# Maturation of In-space Welding in Reduced Gravity and Reduced Pressure Environments Through Progression to Suborbital Flight Experiments

Andrew O'Connor, Thomas C Bryan, Zachary S Courtright, Charles T Cowen, William C Evans, Emma K Jaynes, Louise S Littles, Christopher S Protz, Benjamin L Rupp, Jeffrey W Sowards

NASA Marshall Space Flight Center



# In-space welding enables space infrastructure



| Method →<br>↓ Criteria                  | Fasteners/<br>rivets | In–Space<br>Welding (ISW) |
|-----------------------------------------|----------------------|---------------------------|
| Joint strength & rigidity               | •                    | 0                         |
| Joint hermeticity                       | •                    | 0                         |
| Joint mass                              | •                    | 0                         |
| Joint design & manufacturing simplicity | •                    | 0                         |
| Joint reliability                       | •                    | 0                         |
| Repair versatility                      | •                    | 0                         |
| Associated cost & upmass                | •                    | 0                         |
| ● - Poor 👄 -                            | - Satisfactory       | O - Good                  |



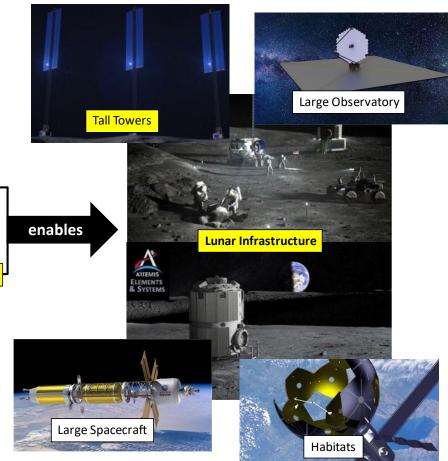
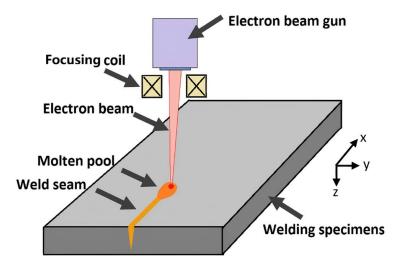
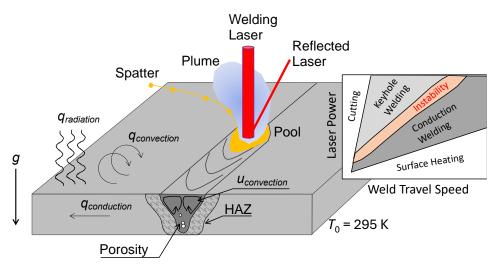




Image credit: ThinkOrbital, www.mechanicalcaveman.com




### Why laser beam welding in space?





Licensed under CC BY from Yin et al., 2023, doi: 10.1007/s00170-022-10682-6.



| High-energy Beam Process →  ↓ Criteria  | Electron | Laser   | Status          |
|-----------------------------------------|----------|---------|-----------------|
| IVA flexibility (e.g. in habitat) & EVA |          |         |                 |
| flexibility (e.g. in vacuum, Lunar      | •        | 0       |                 |
| surface, on Mars)                       |          |         |                 |
| Workpiece variety (e.g. geometry,       |          |         | Capability      |
| material)                               |          |         | available after |
| Suitable for operation on end effector  |          |         | planned         |
| of robotic arm (e.g. EMI, mass, power   | •        | 0       | development     |
| delivery, heat rejection)               |          |         |                 |
| Compatible with inspection tools &      |          | $\circ$ |                 |
| able to repair welds                    |          |         |                 |
| Power requirements & energy             |          |         | Commercial      |
| efficiency                              |          |         | lasers          |
| Suitable for additive manufacturing     | •        | 0       |                 |
| Perform subtractive manufacturing –     |          |         | Future work     |
| cutting, drilling, etc.                 |          |         | (GCD, etc.)     |
| Capable of bending/forming structures   | •        | 0       |                 |
| ● - Poor 👄 - Satisfactory 🔘 - Good      |          |         |                 |



### In-space effects that influence welding



| Variable    | Case 1:<br>In Space                                | Case 2:<br>Chamber<br>Inside<br>Habitat | Case 3:<br>Inside<br>Habitat      | Case 4:<br>Lunar<br>Surface                   | Case 5:<br>Martian<br>Surface                                                                         | Baseline:<br>Earth                                                     | Capabilities<br>Needed at<br>Present                                                |
|-------------|----------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Gravity     | μg                                                 | μ <b>g</b>                              | μ <b>g</b>                        | 0.17 <i>g</i>                                 | 0.38 <i>g</i>                                                                                         | 1 <i>g</i>                                                             | μg to 0.38 g                                                                        |
| Atmosphere  | Vacuum<br>(10 <sup>-19</sup> Pa)                   | Vacuum<br>(10 <sup>-4</sup> Pa)         | >21% O <sub>2</sub> ,<br><101 kPa | Vacuum<br>(10 <sup>-9</sup> Pa) or<br>habitat | 95CO <sub>2</sub> -2.6N <sub>2</sub> -<br>1.9Ar-0.2O <sub>2</sub> -<br>0.06CO (0.6<br>kPa) or habitat | 78N <sub>2</sub> -21O <sub>2</sub> -<br>0.9Ar-<br>0.1other,<br>101 kPa | HV (10 <sup>-1</sup> Pa)<br>UHV (10 <sup>-5</sup> Pa)<br>XUHV (10 <sup>-9</sup> Pa) |
| Temperature | Extremely<br>low<br>ISS Exterior:<br>120 K – 395 K | ~ 293 K                                 | ~ 293 K                           | 40 K – 396 K                                  | 133 K – 300 K                                                                                         | ~ 293 K                                                                | 40 K – 400 K                                                                        |
| Space Suit  | Yes                                                | No                                      | No                                | Yes                                           | Yes                                                                                                   | No                                                                     |                                                                                     |

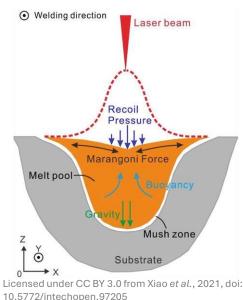
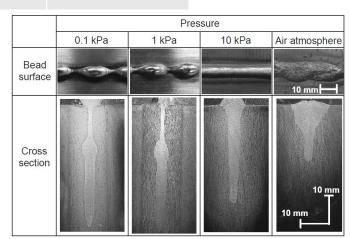



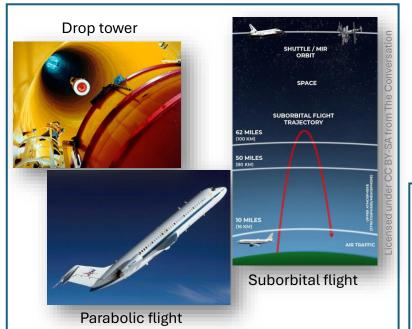

Table adapted and expanded from original source: Masubuchi, 1990, doi: 10.2207/qjjws1943.59.421

Reduced gravity is unique among the above effects in that it cannot be reproduced for prolonged periods on earth.

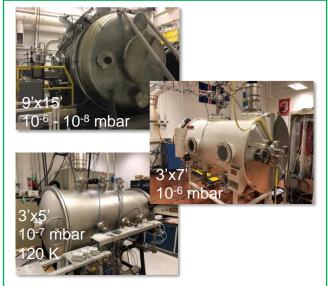
**Current Work**: Integrate existing capabilities across academia, government, and industry to investigate space environmental effects on welding processes to inform computational models, and to create public-private partnerships to develop and implement space welding technologies.



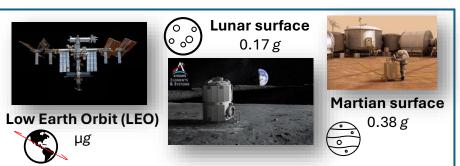
Licensed under CC BY-NC-ND 3.0 from Katayama et al., 2011, doi: 10.1016/j.phpro.2011.03.010.

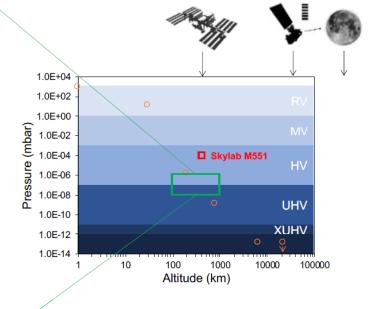



### Simulating space conditions for welding




| Experimental platform →  ↓ Criteria | Drop<br>tower   | Parabolic<br>flight                            | Suborbital flight |
|-------------------------------------|-----------------|------------------------------------------------|-------------------|
| Length of microgravity [s]          | <5              | 20-25                                          | >180              |
| Gravity (quality) [g]               | 10-5            | 10 <sup>-3</sup> -10 <sup>-2</sup> (up to 2.0) | 10 <sup>-4</sup>  |
| Mass allowed [kg]                   | 10 <sup>2</sup> | 10 <sup>2</sup>                                | 10 <sup>1</sup>   |
| Cost [\$]                           | \$              | \$\$                                           | \$\$\$            |


#### **Microgravity / Reduced Gravity**




#### **Vacuum and Reduced Temperature**



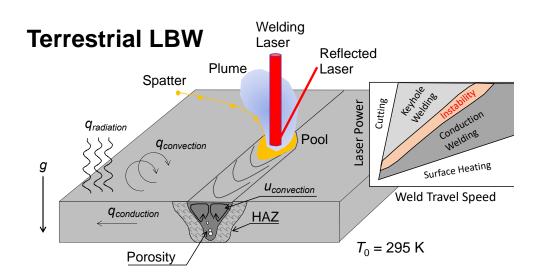
Example of MSFC capabilities to simulate reduced pressure / vacuum at 100 to 1000 km altitude.





Numerous experiments with welding systems in vacuum chambers on parabolic flights.






Mladenov, Koleva, and Trushnikov, *E+E*, 2019.



#### **Key effects to consider for in-space LBW**





Red boxes indicate instrumentation and modeling opportunities.

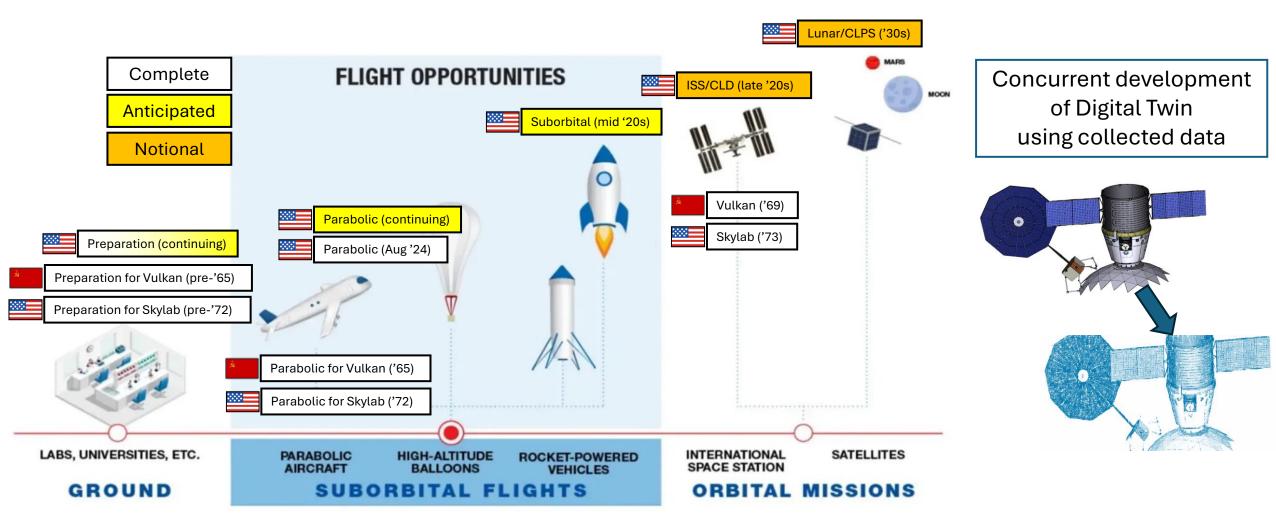


**Issue #1** Weld heat transport has profound effect on size of a weld and its metallurgical transformations and hence weld properties:

Temperature gradient and cooling rate are proportional to thermal conductivity and  $T_0^2$ 

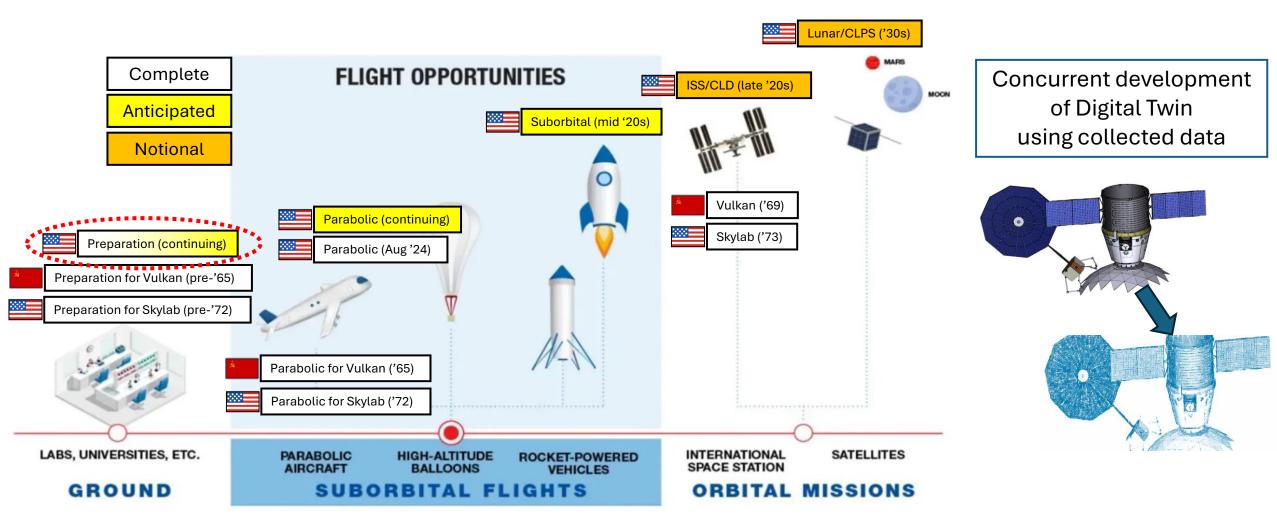
Issue #2 Reduced gravity reduces buoyancy-induced convection:

Development of weld pool shape and porosity evolution are altered, and chemical effects become dominant, e.g., surface-active elements influence weld penetration due to thermocapillary flow. (minute alloy chemistry changes are important)


**Issue #3** Reduced pressure/vacuum in space:

Heat transport is dominated by radiation and conduction rather than by convection. Weld shape and width, and weld strength will be influenced by change in weld cooling.

Reduced pressure influences laser beam keyhole stability, evaporation of volatile species, safety issues, etc.



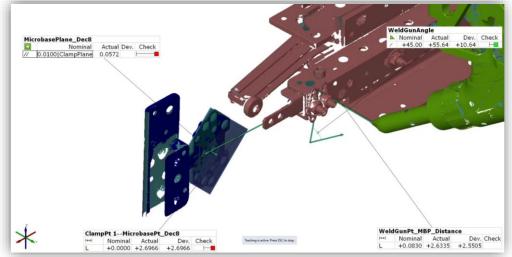










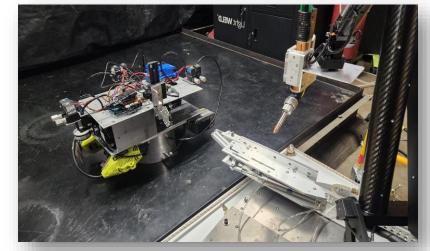




# **Ground testing LBW on 3-DOF "Flat Floor"**



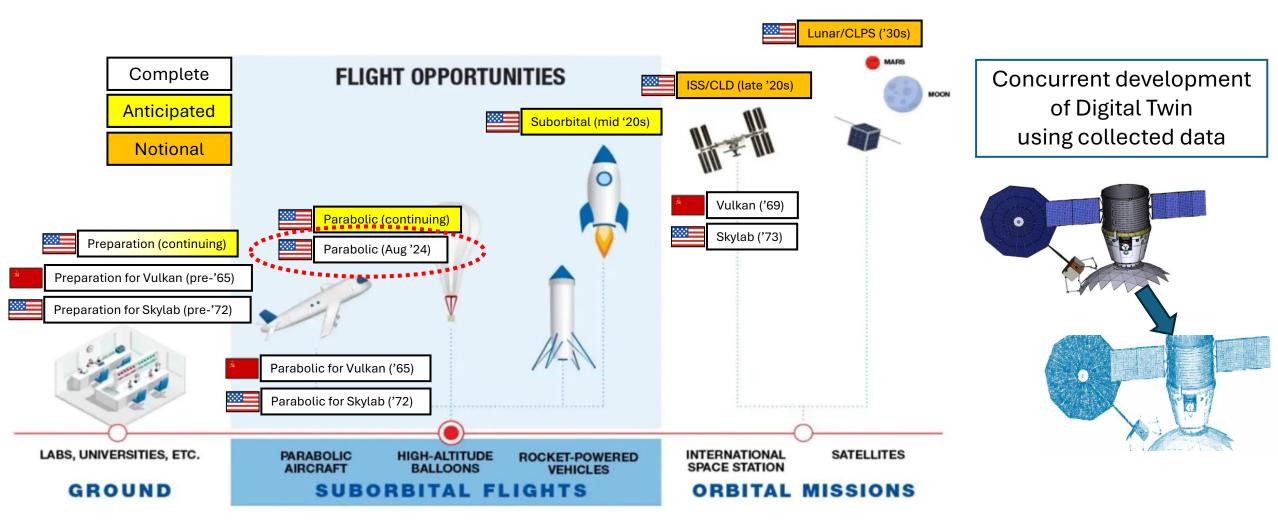
Enclosed LBW station for rapid parameter development






Structured light scan of joint fit-up on Flat Floor

Half of joint on mobile base, other half on floating robotic arm;
LBW from side;
in situ videography and thermography


Ongoing:

Glovebox capable of variable composition atmosphere and with regolith simulant (Lunar, Martian, etc.) via handheld LBW











#### Collaboration with Ohio State University on parabolic LBW



#### Integration and Ground Demonstration of Self-contained Laser Welding System for Parabolic Microgravity Experiments.

- OSU. Profs: Ramirez, Panton, Horack, Nassiri, Williams, Nate Ames, Bob Rhoads. Undergrad capstone team. Grad students: Eugene Choi, Aaron Brimmer, Will McAuley.
- NASA. Jeff Sowards, Karen Taminger (LaRC), Will Evans, Zach Courtright, Louise Littles, Andrew O'Connor, Emma Jaynes, Ben Rupp, Tom Bryan.

Heritage parabolic vacuum chamber from NASA/LaRC



OSU has following talk with in-depth technical discussion

**Generate Model Calibration Data** 



**OSU-NASA CAN** 

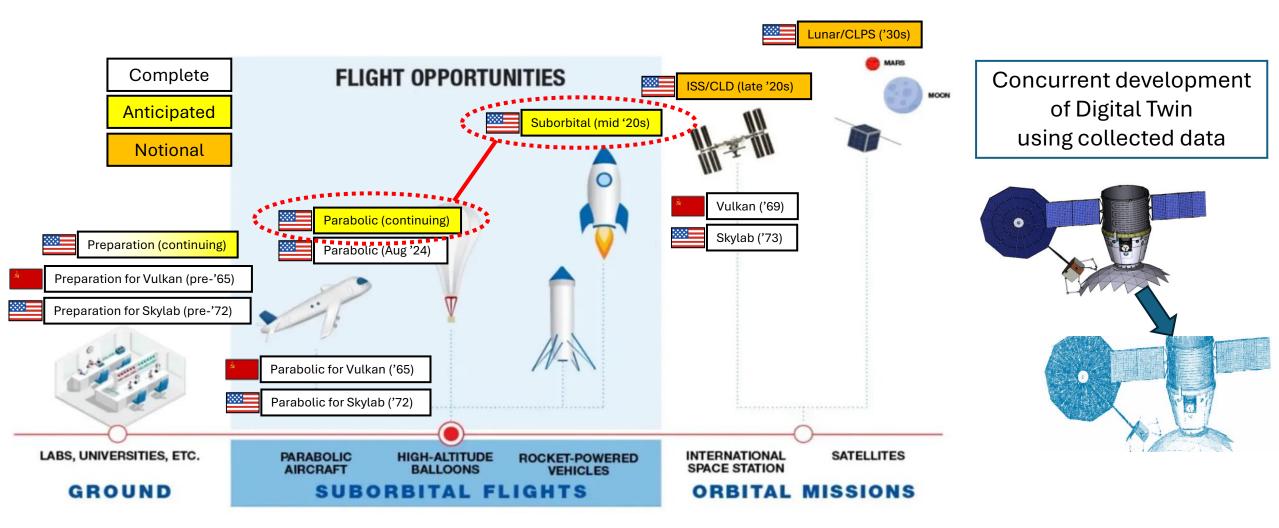


**Materials** 

Integrated Computational Materials Engineering (ICME)

#### **Laser Beam Welding**



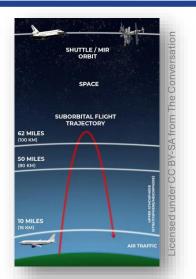

Modern high-power fiber lasers enable LBW for space; Welding times within microgravity parabola length (15-20 seconds) **Leverage LBW expertise and workforce development at OSU** 





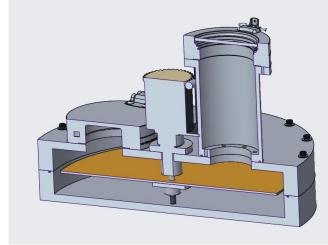
Retrofitted vacuum chamber in flight on Zero-G 727 aircraft



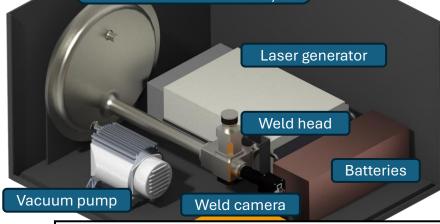





#### **Evolve from parabolic to suborbital flight experiments**

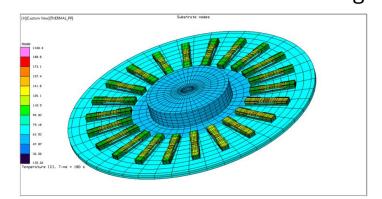


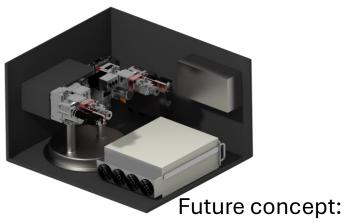

| Parabolic                                | Suborbital                        |
|------------------------------------------|-----------------------------------|
| Tens of seconds in reduced or µg         | Minutes in reduced or µg          |
| Two-g during pull out (weld solidified?) | Hi-g only before welding (launch) |
| g-jitter complicates effect of gravity   | Reduced g-jitter                  |




#### Initial protoflight hardware design







Conformal vacuum chamber (coupons to be welded mounted on disc inside)



Conceptual design developed with MSFC Advanced Concepts Office

#### Thermal and structural modeling





multiple weld heads



#### **Practicalities of suborbital LBW**



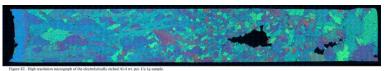
Laser module selected: 1500 W peak pulsed power, 1070 nm, Yb fiber

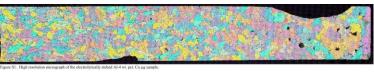
Requires batteries (excessive power draw from flight platform)

Fully automated control

Investigating (via ground testing) concerns re:

- Vapor deposition and spatter on vacuum window
- Loss of vacuum due to offgassing





Courtesy: IPG Photonics

Materials selected: stainless steel 316L, aluminum 2219-T87, Ti64

#### Also considering Al-Cu binaries:

- More tractable for computational models
- Previous flight experiments investigated solidification (Al-4wt%Cu in 1g and ug shown below)

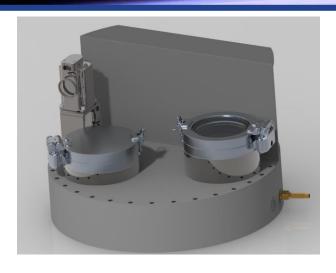




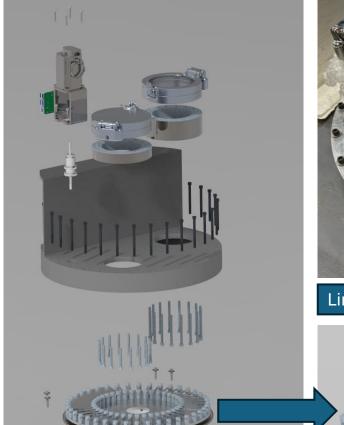


#### Data collection to anchor computational models




- Weld camera: 140+ dB HDR imaging for weld bead size & morphology
  - Coxial mount onto weld head for on-line alignment with specimens
- Thermal/weld camera: SWIR (InGaAs) thermography of weld
  - Reduced effect of emissivity shifts on thermal data
  - Enhanced view through weld fumes
- Thermocouples: provide calibration for thermography
  - Establish workpiece starting temperature (collateral heating)
  - Require slip ring (or similar) and pass-through into vacuum
- Plume characterization (ground only)
  - Spectrometer for chemistry, MWIR or Schlieren for morphology
- What else?



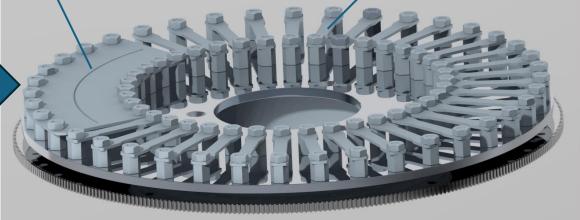



# Latest prototype status – design and fabrication





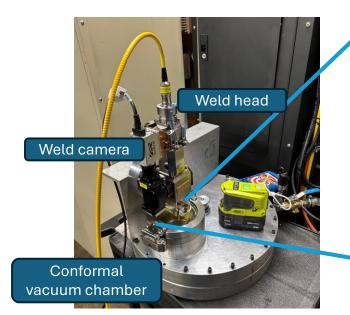
- Switched from central spindle to turntable driven by ring gear
- Added additional access door
- Reduced length of "stovepipe"
- Provided mounting plane for weld head, etc.






- Vacuum
   chamber robust
   and maintains
   <100 Pa</li>
- Initial operating capability (spot welds without thermography) expected shortly

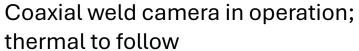



Spot welds for truss structures






# Latest prototype status – initial operating capability

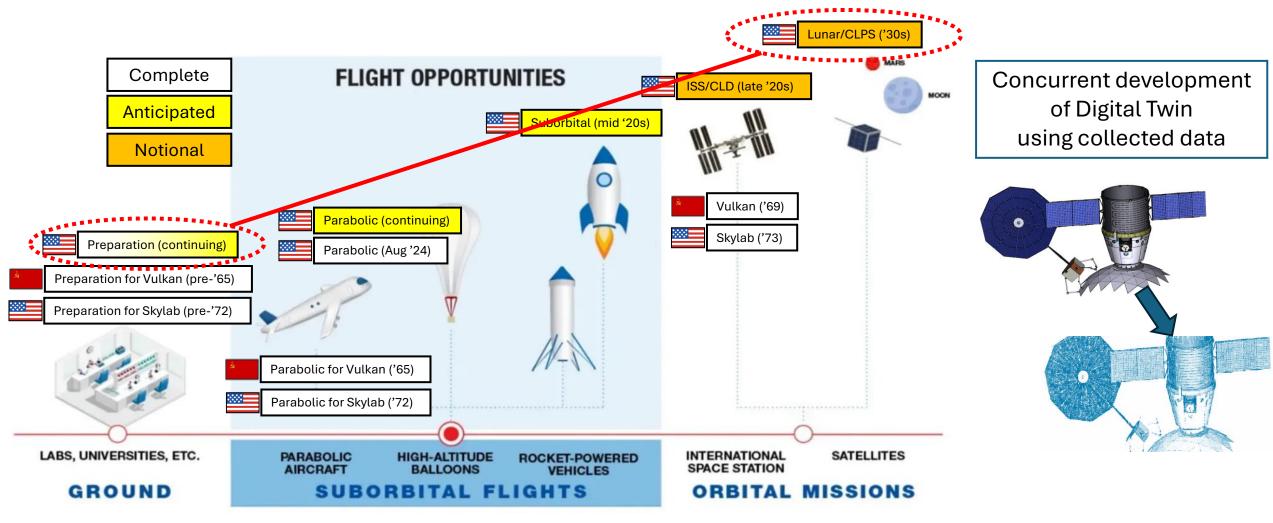










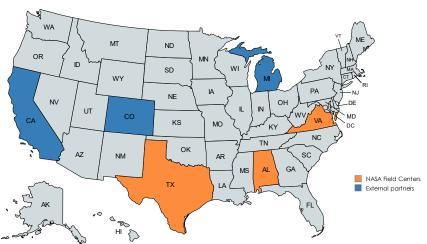

Concern: metal vapor coating, also spatter
Current mitigation: sacrificial glass
Investigating other mitigations

Rapid access to coupons

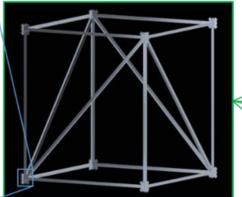


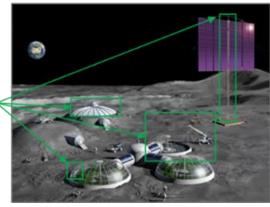







#### **Lunar Assembly and Servicing by Autonomous Robotics (LASAR)**





NASA-funded Early Career Initiative project: Mature LBW and associated robotics & NDE for Lunar infrastructure applications

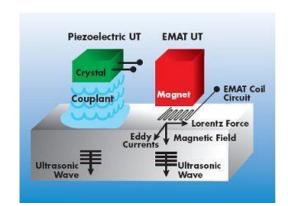
- Ruggedized laser optics and robotic arm suitable for thermal vacuum
- Supervised autonomous LBW
- Non-contact NDE of welds










PI: Andrew O'Connor; PM: Zach Courtright (both MSFC)

NASA Core Team Members

| Name           | Center    |  |  |
|----------------|-----------|--|--|
| Emma Jaynes    | NASA/MSFC |  |  |
| Alex Sowell    | NASA/JSC  |  |  |
| Raju Subedi    | NASA/MSFC |  |  |
| Brace White    | NASA/LaRC |  |  |
| Supported by:  |           |  |  |
| William Evans  | NASA/MSFC |  |  |
| Matthew Mahlin | NASA/LaRC |  |  |
| Parker Shake   | NASA/MSFC |  |  |
|                |           |  |  |

| External Partners   |                              |  |
|---------------------|------------------------------|--|
| Name                | Role                         |  |
| Laserline           | Laser Processing Partner     |  |
| Motiv Space Systems | Robotics Hardware Partner    |  |
| PickNik Robotics    | Robotics Software & Autonomy |  |
|                     | Partner                      |  |

| <u>Mentors</u>       |                            |  |
|----------------------|----------------------------|--|
| Name                 | Role                       |  |
| Shaun Azimi          | JSC Robotics SME           |  |
| Bill Doggett, PhD    | LaRC In-Space Assembly SME |  |
| John Fikes           | MSFC Management SME        |  |
| Jeffrey Sowards, PhD | MSFC Laser Welding SME     |  |



Electromagnetic acoustic transduction (EMAT) for NDE



Created with mapchart.net

#### **Conclusions**



- NASA and partners are progressing experiments from ground to flight
- Demonstration of LBW in space-like environments will enable:
  - Understand combined effects of reduced gravity, reduced pressure, varied temperatures
  - Provide validation datasets to anchor computational models
  - Mature ISW technology to enable joining structures in space
- Building ISW ecosystem of hardware, expertise, and partnering opps.
  - Suborbital flight unit hardware
  - Parabolic and suborbital flight experiment know-how
  - Computational models anchored by collected data
  - Network of academic, government, and industrial collaborators



#### **Acknowledgements**



- NASA support from Marshall Space Flight Center internal funds, Biological and Physical Sciences Division of NASA Science Mission Directorate, Space Nuclear Propulsion, NASA Space Technology Mission Directorate, etc.
- OSU support from Marshall Space Flight Center internal funds via
  - 80NSSC22M0209 Integration and Demonstration of Self-contained Laser Welding System for Microgravity Experiments –NASA CAN
- Second parabolic flight day support from NASA Flight Opportunities
- John Ivester (NASA/MSFC-EM42) for structured light scans of Flat Floor experiment



Any brand names or companies mentioned in this presentation do not constitute an endorsement by NASA.