

1

Structural Sizing of a 50-m-Tall Thermoplastic Composite Solar Array Truss Tower Structure for the Lunar South Pole

Andrew Bergan¹, Babak Farrokh², Arunkumar Satyanarayana¹, Will Grier¹, Kenneth Segal^{2,3}, John Chiu^{2,4}, and Sandi Miller⁵

¹ NASA Langley Research Center, Hampton, VA 23681
² NASA Goddard Spaceflight Center, Greenbelt, MD 20771
³ HelioSpace Corporation, Greenbelt, MD 20771
⁴ Actalent Corporation, Greenbelt, MD 20771
⁵ NASA Glenn Research Center, Cleveland, OH 44135

American Society for Composites (ASC) 39th Annual Technical Conference

October 21-24, 2024 San Diego, California

Outline

- Background and motivation
- Thermoplastic Space Point Design (TSPD): 50-m-tall tower
- Moonquake loads
- Structural sizing routine
- Example trade study
- Detailed design development & finite element analysis
- Joint sizing using cohesive zone elements
- On-going validation effort
- Summary

Background: Why Towers at the Lunar South Pole?

- Low Sun angles at the lunar south pole \rightarrow need to elevate solar arrays on ridge lines
- Higher elevation (taller tower) \rightarrow more continuous illumination
 - Shorter towers require batteries (heavy)
 - Tower height system level trade study¹: 50 m truss vs. 15 m tube (10 kW constant supply)
 - 24% mass savings
 - 14x volume savings
 - For >20 m, truss towers are >3x lighter than telescoping tube towers²

- Tower base (assumed fixed)
- Mass and volume are critical! \$1.2M/kg delivered to the Lunar south pole³
- Towers are also needed for communications, navigation, & science payloads

¹ Tiffin and Mahlin 2023

² Doggett et al. 2023

³ Astrobotic

Need structurally efficient truss towers

Background: Tall Lunar Tower (TLT) Project

The Tall Lunar Tower (TLT) project developed designs, models, and autonomously assembly technology for a tall tower at the lunar south pole

Demonstrated with an engineering development unit (lab environment)

TLT developed concept for robotic truss tower assembly

Thermoplastics Development for Exploration Applications (TDEA) Thermoplastic Space Point Design (TSPD)

Objective

• Demonstrate a thermoplastic composite (TPC) welding approach for assembly a of truss structure relevant to a 50-m-tall solar array tower

Assumptions

- Solar array & other payloads = 1000 kg point mass
- Fixed base (lander compliance ignored)
- Design to moonquake (base excitation)
- 'L' shaped structural members (compact packaging)
- Same truss connectivity as used in TLT
- Compatible with robotic assembly

Accomplishments

- Structural sizing approach
- Parametric studies on material & member cross-section
- Design & analysis for structural members and joints
- Coupon-scale test data

Future work

• Manufacturing and test validation

Moonquakes – Evidence of Hazard

Moonquakes measured by Apollo seismometers – four sources:

- 1. Deep moonquakes: most frequent, low severity
- Meteoroid impacts: ~10% of recorded events, variable severity
- 3. Shallow moonquakes: ~28 events over 8 years (rare), can be severe
- 4. Artificial (human-related) impacts

Shallow moonquakes characteristics:

- Low attenuation → events carry over long distances¹
- Scattering diffuses the energy → can last for more than 1 hour²
- "The potential of strong seismic events from active thrust faults should be considered when preparing and locating permanent outposts and pose a possible hazard to future robotic and human exploration of the south polar region"³

¹ Heiken et al. 1991
² Oberst and Nakamura 1985
³ Watters et al. 2024

Moonquake loads on towers must be considered!

-20 km moders of the stope statisty in the sound point region protors that most or the steep stopes in stankas region region and the region balanders. Light science shall be shall be regional balanders Light science shall be shall be stoped balanders by the region balanders. Light science shall be considered when preparing and sciencing permanent outpools and possible hazard to future robotic and human exploration of the south polar region. During the region provide hazard to future robotic and human exploration of the south polar region. During the region is the state of the region. During the region region is the region of the south of the south of the region. During the region region is the region region region region region.

edicted at a distance from the source of at least ~40 km, while moderate to light shaking n 50 km. Models of the slope stability in the south polar region predict that most of the steep sl

TSPD Moonquake Load Condition

ground acceleration (PGA)

Peak

Moonquake data sources

- Apollo data insufficient to characterize moonquake hazard
- Recent numerical simulations predict peak ground acceleration (PGA)^{1,2}

TSPD moonquake load assumptions

- Two loading assumptions considered:
 - 1. Harmonic base excitation $\ddot{u}_g/g_M = 0.15$; corresponds to PGA at ~30 km from epicenter¹ (g_M = lunar gravity)
 - 2. Uniform hazard spectrum (UHS), $T_r = 475$ yr (10% probability of exceedance in 50 yr)²
- Further dynamic analysis needed; new data available³
- Seismic instruments are high priority payload for upcoming lunar missions

¹ Watters et al. 2019 ² Ruiz et al. 2022 ³ Watters et al. 2024

TDEA evaluated tower designs with two assumed moonquake load conditions

Epicenter at Mandel'shtam scarp (near equator), M_w=6.3 at 350 m depth

Preliminary Structural Sizing Routine

Objective: rapid (analytical) truss tower sizing for preliminary design M_{PL} Approach: extend sizing approach proposed by TLT team¹ (red are additions) Load Residuals defined for 3 margins : $R_{TE} = \frac{\pi^2 E I_{\rm truss}}{4H^2 FS}$ Η 1. Tower Euler buckling $M_{\rm eff}g_M - M_{\rm eff}S_{A,v}$ $A_L, I_L,$ Moonquake Gravity b Tower buckling (vertical) capacity $M_{\rm eff} = M_{PL} + 0.3 M_{\rm truss}$ b $M_{\rm truss} = A_L H \rho J (4 + 4\beta_{ah} + 5\sqrt{2}\beta_{ad})$ Mass of bracing members b Joint mass factor (horizontal, diagonal) $I_{\rm truss} = 4I_x + A_L b^2$

¹ Doggett et al. 2023

Preliminary Structural Sizing Routine

Residuals defined for 3 margins :

1. Tower Euler buckling
$$R_{TE} = \frac{\pi^2 E I_{truss}}{4H^2 FS} - M_{eff} g_M - M_{eff} S_{A,v}$$
2. Longeron Euler buckling $R_{LE} = \frac{\pi^2 E I_L}{b^2 FS} - F_L$ Max. in longeron, occurs near base
due to resonance in first modeEffective mass
as cantilever
as cantileverLongeron
buckling
capacityLongeron
buckling
capacityMax. in longeron, occurs near base
due to resonance in first modeEffective mass
as cantilever
accelerationVertical moonquake
accelerationHorizontal moonquake
base shear coefficient
Frequency dependent for UHS

Preliminary Structural Sizing Routine

Residuals defined for 3 margins:

1. Tower Euler buckling

$$R_{TE} = \frac{\pi^2 E I_{\text{truss}}}{4H^2 FS} - M_{\text{eff}} g_M - M_{\text{eff}} S_{A,\nu}$$

2. Longeron Euler buckling $R_{LE} = \frac{\pi^2 E I_L}{b^2 F S} - F_L$

3. Longeron strength

Total residual:

$$\mathbb{E} = \sum_{i=TE, LE, LS} \left[R_i \left(k_s + \mathbb{H}(-R_i)(1-k_s) \right) \right]^2$$

Scale error slowly for positive margins

Solve for: Tower width: *b* Member thickness: *t*

Sizing Results for Two Moonquake Load Assumptions

- Sizing routine identifies optimal designs (blue dots)
- Harmonic ground motion and UHS are driven by different margins
- TSPD sized to harmonic excitation; has larger than optimal width *b* (selected prior to these results being available)

Trade Study: Effect of Material

	Material		<i>E</i> [GPa]	Strength [MPa]	ho [kg/m³]
	HM63/8552	HM fiber, 0° bias 'hard' layup	162.0	300	1600
\Rightarrow	TC1225, Hard	SM fiber, 0° bias 'hard' layup	92.9	393	1600
	TC1225, QI	SM fiber, quasi-isotropic	45.0	324	1600
	AL 7075-T6	Aerospace grade aluminum	71.7	538	2700
	AL 1100	In-situ grade aluminum	68.9	24	2700

- *t* and *M*_{truss} increase with payload and more flexible materials
- Using 'TC1225 Hard' in place of AL 7075-T6 yields a 41% reduction in $M_{\rm truss}$
- High-stiffness fibers (HM63/8552) provide an additional 9% mass reduction
- *M*_{truss} for towers made from in-situ aluminum is an order of magnitude higher

13

Detailed Design and Analysis of the TSPD

- Finite element analysis conducted using shell element model
- Design-analysis iterations led to a final design for member layups/thicknesses and joint geometry

Joint Stiffness Critical to Successful Design

Joint stiffness:

- Not directly considered in preliminary design
- Critical to positive margin in buckling

Joint Sizing

- Joint model developed with simplified boundary conditions and a single layer of cohesive elements represented the weld
- Joint overlap length predicted based on assuming interlaminar fracture toughness for the weld
- Results support selection of joint overlap length

On-Going Validation Effort

Effect of lunar simulant contamination

Objective:

 Quantify knockdown of lunar simulant dust contamination in ultrasonically weld joints

Status:

- Completed baseline and 'low' dust welds and lap shear strength (LSS) test
- Welds with dust show same or better strength

'Low' dust on surface

No energy director Flat energy director

Vertical joint sub-element test

Objective:

• Build, test, and validate a representative vertical joint

Status:

- Designed test specimen and load introduction
- Predicted stiffness and strength using a 3D finite element model
- Manufacturing 'L' sections using automated fiber placement and autoclave consolidation at NIAR

Test setup

RUC manufacturing demo

Objective:

 Build a repeating unit cell (RUC) of the truss tower to gain experience with manufacturing scale-up

Summary

- Developed an all-thermoplastic composite truss tower concept for solar array and other relevant payloads at the lunar south pole
- Extended an existing truss tower structural sizing routine to account for longeron strength and moonquake loads
- Sized the truss tower welded joints using a cohesive zone model
- Thermoplastic composites and welding processes show promise for in-space and on-surface assembly of large structures