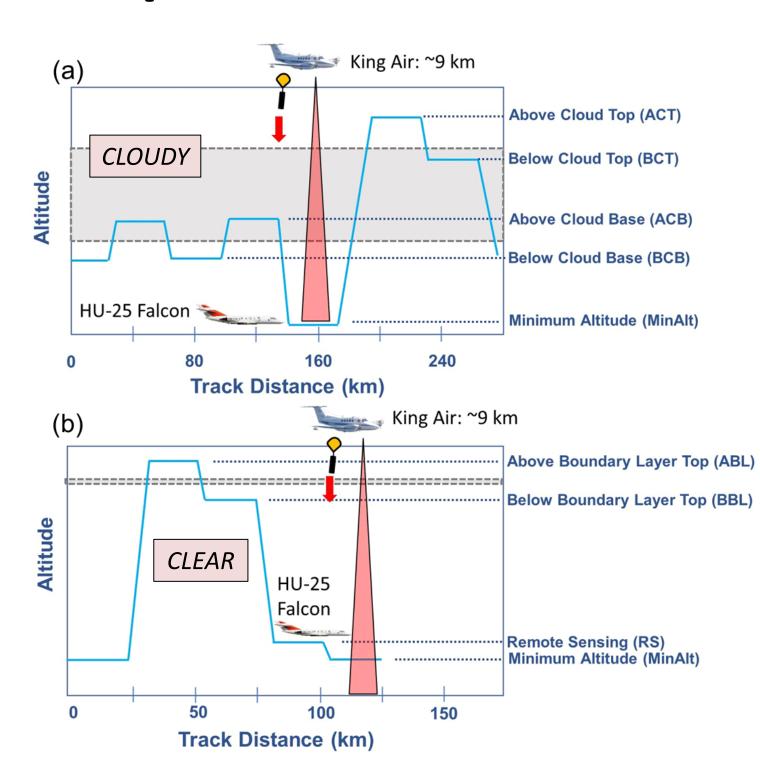
Three Years of Airborne Observations during NASA ACTIVATE: A Statistical Summary of Chemical, Optical, and Microphysical

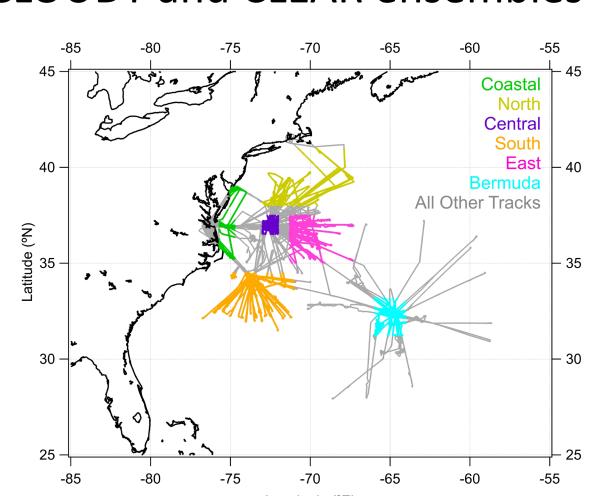
Aerosol Properties over the Western North Atlantic Ocean

LUKE D. ZIEMBA¹, Matthew Brown^{1,2}, Yonghoon Choi^{1,2}, Ewan Crosbie^{1,2}, Josh DiGangi¹, Glenn Diskin¹, Eva-Lou Edwards^{1,3,4}, Francesca Gallo^{1,2}, Carolyn Jordan^{1,2}, Richard Moore¹, Claire Robinson^{1,2}, Sayantee Roy^{1,3}, Michael Shook¹, Edward Winstead^{1,2}, and Armin Sorooshian⁴

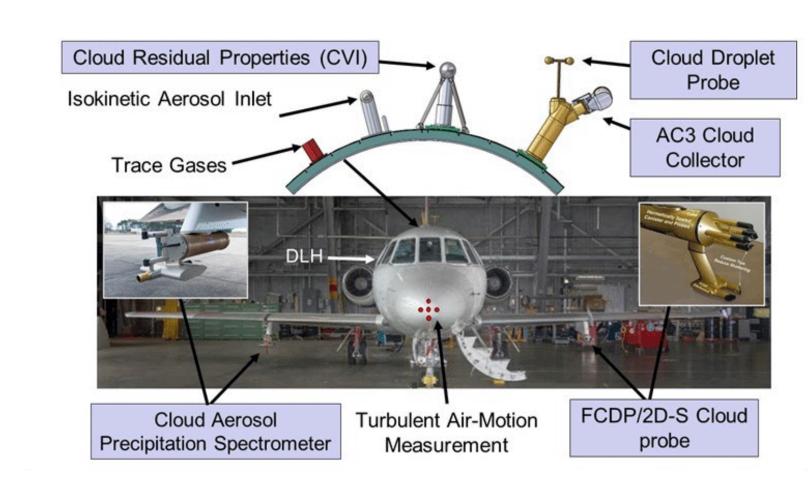
¹ NASA Langley Research Center


² Analytical Mechanics Associates, Inc.

³ NASA Postdoctoral Program, Oak Ridge Associated Universities


⁴ University of Arizona

1. Operations



- ACTIVATE had 179 coordinated flights from Hampton, VA USA over 3 years <u>HU-25 FALCON</u> → In-situ measurements King Air → HSRL-2, RSP, and dropsondes
- In situ flight time was split between **CLOUDY and CLEAR ensembles**

- The flight domain was segregated into 6 regions and 2 time periods (March and May) for this analysis
- Flight time was relatively evenly distributed to allow statistical comparisons between legs and seasons

2. Measurements

Measured Aerosol Parameter	Instrument	Uncertainty	Size (µm)	Time
				Response (s)
Total Particle Concentration	TSI-3776 CPC	10 %	> 0.003	1
Particle Concentration	TSI-3772 CPC	10 %	> 0.01	1
Nonvolatile (350°C) Particle Concentration	TSI-3772	10 %	> 0.01	1
	w/ thermal denuder			
Dry Aerosol Size Distributions	TSI SMPS	N/A	0.01 - 0.1	60
	TSI LAS	N/A	0.1 – 5	1
Dry Scattering Coefficient (450, 550, and 700 nm)	TSI-3563	1 Mm ⁻¹	< 1	1
	Nephelometer			
f(RH) for Scattering (450, 550, and 700 nm)	TSI-3563, w/	15%	< 1	1
	80% humidification			
Aerosol Absorption (470, 532 and 660 nm)	PSAP	0.5 Mm ⁻¹	< 1	1
Non-refractory chemically-resolved mass	Aerodyne	200/	0.00.00	10
concentration	HR-ToF-AMS	20%	0.06-0.8	10
CCN Concentration and Spectra	DMT CCN	10%	< 5	1
	spectrometer			
Water-Soluble Aerosol Chemical Composition	PILS collection	<20%	<5	300
	coupled to offline IC			
Cloud Water Chemical Composition	AC3 Cloud Water	<20%	>8 (drops)	f(LWC)
	Collector and offline			
	chemistry			

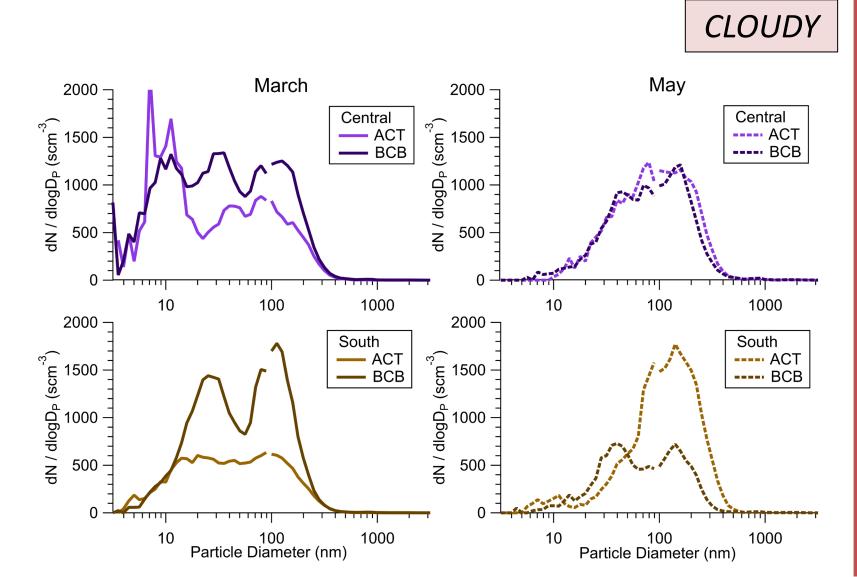
- The payload was designed to characterize aerosol and cloud properties, with limited trace-gases (CO, CO₂, CH₄, O₃)
- Aerosol measurements were switched between an isokinetic and CVI inlet for ambient and cloud-residual measurements, respectively

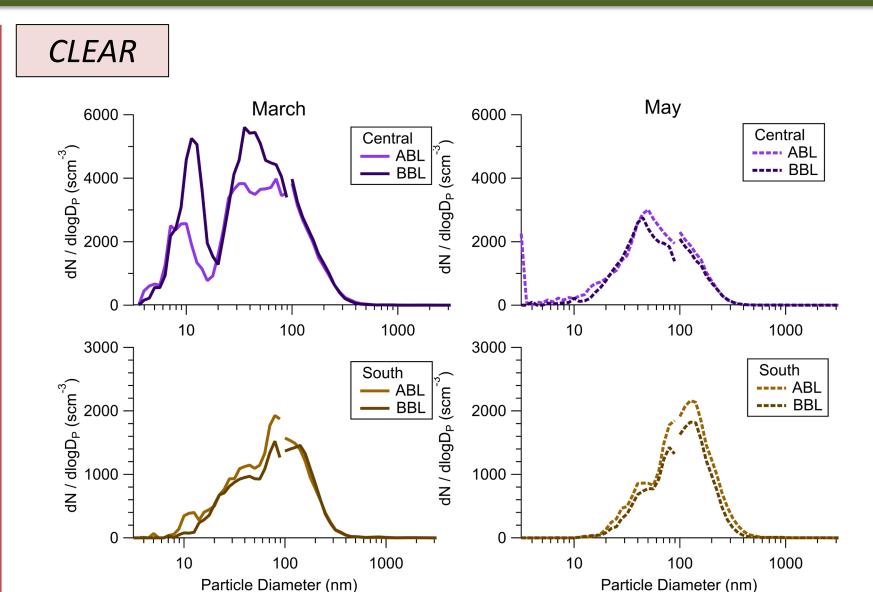
3. Data Quality Control

- Size distributions are a fundamental aerosol property critical to understanding ACI and radiative forcing
- After stitching SMPS and LAS size distributions, excellent number-closure was obtained with CPC measurements
- Scattering coefficients were calculated from measured size distributions using Mie-theory (RI = 1.52)

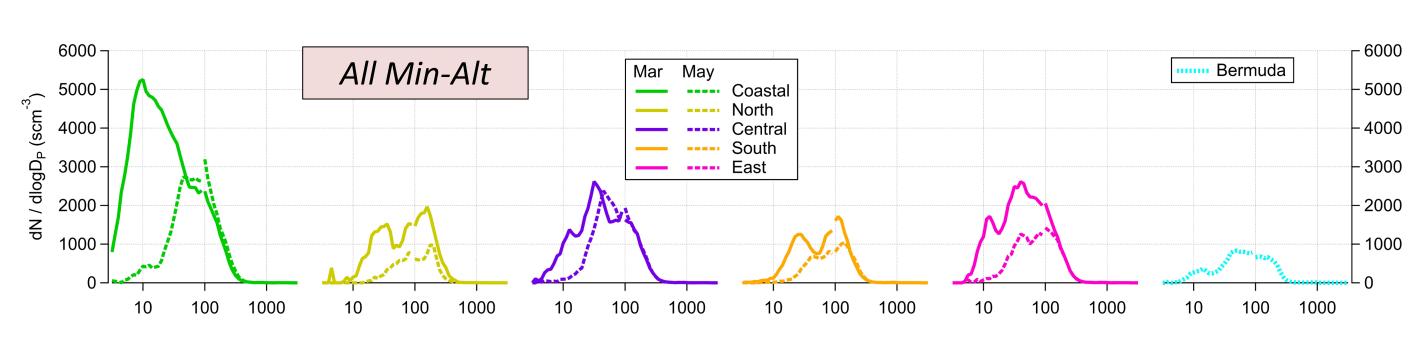
N = 528290N = 348180N = 69267 $f_{\pm 36\%} = 0.88$ $f_{\pm 50\%} = 0.93$ $f_{\pm 28\%} = 0.43$ $f_{\pm 50\%} = 0.62$ $f_{\pm 28\%} = 0.67$ $f_{\pm 50\%} = 0.86$ 10° All Level Legs

 A systematic scattering bias was observed, although minimized for populations dominated by small particles (using AE >2)


4. Spatial Variability


- The non-refractory aerosol composition showed generally higher mass in May, and more nitrate-rich particles in the Coastal and North regions
- No coherent spatial trend was observed in scattering, absorption, or SSA (532nm or 470nm)
- Optical wavelength dependence (as Angstrom) Exponents) suggested particles are larger and more absorbing at shorter wavelengths to the south and east away from the continent, especially in May
- Two methods were used to calculate mass scattering efficiency (MSE), with good agreement
- Hygroscopicity values (as f(RH)) were lower than \(\bar{\bar{g}} \) expected and generally increased away from continental sources

Angstrom Eponent Angstrom Eponent **Mass Fraction** 0.96 0.92 0.8 - Mar May Jun


5. Particle Size Distributions

- Number size distributions at Min-Alt were generally characterized by two populations of varying relative abundance:
- 1) 100nm D_p mode and, 2) 10-50nm D_p mode
- A nucleation-mode is only prominent near the coast in March, suggesting a stronger ultrafine sink than source over the ocean

- Size distributions were similar below and above the MBL in clear conditions
- Transport of aerosols is most evident in May, when the concentrations of accumulation-mode particles (> 100nm D_P) were larger above clouds than below

- Cloudy size distributions at BCB showed a fairly consistent mode separation at 50-70nm D_p (i.e., the Hoppel minimum)
- This cloud effect is not observed at ACT, suggesting that interactions are occurring below cloud
- The Hoppel minimum was not observed in clear conditions