity UQ for crystal plasticity
- Global sensitivity analysis (GSA) for process-structure model
 - Quantifying crystallographic texture
- Conclusions

GSA for process-structure model

- Goal: identify most important material and process inputs for microstructure Qols
 - Laser powder bed fusion IN 718
- Requirements: sensitivity measure, model definition, inputs and Qols



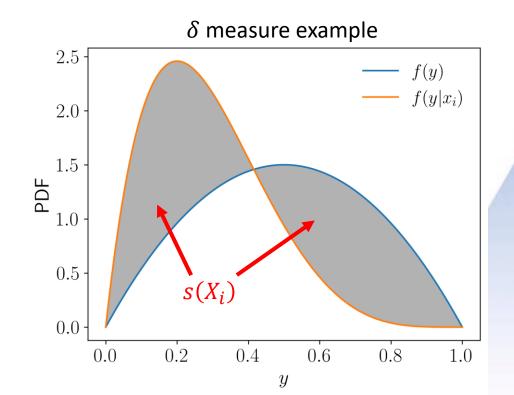
GSA: Sensitivity measures

- GSA relates uncertainty in a QoI (Y) to uncertainty in inputs (X_i)
- Variance-based GSA: partition QoI variance
 - First-order Sobol index: expected reduction in QoI variance if input X_i is fixed
- Moment-independent GSA: consider full distributions of inputs and Qol
 - Example: δ measure¹

$$\delta_i = \frac{1}{2} \mathbb{E}[s(X_i)]$$

$$= \frac{1}{2} \mathbb{E}[\int |f(y) - f(y|X_i)| dy]$$

Area between marginal and conditional distributions of the Qol



¹E. Borgonovo, Reliab Eng Syst 92 (2007) 771–784. https://doi.org/10.1016/j.ress.2006.04.015. Computed using SALib: https://salib.readthedocs.io/en/latest/

GSA: Sensitivity measures

- GSA relates uncertainty in a QoI (Y) to uncertainty in inputs (X_i)
- Variance-based GSA: partition Qol variance
 - First-order Sobol index: expected reduction in QoI variance if input X_i is fixed
- Moment-independent GSA: consider full distributions of inputs and Qol
 - Example: δ measure¹

$$\delta_i = \frac{1}{2} \mathbb{E}[s(X_i)]$$

$$= \frac{1}{2} \mathbb{E}[\int |f(y) - f(y|X_i)| dy]$$

Area between marginal and conditional distributions of the Qol

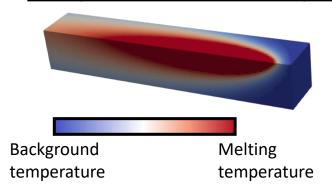
Properties of δ :

- Quantifies expected shift in Qol distribution when an input is fixed
- $0 \le \delta_i \le 1$
- $\delta_i = 0$: parameter X_i does not influence the output
- $\delta_i = 1$: parameter X_i is perfectly correlated with the QoI

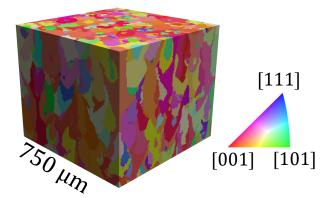
GSA: Model

- Kinetic Monte Carlo^{1,2} with analytical temperature field (Rosenthal equation)
- Solidification through nucleation and epitaxial growth

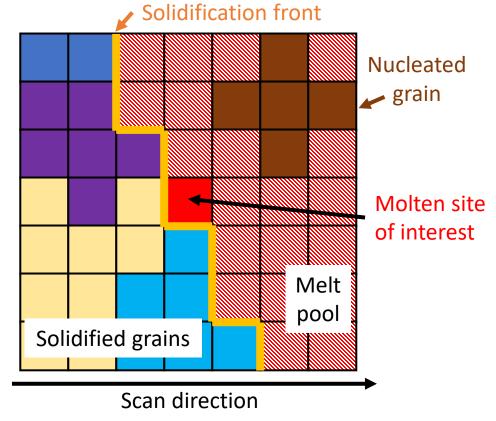
Melt pool from Rosenthal equation



Example microstructure



Nucleation and epitaxial growth



Solidification velocity: $v = a\Delta T^m$

 $= a\Delta T^{m}$ Undercooling

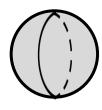
Weighting accounts for texture development

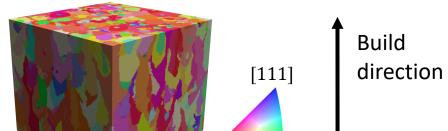
GSA: Qols

Example inverse pole figure with respect to build direction

- Mean grain size
- Weighted mean sphericity

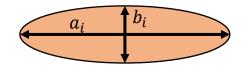
$$\Phi_i = \frac{\pi^{1/3} (6V_i)^{2/3}}{A_i} \qquad \begin{array}{l} V_i \text{: grain volume} \\ A_i \text{: grain surface area} \end{array}$$





[001] [101]

$$R_i = \frac{b_i}{a_i}$$
 a_i, b_i : two largest semiaxis lengths of equivalent ellipsoid, $a_i \ge b_i$

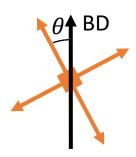


Weighted mean texture strength

$$\theta_i = \min_j \arccos\left(\mathbf{d_i^{(j)}} \cdot \mathbf{BD}\right)$$

$$\frac{\mathbf{d_i^{(j)}}}{\text{for grain } i}$$

$$\mathbf{BD}: \text{ build direction}$$



GSA: Inputs

Material

- Effective thermophysical properties: $ho c_p$ and k
- Nuclei density: *N*₀
- Solidification exponent: *m*
- Material + process
 - Emissivity/absorptivity: ϵ
 - Depth scaling: η_z
- Process
 - Background temperature: $T_{\text{substrate}}$
- Sources of distributions
 - Calibration
 - Literature data
 - Estimated from experiments

Nuclei density from parameter study with similar model¹: $\log N_0 \sim \mathcal{U}(13,15)$ (N_0 in m⁻³)

Absorptivity from range in literature²: $\epsilon \sim \mathcal{U}(0.38, 0.51)$

Fixed inputs: power, laser speed, hatch spacing from AM Bench 2022³

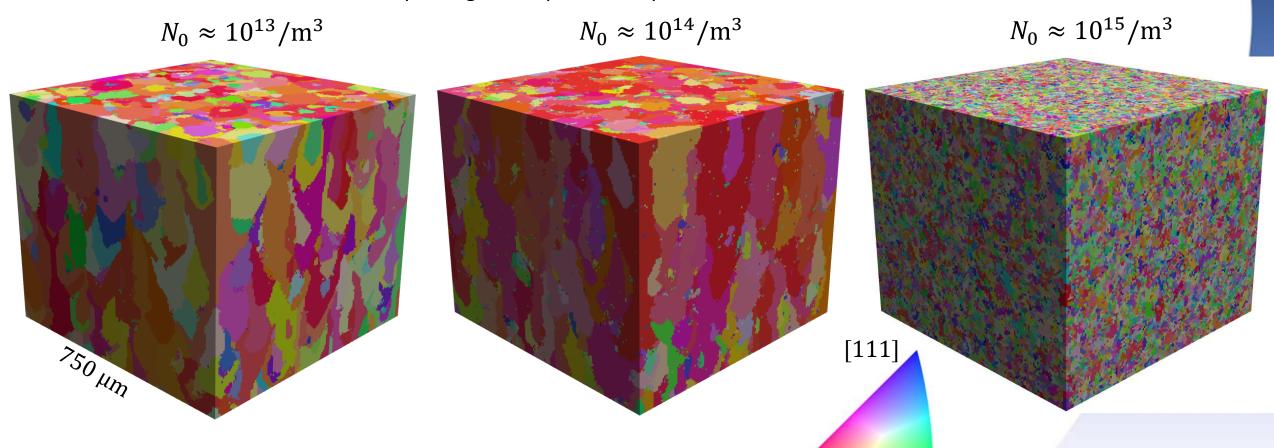
¹T.M. Rodgers et al., Addit Manuf. 41 (2021) 101953. https://doi.org/10.1016/j.addma.2021.101953.

²P. Promoppatum et al., Engineering 3 (2017) 685–694. https://doi.org/10.1016/J.ENG.2017.05.023.

³L.E. Levine et al., Integr Mater Manuf Innov 13 (2024) 380–395. https://doi.org/10.1007/s40192-024-00361-7.

Nuclei density dominates visual features of the microstructure

Inverse pole figure maps with respect to the build direction



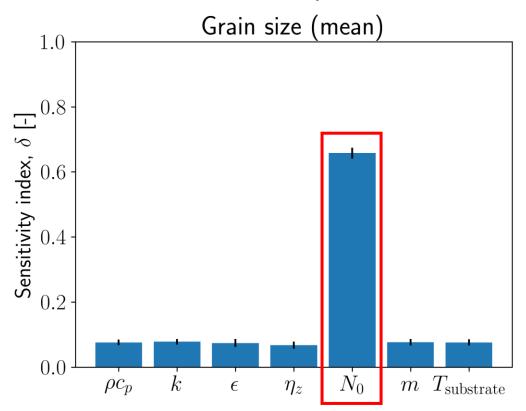
...but it is not the whole story, particularly with texture [001]

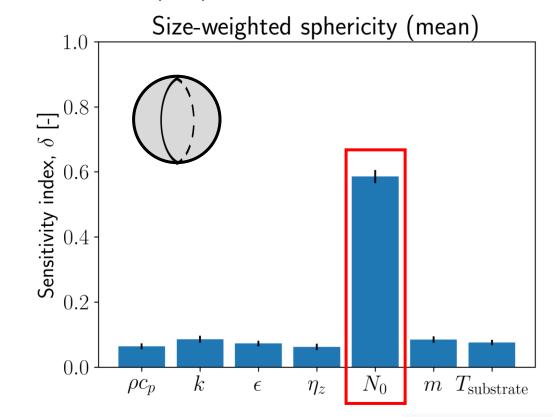
[101]

25

Consistent with visual observations, grain size and sphericity are most sensitive to nuclei density: increasing $N_0 \rightarrow$ more small, round grains

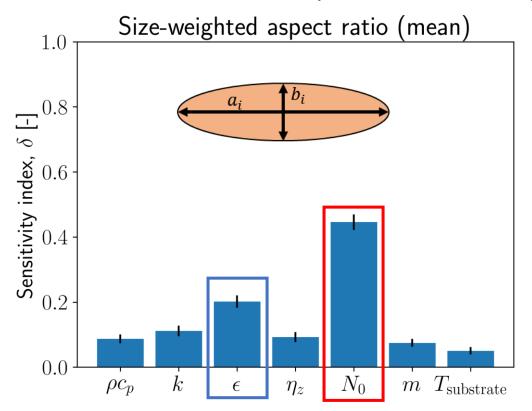
Comparison of sensitivity indices for each input parameter

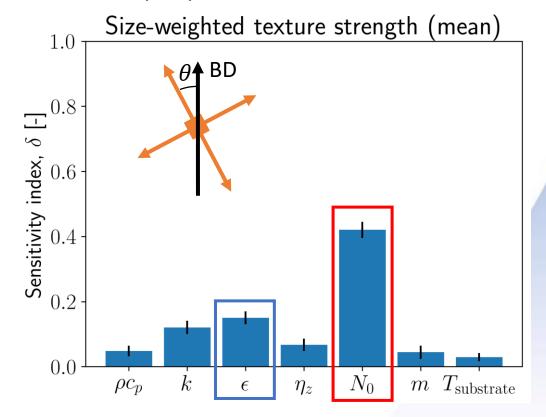




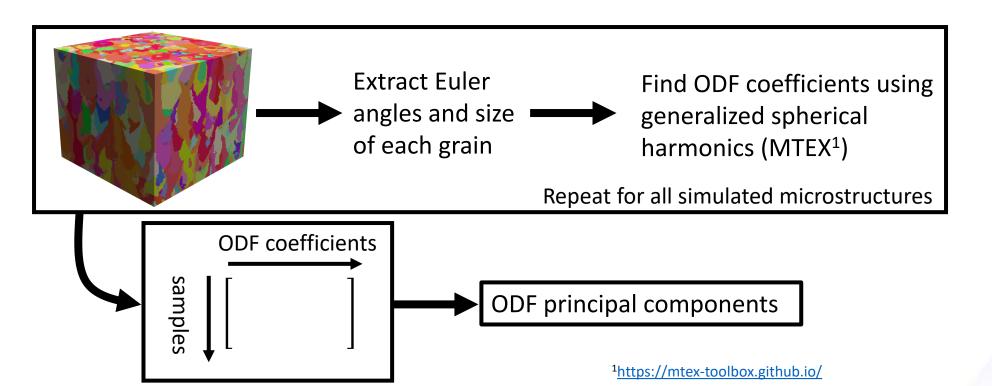
- Nuclei density still dominates, but emissivity becomes more important for aspect ratio and texture
- Try using principal component analysis (PCA) to get more texture information

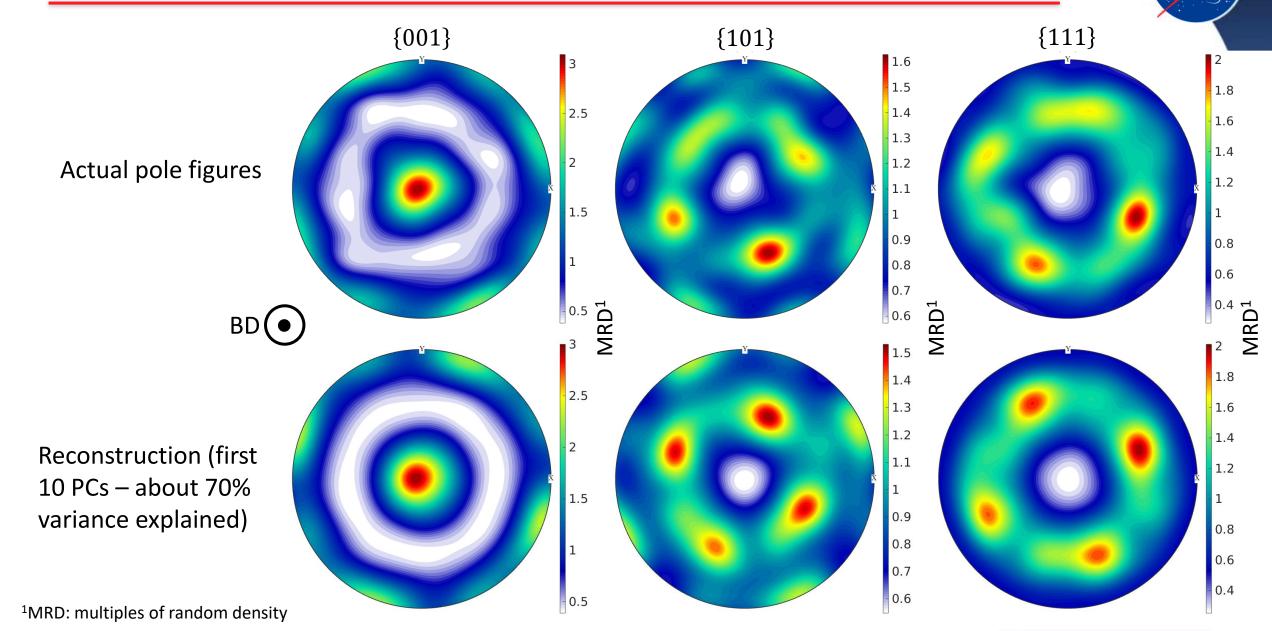
Comparison of sensitivity indices for each input parameter



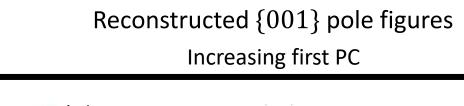


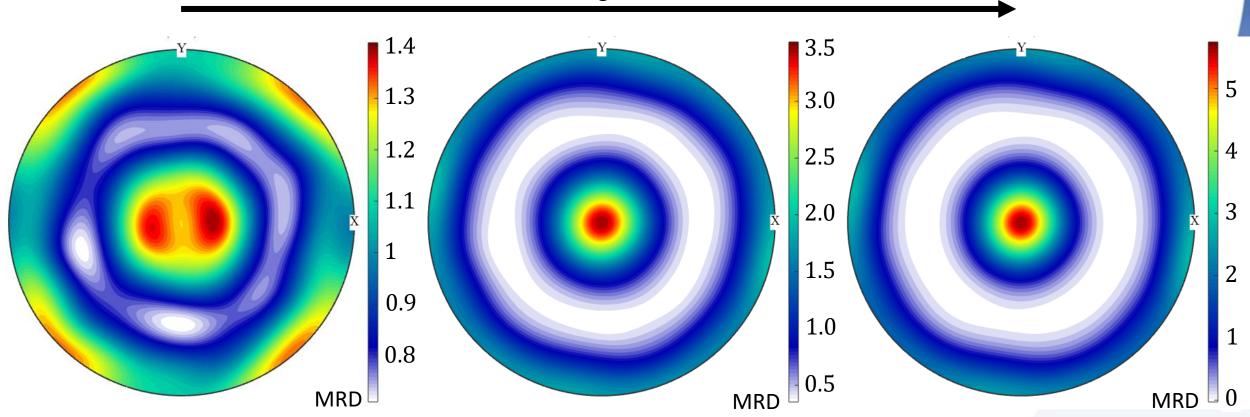
- Challenge: orientation distribution functions (ODFs) are very high dimensional
- Hypothesis:
 - PCA captures key features of the orientation distribution function (ODF)
 - Most important PC(s) are interpretable → effects can be visualized in pole figures
 - Sensitivity indices for most important PC(s) capture inputs that most strongly affect the texture





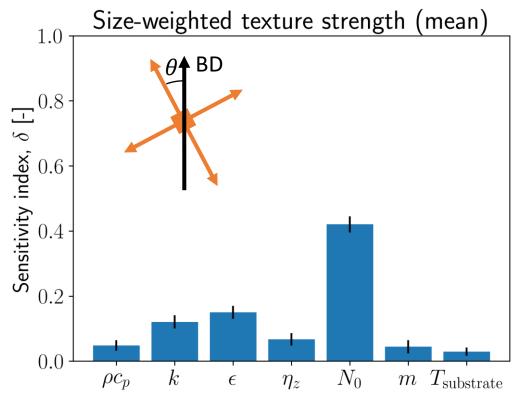
First PC also captures texture strength (alignment of {001} poles with BD)

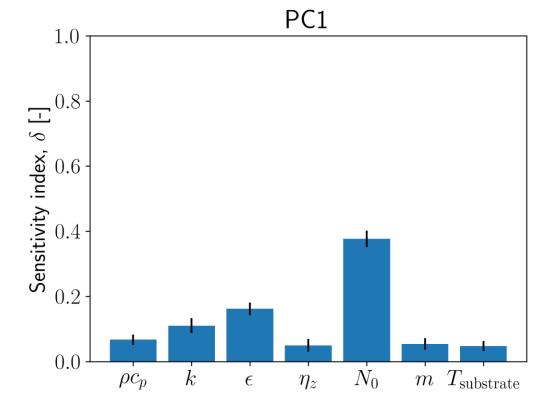




Texture strength and first PC (PC1) have similar sensitivity results

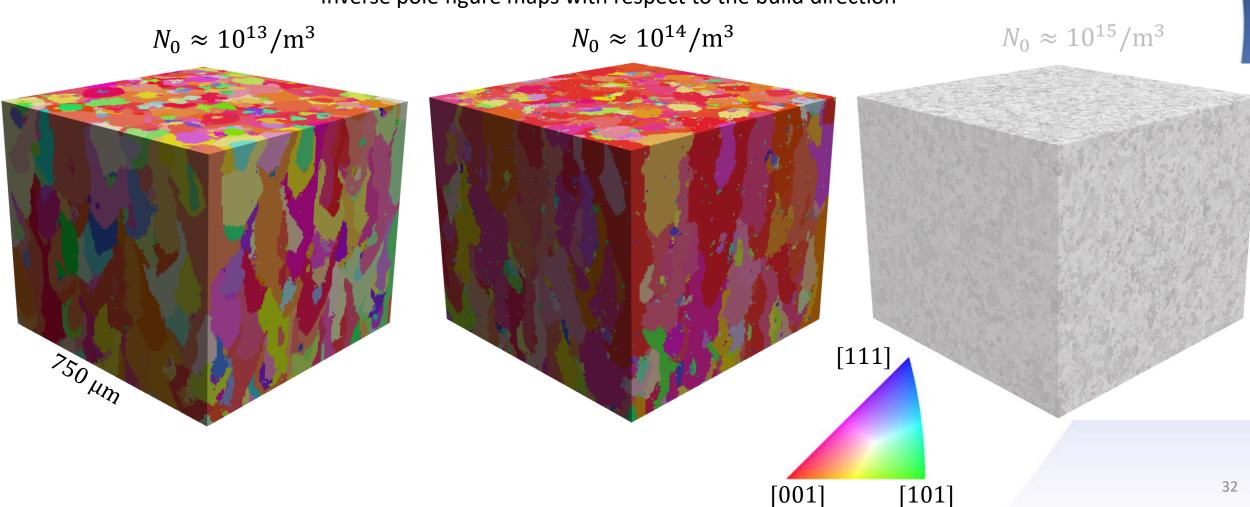
Comparison of sensitivity indices for each input parameter





Upper bound on N_0 is very conservative \rightarrow what if it is reduced by an order of magnitude?

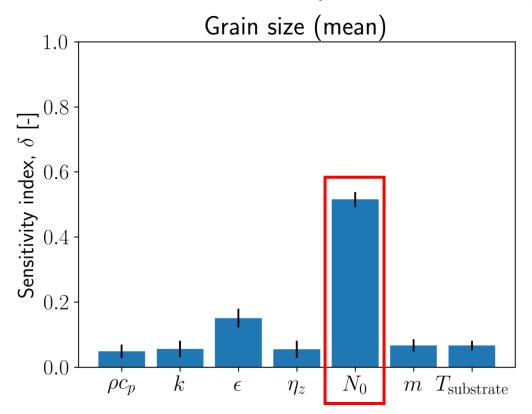
Inverse pole figure maps with respect to the build direction

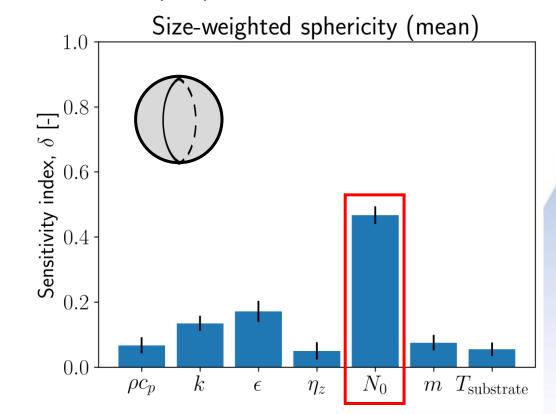


Grain size and sphericity still most sensitive to nuclei density

• Epitaxially-growing grains are generally large and non-spherical

Comparison of sensitivity indices for each input parameter

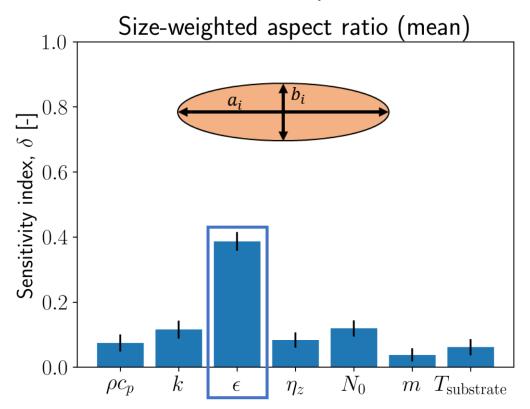


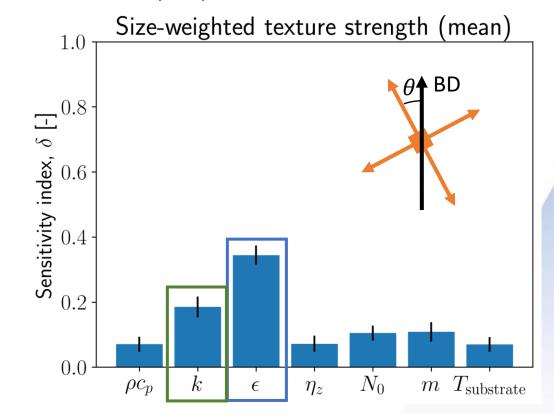


Emissivity dominates for aspect ratio and texture

- Change in absorbed power \rightarrow changes in melt pool size
- Conductivity influences melt pool length

Comparison of sensitivity indices for each input parameter





Conclusions

- PSP models link material and AM process to mechanical behavior
- Challenges: calibrating and validating expensive, high-fidelity models
- Multi-fidelity methods can accelerate crystal plasticity simulations
 - Optimized sample allocation across a variety of models
 - May need better low-fidelity models for predicting hotspots
- GSA can identify important input parameters to calibrate or control
 - Important to calibrate or at least bound nuclei density
 - PCA is promising for quantifying texture for GSA but needs more analysis
 - May need better solidification models to capture texture development
- Future: Probabilistic validation metrics accounting for model and data uncertainty

Acknowledgements

 This work was supported by the NASA Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) project

- The authors also thank:
 - Ricardo Lebensohn from Los Alamos National Laboratory for sharing the EVPFFT code
 - Wes Tayon and Bryan Koscielny for completing the EBSD scans for the multi-fidelity models

 MXMCPy – Multi-model Monte Carlo in Python: https://github.com/nasa/MXMCPy

Contact information: joshua.pribe@nasa.gov

GSA: Input parameters

Para- meter	Volumetric heat capacity: $ ho c_p$	Thermal conductivity: k	Nuclei density: N_0	Solidification exponent: m
Data source	Calibration	Room temperature to liquid range	Literature	Fits to literature and CET
PDF	15 10 10 15.3 15.4 $\log(\rho c_p)$ [J/m ³ K]	0.03 0.02 0.01 0.00 10 20 k [W/mK]	$\begin{array}{c} 0.06 \\ \begin{array}{c} 0.04 \\ 0.02 \\ \\ 0.00 \\ \end{array}$	0.15 0.05 0.00 2 3 4 5 m
Notes		Calibration did not reduce bounds from this range	Wide range used partly for verification (see [1])	Analytical fit for prefactor (a) given m value

GSA: Input parameters

Para- meter	Emissivity: ϵ	Depth scaling: η_z	Background temperature: $T_{\text{substrate}}$
Data source	Literature range ¹	Fit to melt pool width versus depth data for IN 718	Based on temperature rise over regions of interest in AM-Bench
PDF	2.0 1.5 1.0 0.5 0.40 0.45 0.50 6	4 3 1 0 0.6 0.8 1.0	0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Notes		$\eta_z = \mathrm{mean}(^W/_{2D})$ Could consider wider range Truncated to avoid very large/ small melt pools	