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Background and Motivation

• Outcome of 2012 LS-DYNA Aerospace Working 

Group (AWG) (Industry, Government) study on 

limitations in impact modeling of composites

• Desired model requirements identified

• New consortium formed in 2012

• Goal - create a composite material model 

general enough to

– Model the wide range of material properties 

and architectures found in PMC’s

– Recreate all of the behavior that can be 

found in material property tests (including 

tests that are not typically performed)

• Status - ongoing development (FAA), fully 

implemented into LS-DYNA dev, QA and LS-

DYNA R13

• Multiple systems modeled

FAA

Bill Emmerling (Ret.)

Dan Cordasco
Program and Technical 

Management

Arizona State University

Subramaniam Rajan
Algorithm and Software 

Development and Testing

NASA

Rob Goldberg

Trent Ricks

Adam Howard

Troy Lyons

Kelly Carney (Ret.)
Program and Technical 

Management

Gary Roberts (Ret.)

Brad Lerch (Ret.)

Jon Salem
Mechanical  Property Testing

Mike Pereira

Duane Revilock

Chuck Ruggeri
Impact Testing

Ohio State University

Amos Gilat

Jeremy Seidt
Mechanical Property and 

High Rate Testing

George Mason University

Paul Dubois

Steve Kan

Kelly Carney
Software Development

ANSYS-LST

Gunther Blankenhorn
Implementation and QA

Industry Partner
Shell Element Model Development

NRA

NRA

Contract Contract

Grant

Grant

Grant

Desired Model Requirements

• Generalized tabulated input, stress strain curve for non-damage 

related behavior (with limited or no curve fitting required by user)

• Input parameters based upon standard mechanical property tests

• Effects of strain rate need to be accounted for in a flexible, unified 

manner accounting for anisotropy of rate effects.

• Temperature dependency

• Strain based damage and failure parameters

• Failure parameters adjusted for mesh size, i.e. mesh 

regularization

• Explicit modeling of interlaminar delamination via tiebreak contact 

and cohesive zone elements

• Shell and solid element implementations (through thickness 

properties can be important)

• Must be computationally extremely fast
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Deformation Model
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Tsai-Wu failure criteria generalized to a yield function with 12 coefficients (F) 

determined from tension, compression, shear and off-axis tests
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• Coefficients determined from tension, compression, shear and off-axis 

tests

• Values of coefficients vary as plastic strain evolves.  Tabulated stress-

strain curve input used to define evolution
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Damage Model
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• Generalized damage laws (84 possible parameters) that 
model pre-peak or post-peak damage behavior

• Simulates nonlinear unloading and local softening often 
observed in composites

• Strain equivalent formulation is desired to permit plasticity 
and damage calculations to be uncoupled

– Total, elastic, and plastic strains assumed to be equal 
in actual and effective stress spaces

– Permits all plasticity calculations to be performed in 
effective stress space

• Effective stresses related to actual stresses by use of a 
diagonal damage tensor (M)

• Multiplicative reduction in modulus and stress

• Pre-peak damage: modulus reduction measurements

• Post-peak damage: assumed based on strength reduction
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Failure Model
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• Analytical failure criteria: Tsai-Wu, Puck

• Tabulated failure criteria: Generalized Tabulated Failure Criterion 

(GTFC), Point Cloud Failure Criterion

• Tabulated approach can allow for arbitrarily shaped failure surfaces

• Results are not mesh objective (to be implemented)

• GTFC

– Stress or strain-based parameter values

– In-plane failure surfaces

• Arbitrary number of 1-direction normal stresses

• Angle/radius pairs for each 1-direction stress

– From 2-direction normal and 12-shear stresses or strains

– Out-of-plane failure surfaces

• Arbitrary number of 3-direction normal stresses

• Angle/radius pairs for each 3-direction stress

– From 23-shear and 13-shear stresses or strains

• Not required for shell elements
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Structural Energy Absorber Modeling
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Warp and fill fibers:

T300 3K carbon 

tows

Kevlar 49 3K tows

Matrix:

Epon 828 epoxy/Epikure 

3223 hardener 

(thermoset)

1

2

Iowa State University

(NASA EPSCoR 

Award)

NASA LaRC Landing 

and Impact Research 

Facility

LS-DYNA explicit finite 

element modeling using 

*MAT_213
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Structural Energy Absorber Results

• MAT 213 damage and failure parameters calibrated based on crush 

tube results.

– Initially developed MAT 213 damage parameters to correspond to 

MAT 58 SLIM values but non-optimal results obtained.

– Recalibration of MAT 213 damage parameters effectively improved 

correlation – on par with Mat 58 – and improved prediction at initial 

contact

• Verified calibrated response against subfloor test model

– Mat 213 model showed similar on par correlation to Mat 58 for the 

subfloor model
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Structural Energy Absorber Modeling
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Damage in T1, T2, shear; no post-peak defined 

for compression
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Bird Strike on Rotorcraft Fuselage Structure
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Wichita State 

University

(NASA EPSCoR 

Award)

NASA GRC Ballistic 

Impact Laboratory
LS-DYNA explicit finite 

element modeling using 

*MAT_213

Warp and fill fibers:

3K70 carbon fiber 

tows

Matrix:

INF 114 epoxy resin 

(thermoset)
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Bird Strike on Rotorcraft Fuselage Structure
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Pre-test prediction of 

artificial bird strike 

resistance of 

composite panels 

(NASA GRC)

Calibrating *MAT_213 

constitutive model, 

tiebreak contacts 

through modeling 

coupon tests and HEDI 

of aluminum projectile 

on composite panels 

(NASA GRC)

Preliminary *MAT_213 

characterization from 

quasi-static coupon-

level data 

Done by Jacob Putnam 

at NASA LaRC using 

data from Wichita 

State University
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Bird Strike on Rotorcraft Fuselage Structure
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Out-of-plane displacement from center of back-side ply

                          [45/0/-45/90/90/-45/0/45]S
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Impact Simulations of Thermoplastic Matrix 

Composites  

• Material: Continuous Fiber IM7/PEKK Thermoplastic

• Ply-by-ply modeling approach with fiber-aligned meshing 

– Inter-ply (delamination): Contact based cohesive zone (tiebreak)

– Intra-ply behavior using with MAT_213: 

• Flow coefficients calculated assuming plastic Poisson’s ratios are 

equal to elastic 

• Thin shell elements using ELFORM=16

Acknowledgements: The authors would like to acknowledge funding support from the Office of Naval Research (ONR). 
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Impact Simulation Results

• Thin shell impact model using tiebreak contact 

based on Ricks, T. et al. 2023 is enhanced to 

included fiber-aligned meshing 

– Good agreement between experiment and 

simulation at low velocities.

– Delamination at higher velocities 

underpredicted compared to experiments.

• Ongoing work includes improvements in 

predicting  the simulated penetration threshold 

and development of solid element impact model

Comparison of post-test NDE image (left) which 
shows no damage in gray and damage in black and 
predicted simulation damage (right) which shows no 
damage in gray and damage in red for a high velocity, 
144.8 m/s, case with large damage but no 
penetration.

Comparison of the backside displacement at the panel 

center from the lowest velocity, 18.3 m/s, HEDI experiment 

with FEA simulation.

Illustration of fiber aligned meshing and boundary conditions for HEDI 

simulations. 
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Conclusions and Future Work

• New composite material model MAT 213 has been developed to 

provide improved predictive capability for LS-DYNA simulations 

of composite crash, crush and impact.

• Initial results indicate reasonable levels of success in using MAT 

213 to simulate impact and crush problems.

• Several areas of future work identified

– Improved methods of characterizing plasticity parameters 

and post-peak damage and failure response.

– Improved methods to simulate interply delamination.

– Rigorous incorporation of strain rate and temperature effects 

into MAT 213 simulations.

– Expanded investigations into various composite impact and 

crush problems.
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