
Marcus R. Welsh and Kumar C. Jois
Institut für Textiltechnik der RWTH Aachen University, Aachen, Germany

Brett A. Bednarcyk and Trenton M. Ricks
Glenn Research Center, Cleveland, Ohio

Filament Wound Composite Analysis Using the
NASA Multiscale Analysis Tool (NASMAT)
and Finite Element Analysis

NASA/TM-20240013073

November 2024

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices of
the Agency Chief Information Officer. It collects, orga-
nizes, provides for archiving, and disseminates NASA’s
STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report types:

•	 TECHNICAL PUBLICATION.
Reports of completed research or a major
significant phase of research that present the
results of NASA programs and include extensive
data or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing reference
value. NASA counterpart of peer-reviewed formal
professional papers but has less stringent limitations
on manuscript length and extent of graphic
presentations.

•	 TECHNICAL MEMORANDUM.
Scientific and technical findings that are preliminary
or of specialized interest, e.g., quick release reports,	
working papers, and bibliographies that contain

	 minimal annotation. Does not contain extensive
analysis.

•	 CONTRACTOR REPORT.
Scientific and technical findings by NASA-
sponsored contractors and grantees.

•	 CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

•	 SPECIAL PUBLICATION.
Scientific, technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial public
interest.

•	 TECHNICAL TRANSLATION.
English-language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services also include organizing and
publishing research results, distributing specialized
research announcements and feeds, providing informa-
tion desk and personal search support, and
enabling data exchange services.

For more information about the NASA STI program,
see the following:

•	 Access the NASA STI program home page at
	 http://www.sti.nasa.gov

http://www.sti.nasa.gov

Marcus R. Welsh and Kumar C. Jois
Institut für Textiltechnik der RWTH Aachen University, Aachen, Germany

Brett A. Bednarcyk and Trenton M. Ricks
Glenn Research Center, Cleveland, Ohio

Filament Wound Composite Analysis Using the
NASA Multiscale Analysis Tool (NASMAT)
and Finite Element Analysis

NASA/TM-20240013073

November 2024

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

This work was supported by the Cryotank Technology for Exploration Applications (CTE-A) Project within the
Space Technology Mission Directorate (STMD) Game Changing Development (GCD) Program. Special

thanks to Sandi G. Miller and Derek J. Quade at NASA Glenn, Marc R. Schultz at
NASA Langley, and John C. Fikes at NASA Marshall.

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

NASA STI Program/Mail Stop 050
NASA Langley Research Center

Hampton, VA 23681-2199

https://www.sti.nasa.gov/
https://ntrs.nasa.gov/

NASA/TM-20240013073 iii

Contents
Abstract ... 1
Introduction ... 1
Filament Wound RUC Creation .. 5

Filament Wound Pattern Generation .. 5
RUC Generation Program Explanation .. 8

Numerical Analysis of Filament Wound and Laminated RUCs ... 16
Homogenization Method Used in NASMAT ... 16
Periodicity Conditioned Prescribed in NASMAT and Abaqus .. 18

Results and Discussion ... 21
Predictions of Effective Properties ... 21
Predictions of Local Stress Fields .. 25

Conclusion .. 30
Appendix—RUC Generation Code .. 33
References ... 45

NASA/TM-20240013073 1

Filament Wound Composite Analysis Using the NASA Multiscale
Analysis Tool (NASMAT) and Finite Element Analysis

Marcus R. Welsh and Kumar C. Jois

Institut für Textiltechnik der RWTH Aachen University
52074 Aachen, Germany

Brett A. Bednarcyk and Trenton M. Ricks

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract
Fiber reinforced composite materials, owing to their tailorable thermomechanical and functional

properties, allow one to produce a structure that is stronger, stiffer, and lighter than its metal counterpart
while performing the same function, yielding a more efficient structure. This not only allows for the
improvement of current technologies like aircraft structures, but also enables new technologies like
gaseous hydrogen storage for mobility applications, which are otherwise impractical when manufactured
using traditional metals due to weight and space restrictions or material embrittlement. However, the use
of composites imposes greater design and manufacturing challenges on an engineer, since they are
heterogenous, having a distinct structure across multiple length scale, behave generally anisotropically at
the structural level and require complex manufacturing and processing methods. Capturing this complex
behavior requires detailed numerical simulations, including the modeling of microstructural features like
undulations, voids, and fiber alignment. In this paper, multiple repeating unit cells (RUCs), representing
filament wound composites, are developed (via a script provided in the Appendix) and analyzed. The
refinement of these RUCs is varied, and the analyses are performed using both the Abaqus finite element
software and the NASA Multiscale Analysis Tool (NASMAT). A study is undertaken to compare the
predicted effective elastic properties of the wound RUC to a laminate representation of the wound RUC,
which neglects the undulations. Additionally, two different sets of periodic boundary conditions (PBCs)
have been examined. One approximates the real boundary conditions using a standard approach and the
other represents the PBCs exactly through the use of an offset. Lastly, a comparison of the local elastic
stress fields is made among the models and approaches. Since wound structures are often approximated as
laminated structures, it is important to understand the degree to which this assumption is valid, namely by
first comparing the elastic constants and local elastic fields. This will provide, on the one hand,
information concerning the bulk mechanical behavior and, on the other hand, insights concerning local
load distributions and likely damage initiation sites.

Introduction
Interest in alternative fuel sources, particularly hydrogen, has gained interest in recent years due to its

potential to replace current fossil fuel sources in mobile applications. In Germany, the national hydrogen
strategy (Nationale Wasserstoffstratagie) has set goals for research, development, and implementation of
transport infrastructure by the end of the decade. A key enabling technology for mobile hydrogen storage
is the composite overwrapped pressure vessel (COPV) since weight, size and gravimetric efficiency
requirements make traditional materials like aluminum or steel impractical. COPVs are designated into
five different types as shown in Figure 1.

NASA/TM-20240013073 2

Figure 1.—Pressure vessel designation terminology

Type I is an all-metallic pressure vessel while types II and III have metallic liners with a composite
overwrap. The designation type IV refers to vessels that has a polymer liner on which a fiber
reinforcement composite architecture will be manufactured; the polymer liner acts as the diffusion barrier
while the fiber reinforcement carries the loads. In comparison to types II and III, Type IV is currently the
lightest commercially available solution and has garnered most attention / interest. Type V is a liner-less
pressure vessel that would be lighter than type IV with a greater gravimetric efficiency, but their
production is limited and permeation / leakage through the laminate remains an issue.

Hydrogen can be stored in a gaseous state, a cryo-compressed gaseous state, or as a cryogenic fluid.
In this case, the vessel stores gaseous hydrogen at 700 bar (70 MPa) and has a carbon fiber / epoxy
composite reinforcement system, which is not only a very stiff material system to prevent excessive
deformation, but also very strong as to carry the high mechanical loads. It is also lightweight, making it
suitable for mobile applications. To manufacture such a vessel, one can use a variety of processes, but
here the towpreg filament winding process is used. Filament winding is a manufacturing process by
which a continuous band, composed of multiple yarns or tows, is wound around a mandrel to manufacture
the reinforcement architecture (see Figure 2 to Figure 4).

The filament winding process requires the winding head to traverse forwards and backwards – termed
the forward stroke and backward stroke – to completely cover the mandrel with material. During the
forward stroke the bands are laid with a winding angle, +α, while the backward stroke lays the bands at an
angle, −α, producing a balanced configuration after having covered the entire surface (Figure 3). The
solid lines represent the forward stroke (+α) and the dashed lines the backward stroke (−α). This process
is then repeated for the number of winding angles in the layup until the laminate is complete. Filament
winding is generally used to manufacturing axisymmetric parts, like tanks and pipes, but it can also be
used to manufacture composite parts having non-axisymmetric geometries.

Metallic
Liners

Polymer
Liner Liner-less

I II II

I V

NASA/TM-20240013073 3

Figure 2.—Filament winding process sketch.

Figure 3.—Winding angle definition on mandrel.

Figure 4.—Filament winding cell at RWTH

Aachen University Institut für Textiltechnik
(ITA).

Spool Creel
Winding head

Mandrel

Winding Head

Mandrel

NASA/TM-20240013073 4

Preliminary design and sizing of composite pressure vessels and pipes generally starts with netting
theory (Tew, 1995) and classical lamination theory (CLT) (Jones, 1999), where the former provides an
initial thickness that can be used in CLT as a starting point during laminate design. After some iteration,
an initial laminate design is determined, usually by means of stress analysis with CLT subject to first ply
failure criteria. CLT can even be extended, for example, to include damage and degradation of the
material (reflected in updated entries of the ABD-matrix) (Schürmann, 2007), and/or to obtain a more
physically correct load distribution (reflected in the load vector by using, for example, the bending theory
of shells to capture the combined effects of membrane and flexural loading) (Eschenauer et. al., 1997;
Vinson, 1993; Mittelstedt, 2021).

For a more detailed numerical analysis, a finite element model (FEM) can be used to create a 2D
axisymmetric model of a pressure vessel or even a full 3D model, increasing progressively the
computational expense with increased fidelity. Here, one can accurately capture thick wall effects,
g5enerally not captured in lamination theory, as well as delamination (by use of cohesive surfaces),
material defects, and damage using user materials and subroutines.

A key microstructural feature that is often neglected during the modeling of wound composite
structures is the undulation pattern that emerges due to bands overlapping (Figure 6). Undulation refers to
the overlap that occurs during the manufacturing process and can lead to locally reduced stiffness and,
critically, stress raisers, which can be damage initiation sites. Capturing the undulating winding pattern
with appropriate contact conditions at the global scale quickly becomes computationally intractable and
can be extremely time intensive. Thus, to simplify the problem, a wound ply with ±α is typically separated
into two laminated plies, with one ply of +α and another of −α, maintaining balance globally, but
neglecting any local effects of the undulation that can lead to damage onset and propagation in the
structure (Morozov, E.V., 2006). Obviously, for cyclic loading, stress raisers from the undulations
become even more important.

To investigate the effects of undulation in wound composite materials, a python script has been
developed that generates a wound undulation pattern within the open-source software TexGen (Brown
and Long, 2021) (see Figure 5). The script enables the user to define the yarn (tow) characteristics, the
spacing between yarns (tows), the number of yarns (tows) in a band, the spacing between bands, the
number of bands in the pattern, and the angle at which the bands are wound, allowing for extensive
modeling freedom and parametric analysis. The script correctly places band undulations in the pattern,
accurately reflecting the geometry of the wound composite that results from manufacturing. Note that the
script is given in the Appendix. The geometry generated by the script can then be analyzed using other
software, such as finite element codes.

 Figure 5.—Wound RUC geometry generated in TexGen.

NASA/TM-20240013073 5

Herein, this python script has been applied to create several wound repeating unit cells (RUCs) with a
layup pattern of [±30/902]. These RUCs are then analyzed using TexGen in combination with the Abaqus
finite element software (Dassault Systemes, 2024), as well as the NASA Multiscale Analysis Tool
(NASMAT) (NASA, 2024). The analysis predictions are compared to each other, and also with a
laminated RUC having the same layup to assess the impact of including the yarn/band undulations in the
composite microstructure. Results include the predicted effective engineering constants of the composites,
as well as the predicted local elastic stress fields. Within the finite element results, a comparison between
standard and more real offset periodic boundary conditions (PBCs) has also been conducted. The goal of
this study is thus to examine, evaluate, and compare quantitatively the following aspects of modeling
wound composites: (1) the effect of undulations, (2) the effect of model type (finite element vs. method of
cells), and (3) the effect of simplified vs. real PBCs.

The manuscript is organized as follows: First, the python script for generating a wound RUC in
TexGen will be explained, followed by a brief discussion about the different periodicity conditions
applied during this study. Next, a brief introduction to the 3D High-Fidelity Generalized Method of Cells
(HFGMC) homogenization theory used in NASMAT will be provided, after which the predicted effective
engineering constants in Abaqus and NASMAT will be discussed. After this, the local elastic stress fields
from NASMAT and Abaqus will be discussed, followed by a conclusion and outlook.

Filament Wound RUC Creation
Filament Wound Pattern Generation

In the filament winding process, a band, consisting of multiple yarns (Figure 6), is wound around a
rotating mandrel until the surface of the mandrel is completely covered. During this time, the winding
head traverses forwards and backwards to deposit the band on the rotating mandrel, ultimately completing
one cycle when the winding head returns to its initial position (see Figure 4). While the winding head
traverses forwards and backwards, the band will cover previously deposited material, resulting in points
of overlap. In order to achieve full coverage of the mandrel (and complete one ply), multiple cycles must
be repeated, whereby the winding head again traverses forwards and backwards, depositing more material
and creating more points of overlap. Depending on winding angle and mandrel geometry, a surface
pattern will emerge, containing a certain number of overlaps (Figure 6).

Figure 7 shows a sample winding pattern with the RUC represented as a black square. The picture on
the left side of Figure 7 is the winding pattern in global coordinates, where the horizontal axis is aligned
with the center axis of the mandrel. In this configuration, one can see a repeating diamond pattern which
is not orthogonal to the global coordinate system. To solve this, the pattern is rotated by the winding
angle, α, such that one side of the pattern is parallel with the ordinate. The height of the RUC was then
determined by aligning the top left and bottom left corners of the RUC with the top edge of the upper and
lower angled bands in the RUC (dashed lines), respectively.

The regions of overlap cause the bands to undulate slightly out of plane, decreasing locally the ply
effective stiffness. Additionally, undulation can result in matrix rich regions and air pockets (voids), both
of which lead to local stress concentrations and can serve as crack nucleation sites (see Figure 8).

NASA/TM-20240013073 6

Figure 6.—Filament wound surface pattern.

Figure 7.—RUC in global coordinates (left) and local coordinates (right).

Band of yarns

NASA/TM-20240013073 7

Figure 8.—Computer tomography (CT) scan of tube cross section with notable undulation.

Figure 9.—TexGen [±30] filament wound RUC (left) and laminated RUC (right).

The RUCs in Figure 9 represent a [±30] layup (left) and the laminated equivalent (right). The wound

pattern possesses bands undulating through the thickness of the RUC, leading to regions of overlap that
are not present in the laminated RUC; the different color yarns in each band simply represent different
yarn instances in the TexGen software. Additionally, the regions of overlap result in a macroscopic
diamond pattern in the middle of the unit cell, the presence of which will influence the local stress fields
upon load application.

Subject to analysis in this manuscript are the RUCs in Figure 10, both possessing hoop layers in
addition to the helical 30° layer, resulting in a [±30/902] layup. This layup was chosen since tubular
specimen at ITA were manufactured and tested according to ASTM D2290 with this same layup,
providing experimental results as comparison for future work. The python script currently instantiates a
flat RUC, different from the filament wound rings which have some curvature. The influence of curvature
is generally neglected if the thickness-to-radius ratio (t/R) is less than 1/15. In this case we manufactured
ring specimen having an average thickness of 2.0 mm and a radius of 50 mm, thus t/R is sufficiently thin,
having a ratio of 1/25. If the ratio of t/R is greater than 1/15, then curvature must be considered due to the
presence of a non-negligible through thickness stress component.

Wound RUC Laminated RUC

Top Right Bottom Left Top Right Bottom Left

NASA/TM-20240013073 8

Figure 10.—TexGen [±30/902] filament wound RUC (left) and laminated RUC (right).

RUC Generation Program Explanation

A primitive class in TexGen is a yarn (also known as a tow), having the following attributes: its cross-
section shape and its assigned nodes. The assigned nodes define the path in 3D space along which the
cross-section is swept (Figure 11). One can define the yarn cross-section shape by specifying the yarn
thickness, yarn width and shape factor (for the PowerEllipse cross section in TexGen).

When multiple yarns with the same path are combined, a band is formed (Figure 12). In the python
script, a band class is defined by the number of yarns in the band, yc, and the spacing between adjacent
yarns, ys. During the filament winding process, the number of yarns per band can be adjusted for the
desired coverage based on the diameter of the mandrel. Additionally, the spacing between adjacent yarns
should ideally be zero, but it is often the case that yarns shift relative to one another during
manufacturing, resulting in spaces between yarns, or even yarn overlap, after the band has been deposited
on the mandrel. Thus, it is important to have yarn spacing as a variable that can be non-zero; yarn overlap
between adjacent yarns has not been considered herein. This may be investigated in future work.
Additionally, without the band spaces, the band geometry would interfere or merge at the overlap regions,
leading to physically inconsistencies like incorrect material orientation assignments in neighboring bands
or artificially low volume fractions in the RUC. To address these points, a processing model would need
to be developed to account for tow deformation under specific operating conditions, which is a matter for
future work.

Finally, the winding pattern (Figure 13) is defined by the number of bands participating in the pattern,
𝑛𝑛𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, the spacing between adjacent bands, 𝑏𝑏𝑠𝑠, the pattern angle, 𝛼𝛼, and out of plane spacing between
bands, 𝑏𝑏𝑔𝑔𝑔𝑔𝑔𝑔,𝑧𝑧. From this, the bandwidth, 𝑏𝑏𝑤𝑤, can be formulated and is the sum of all yarn widths and yarn
spaces in a band (Figure 12). The assumption is that a single wound layer is generated from a single
prescribed winding angle; optionally, hoop layers (90° plies) can be added. The script does not currently
consider multiple wound layers, with multiple different winding angles; the script is currently limited to
just a single wound layer angle.

Wound RUC Laminated RUC

Top Right Bottom Left Top Right Bottom Left

NASA/TM-20240013073 9

Figure 11.—Yarn definition in python script.

Figure 12.—Band definition in python script.

𝒚𝒚𝒘𝒘

𝒚𝒚𝒕𝒕

Yarn

Yarn
Cross-Section

Yarn Centerline

Yarn Nodes

𝒃𝒃𝒘𝒘
𝒚𝒚𝒔𝒔

𝒃𝒃𝒔𝒔 Band

NASA/TM-20240013073 10

Figure 13.—RUC pattern generation in python script.

The positioning of each band, and thus the position of each yarn in each band, is based on the key
yarns, which are the first (leftmost) yarn in the straight bands and the first (topmost) yarn in the angled
bands (Figure 13). The initial band positions were chosen, such that the key straight yarn lies exactly on
the leftmost edge of the domain while the top right corner of the key angled yarn coincides with the top
right corner of the domain. Furthermore, the RUC domain length in the x direction, 𝑋𝑋𝐷𝐷𝐷𝐷, is calculated as,

𝑋𝑋𝐷𝐷𝐷𝐷 = 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑤𝑤 + (𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 1) 𝑏𝑏𝑠𝑠 (1)

The RUC domain length in the y direction, 𝑌𝑌𝐷𝐷𝐷𝐷, is the same as 𝑋𝑋𝐷𝐷𝐷𝐷 for 𝛼𝛼 = 0. However, if 𝛼𝛼 ≠ 0, then
YDL is larger by a factor of 1 cos𝛼𝛼� , since a band at angle 𝛼𝛼 ≠ 0 has a larger projected area onto the y
axis. That is,

𝑌𝑌𝐷𝐷𝐷𝐷 =
𝑋𝑋𝐷𝐷𝐷𝐷

cos𝛼𝛼
(2)

In Figure 14 the initial positioning of the angled bands and angled yarns is illustrated. In the figure,
the 0th position of the first angled band, which contains two yarns, is chosen such that it starts on the right
most edge of the domain and with the top most yarn in the band coincident with the top right corner of the
domain, given by the following equations:

𝑦𝑦0,𝑏𝑏,𝑎𝑎,𝑖𝑖 = 𝑌𝑌𝐷𝐷𝐷𝐷 − 𝑖𝑖𝑏𝑏 ∙
𝑏𝑏𝑤𝑤 + 𝑏𝑏𝑠𝑠

cos𝛼𝛼
−

𝑦𝑦𝑤𝑤
2 cos𝛼𝛼

(3)

𝑥𝑥0,𝑏𝑏,𝑎𝑎,𝑖𝑖 = 𝑋𝑋𝐷𝐷𝐷𝐷 (4)

Where the subscript terminology is as follows: the first index indicates the beginning point (0) or end
point (1) of a segment, but init is used in a select case (see below). Index 2 indicates whether it is a yarn
(y) or a band (b). Index three indicates if the segment is straight (s) or angled (a), and the last index, i,
indicates the yarn number (if index 2 is y) or the band number (if index 2 is b). Also, when index 2 is y,

NASA/TM-20240013073 11

then the x, y positions in the following equations refer to yarn nodal positions which can be accessed in
TexGen. However, when index 2 is b, then the x, y positions in the following equations refer to band
“nodal” positions, but are not associated with nodes accessible in TexGen; they only act as offsets from
which the yarn nodes are positioned. Furthermore, 𝑖𝑖𝑏𝑏 is the band index, which begins at zero and
increments over the number of bands in the pattern. Thus, when 𝑖𝑖𝑏𝑏 = 0, the middle term in y coordinate
calculation becomes zero and the y position is simply the domain length in the y direction minus half of
the projected area of the key angled yarn, positioning it coincident with the top right point of the domain.

In Figure 14 there are points residing outside of the domain, referred to as the initial points ensuring
clean cuts when the textile is trimmed to the dimensions of the domain, forming the RUC. The initial x
position of ith yarn in the angled band is chosen as,

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦,𝑎𝑎,𝑖𝑖 = 1.25 ∙ 𝑋𝑋𝐷𝐷𝐷𝐷 (5)

ensuring that the initial x coordinate lies outside the domain. It is recommended to stay above a factor of
1.25 so that the yarns are completely outside the domain before they are trimmed to the domain size. The
initial y coordinate is given by,

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦,𝑎𝑎,𝑖𝑖 = 𝑦𝑦0,𝑦𝑦,𝑎𝑎,𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦,𝑎𝑎,𝑖𝑖 − 𝑥𝑥0,𝑦𝑦,𝑎𝑎,𝑖𝑖� ∙ tan𝛼𝛼 (6)

ensuring an angle α is maintained over the distance �𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑦𝑦,𝑎𝑎,𝑖𝑖 − 𝑥𝑥0,𝑦𝑦,𝑎𝑎,𝑖𝑖�.
Figure 15 shows the next segment to be created by the script. Here, the yarn end positions

(𝑥𝑥1,𝑦𝑦,𝑎𝑎,𝑖𝑖 ,𝑦𝑦1,𝑦𝑦,𝑎𝑎,𝑖𝑖) need to be determined. These coordinates are meant to position the ends of the angled
yarns at known points in the domain relative to the straight yarns.

Figure 14.—Angle band initial positioning.

NASA/TM-20240013073 12

Figure 15.—Angled band end positioning.

The equations for the end positions of the angled bands are,

𝑦𝑦1,𝑏𝑏,𝑎𝑎,𝑖𝑖 = 𝑦𝑦0,𝑏𝑏,𝑎𝑎,𝑖𝑖 − �𝑥𝑥0,𝑏𝑏,𝑠𝑠,𝑖𝑖 − 𝑥𝑥0,𝑏𝑏,𝑎𝑎,𝑖𝑖� ∙ tan𝛼𝛼 (7)

𝑥𝑥1,𝑏𝑏,𝑎𝑎,𝑖𝑖 = 𝑥𝑥0,𝑏𝑏,𝑠𝑠,𝑖𝑖 (8)

Here the y coordinate at the end of the angled band, 𝑦𝑦1,𝑏𝑏,𝑎𝑎,𝑖𝑖, is chosen such that the center angled band
maintains an angle α over a distance �𝑥𝑥0,𝑏𝑏,𝑠𝑠,𝑖𝑖 − 𝑥𝑥0,𝑏𝑏,𝑎𝑎,𝑖𝑖�, where 𝑥𝑥0,𝑏𝑏,𝑠𝑠,𝑖𝑖 is the x coordinate at the center of
the ith straight band. The center of the ith straight band was chosen for convenience (see Figure 16). The
band end position y coordinate, Equation (7), is later used to position the y coordinate of the straight yarn,
𝑦𝑦1,𝑠𝑠,𝑦𝑦,𝑖𝑖.

To position the end coordinates of each angled yarn, the 0th position coordinates of the angled yarns
are used in the following equations,

𝑥𝑥0,𝑦𝑦,𝑎𝑎,𝑖𝑖 = 𝑥𝑥0,𝑏𝑏,𝑎𝑎,𝑖𝑖 (9)

𝑦𝑦1,𝑦𝑦,𝑎𝑎,𝑖𝑖 = 𝑦𝑦0,𝑦𝑦,𝑎𝑎,𝑖𝑖 − abs �𝑥𝑥0,𝑦𝑦,𝑎𝑎,𝑖𝑖 − 𝑥𝑥0,𝑠𝑠,𝑏𝑏,𝑖𝑖 −
𝑏𝑏𝑤𝑤
2
−

3 𝑏𝑏𝑠𝑠
2
� tan𝛼𝛼 (10)

where the 0th position x coordinate in an angled yarn, 𝑥𝑥0,𝑦𝑦,𝑎𝑎,𝑖𝑖, cooresponds with the 0th position of the
angled band, 𝑥𝑥0,𝑏𝑏,𝑎𝑎,𝑖𝑖, and the angled yarn end position y coordinate, 𝑦𝑦1,𝑦𝑦,𝑎𝑎,𝑖𝑖, is calculated such that an

angle α is maintained over a distance (𝑥𝑥0,𝑦𝑦,𝑎𝑎,𝑖𝑖 − 𝑥𝑥0,𝑠𝑠,𝑏𝑏,𝑖𝑖 −
𝑏𝑏𝑤𝑤
2
− 3 𝑏𝑏𝑠𝑠

2
).

Now that the angled band and yarn positions have been determined, the straight bands and yarns
positions can be established. Figure 16 shows the desired position of the straight bands and angled bands
relative to each other.

NASA/TM-20240013073 13

Figure 16.—Positioning of straight yarns.

Using the following equations, the straight yarn positions can be determined,

𝑦𝑦1,𝑦𝑦,𝑠𝑠,𝑖𝑖 = 𝑦𝑦1,𝑏𝑏,𝑎𝑎,𝑖𝑖 − (𝑦𝑦𝑐𝑐 − 1) ∙ �
𝑦𝑦𝑤𝑤 tan𝛼𝛼

2
+

𝑦𝑦𝑤𝑤
2 cos𝛼𝛼

+
𝑦𝑦𝑠𝑠 tan𝛼𝛼

2
�

+ 𝑖𝑖𝑦𝑦 ∙ (𝑦𝑦𝑤𝑤 + 𝑦𝑦𝑠𝑠) ∙ tan𝛼𝛼 −
𝑦𝑦𝑐𝑐 (𝑦𝑦𝑤𝑤 + 𝑏𝑏𝑠𝑠)

2 cos𝛼𝛼
(11)

𝑥𝑥0,𝑏𝑏,𝑠𝑠,𝑖𝑖 = (𝑖𝑖𝑏𝑏 + 0.5) ∙ 𝑏𝑏𝑤𝑤 + 𝑖𝑖𝑏𝑏𝑏𝑏𝑠𝑠 (12)

𝑥𝑥0,𝑦𝑦,𝑠𝑠,𝑖𝑖 = 𝑥𝑥0,𝑏𝑏,𝑠𝑠,𝑖𝑖 + �𝑖𝑖𝑦𝑦 −
(𝑦𝑦𝑐𝑐 − 1)

2
� ∙ (𝑦𝑦𝑤𝑤 + 𝑦𝑦𝑠𝑠) (13)

where the angled band end position y coordinate, 𝑦𝑦1,𝑦𝑦,𝑠𝑠,𝑖𝑖, is used for initial positioning. From this position,
the second term and the fourth term on the right hand side of Equation (11) provide a constant offset to
bring the center of the straight band into alignment with the center of the angled band. The third term on
the right hand side of Equation (11) with the yarn index, 𝑖𝑖𝑦𝑦, adjusts the y position of each yarn in the ith
straight band such that they lie exactly along the centerline of the angled band, demonstrated in Figure 16.
To establish the correct x coordinate for the straight bands, the bands are offset from the leftmost edge of
the domain where 𝑥𝑥 = 0. For the first band, 𝑖𝑖𝑏𝑏 = 0, reducing the 0th straight band x coordinate to an offset
𝑏𝑏𝑤𝑤
2

. This positions the band such that the left edge of the first yarn in the first straight band – the key
straight yarn – lies on the leftmost edge of the domain. Once the first band and its yarns are positioned,
the subsequent bands will be laid at an appropriate distance to maintain the defined band spacing, 𝑏𝑏𝑠𝑠,
between bands (see Figure 17).

NASA/TM-20240013073 14

Figure 17.—Pattern generation continued.

Once the ends of each bands are in known positions relative to one another (i.e., the ends of the
straight yarns are aligned along the centerlines of the angled bands and vice versa), the pattern can be
easily generated in terms of band and yarn dimensions. For example, if one would like to advance the
ends of the straight yarns in Figure 17 to the topmost edge of the angled bands, one simply adds half the
bandwidth, 𝑏𝑏𝑤𝑤 2⁄ , to the current y positions. From this point, each straight band must undulate under an
angled band and proceed straight to the top edge of the domain.

To ensure periodicity, the angled bands are added to the top and bottom of the domain (Figure 18).
Here, the band that enters at the bottom right side of the domain (point 0) exits at the bottom center (point
1) and continues its trajectory from the top center (point 1) and exits at the top left corner (point 2). This
pattern continues until the angled bands returns to the starting point (where point 5 maps to point 0). If
one were to stack repeats of the RUC vertically, geometric continuity would also be preserved. This
pattern is referred to as simple periodicity (see also Figure 21) since it emerges by the coupling of
corresponding nodes lying directly opposite of one another on opposed faces of the domain (left face with
right face, top face with bottom face). This type of periodicity does not actually emerge during the
winding process. Rather, it is an approximation that enables use of standard, opposite face periodicity
conditions. The impact of this approximation on the Abaqus predictions will be addressed in the Results
section; NASMAT models currently use only the standard periodicity, since the staggered periodicity
(discussed next) is not available at this time. Note that, if the bands and yarns were not all the same size,
shape, and material, the simple periodicity conditions would result in discontinuities at the periodic
boundaries, resulting in a poor approximation.

NASA/TM-20240013073 15

Figure 18.—Completed filament wound pattern with simple periodic bounds.

In contrast to the simple periodicity described above, the actual, staggered periodicity conditions are
depicted in Figure 19. These conditions have been termed real periodicity. Here, the periodicity
conditions are staggered and continuous only along the individual bands. To see this, one can trace one’s
finger along the arrows in Figure 19 from one point to the next. Starting at 0 and going to 1, one traverses
from the bottom right to the bottom middle. Point 1 at the bottom continues to point 1 at the top of the
domain, which is connected to point 2. From here, point 2 returns the band to the original starting point 0.
This means that a load applied to this band travels only along this band (but of course transfers to adjacent
bands via shear through the matrix). In comparison, the simple periodicity in Figure 18 connects each of
the angled bands with each other, acting effectively as one band. As such, a load applied to one angled
band is transferred through all angled bands in the domain, as if it is continuous. This can also be
illustrated using set notation:

Simple Periodicity: (0 1 2 3 4 5)

Real Periodicity: (0 1 2)(3 4)(5 6)(7 8)

where each subset represents a continuous path of the angle bands. Simple periodicity represents a cyclic
permutation across all nodes of the angled bands, again showing the connectivity across all angled bands
in the domain. Real periodicity, on the other hand, permutes nodes only lying on the same band and hence
decomposes the domain into a number of subsets equal to the actual number of bands in the RUC domain
arising from the winding pattern. The consequences of simple periodicity and real periodicity will be
addressed in Numerical Analysis of Filament Wound and Laminated RUCs Section.

NASA/TM-20240013073 16

Figure 19.—Completed filament wound pattern with real periodic bounds.

Numerical Analysis of Filament Wound and Laminated RUCs
To assess the performance of the wound RUC, it is compared against a laminated RUC. Here, the

laminated RUC represents the ideal case where no undulation is present (see Figure 9). The effect of the
winding pattern is often neglected during modeling. To begin this section, there is a brief introduction to
the 3D HFGMC homogenization theory used in NASMAT. Following this, a brief section on the
periodicity conditions and elastic constants will come. Lastly, an analysis and discussion of the results
generated in NASMAT and Abaqus will follow. Specifically, the elastic moduli and local elastic fields
will be compared, not only in the tows, but also in the matrix. Furthermore, the two different types of
periodicity conditions are investigated: simple periodicity and real periodicity. Both NASMAT and
Abaqus can handle the simple periodic case. However, NASMAT currently cannot represent the real
periodic conditions, thus a direct comparison between NASMAT and Abaqus is not possible for this case.

Homogenization Method Used in NASMAT

Homogenization theory is a technique whereby a medium is treated as homogeneous at a higher,
macroscopic length scale even though the medium is heterogeneous at a lower, microscopic length scale
(Suquet, 1987; Aboudi et al., 2013; Oller, 2014). Scale separation is assumed such that the macroscopic
behavior will not be affected by the details of the microstructure, and the fields at the microscale can then
be treated as perturbations of the macroscopic, global fields. Homogenization theory is very useful for the
design and analysis of composite materials and structures as it enables effective, homogenized properties
to be calculated, and these can then be used at the global scale as if the material is a standard,
homogeneous continuum. Of course, the key assumption of scale separation is never fully valid and thus
should be thought of as an engineering approximation that is good in some situations and very rough in
others. For example, a standard carbon/epoxy composite tow contains thousands of individual carbon
filaments barely visible to the naked eye. In contrast, the weave/braid pattern in a textile composite is on
the mm length scale and easily observed in composite parts. Yet both of these heterogeneities are

NASA/TM-20240013073 17

commonly treated via homogenization theory. Proximity to boundaries and discontinuities, damage and
inelasticity, and myriad other factors affect the validity of homogenization theory’s scale separation
assumption. It remains, however, a very useful engineering approximation, particularly for composite
materials.

The conjugate to homogenization is localization (also sometimes referred to as “dehomogenization”).
Homogenization provides effective properties at a higher scale based on lower length scale constituent
properties and their arrangement. Localization determines the local fields at a lower length scale based on
known macroscale fields. For example, known applied strain components on a composite test coupon can
be localized to determine the local strains in the fiber and matrix constituents. Many micromechanics
theories/methods are capable of both homogenization and localization.

A number of leading micromechanics homogenization/localization theories have been implemented
in the NASA Multiscale Analysis Tool (NASMAT) software, which is maintained and released by NASA
(NASA, 2024). These theories include Mori-Tanaka, the Generalized Method of Cells (GMC), and the
High-Fidelity Generalized Method of Cells (HFGMC) (Aboudi et al., 2021). Unique to NASMAT is the
ability for the micromechanics models to call each other or themselves recursively to capture
microstructural geometries at any number of length scales. In addition, multiple nonlinear damage and
viscoplastic constitutive models are available for the constituent materials, and NASMAT can link with
Abaqus and other finite element codes to enable micromechanics analysis at the integration points in a
structural finite element model (Pineda et al., 2021). Multiscale modeling of other physics, such as
thermal/electrical conductivity, diffusion, and magnetic permeability (Bednarcyk et al., 2017) can also be
conducted with NASMAT.

Herein, the HFGMC micromechanics theory within NASMAT has been applied to predict the
effective properties of wound composites. HFGMC considers the composite material to be periodic and
analyzes a repeating unit cell (RUC) composed of an arbitrary number of parallelepiped sub-volumes
(called subcells). This geometric representation is shown in Figure 20. The derivation of the HFGMC
theory is given by Aboudi et al. (2013, 2021). To briefly summarize, it is based on ensuring continuity of
surface-averaged tractions and displacements between interior subcells and similar periodicity conditions
at the RUC boundaries. Since HFGMC makes use of a quadratic displacement field, it provides good
approximations of the composite local fields and effective properties but can be computationally
demanding as there are many unknown variables (and thus a large system of equations to solve) compared
to lower-fidelity theories (such as GMC).

NASA/TM-20240013073 18

Figure 20.—(a) A multiphase composite with triply-periodic
microstructures defined with respect to global coordinates (x1, x2, x3).
(b) The repeating unit cell (RUC) is represented with respect to local
coordinates (y1, y2, y3). It is divided into Nα by Nβ by Nγ subcells, in
the y1, y2, and y3 directions, respectively. (c) A characteristic subcell
(αβγ) with local coordinates () () ()

1 2 3(, ,)y y yα β γ whose origin is located
at its center.

Periodicity Conditioned Prescribed in NASMAT and Abaqus

Once the textile pattern is generated in TexGen, it is possible to export a voxel file to Abaqus. Here,
the domain is discretized in the x, y, and z directions by fixed user inputs, and periodic boundary
conditions (PBCs) are automatically applied.

With Abaqus, it was possible to assess both the simple periodic case (Figure 21) and the real periodic
case (Figure 22). As previously discussed, simple periodicity does not exactly reflect the conditions in a
wound RUC due to an inappropriately imposed continuity across all angled yarns in the domain.

NASA/TM-20240013073 19

Figure 21.—Simplified periodic boundary conditions (left) and resultant
pattern (right).

Figure 22.—Real periodic boundary conditions (left) and resultant
pattern (right).

As a means of comparison, the elastic constants from each RUC were calculated using a linear
perturbation step in Abaqus, whereby a unit load is applied at a master node to which the PBCs are
coupled. Upon application of each unit load, the RUC experiences a generalized displacement. To extract
the displacement from each loading frame in the Abaqus ODB, the following python script was used:

import numpy as np
odb = session.odbs[‘filename’]
S = np.zeros([6,6])

NASA/TM-20240013073 20

for i in range(6):
 for j in range(6):
 S[i,j]+=odb.steps['Isothermallinearperturbationstep'].frames[i+1].field\
Outputs['U'].values[j].data[0]

where S is the compliance matrix. Thus, for each load type (3 normal loads and 3 shear loads) the
subsequent displacements (3 normal displacements and 3 transverse displacements) were extracted. The
boundary conditions were formulated such that the displacements are equal to the compliance matrix.
This returned a 6 x 6 compliance matrix with entries generally non-zero due to anisotropy. From the
compliance matrix, the engineering constants could be calculated using the following equations:

𝐸𝐸11 =
1
𝑠𝑠11

 𝐸𝐸22 =
1
𝑠𝑠22

 𝐺𝐺12 =
1
𝑠𝑠66

 𝑣𝑣12 = −
𝑠𝑠12
𝑠𝑠11

Additionally, the yarn volume fraction for each model was determined using the length of the set
containing all elements and the length of the set containing just matrix elements:

odb = session.odbs[‘filename’]
part = odb.rootAssembly.instances['PART-1-1']
ALLELS = len(part.elementSets['ALLELEMENTS'].elements)
MATELS = len(part.elementSets['MATRIX'].elements)
vf = (ALLELS - MATELS) / ALLELS

Since a voxelated geometry was used, all elements (C3D8R) have the exact same dimensions,
allowing for a straightforward yarn volume fraction calculation. The yarn volume fraction showed a slight
dependence on voxel size, primarily with a coarse mesh. However, using finer meshes (smaller voxel
sizes) allowed the yarn volume fraction to converge to a single value (Figure 23). Table 1 and Table 2
contain the properties assigned to the tow and the matrix, respectively.

Figure 23 shows the volume fraction of the tows within the composite RUC as a function of the
number of voxels in the RUC. The Abaqus and NASMAT RUCs are identical, thus the volume fractions
are the same for both the simplified periodicity and laminate cases. The goal was to keep the tow volume
fraction as close as possible for all models and levels of discretization, but this is not possible as the
discretization changes. Figure 23 shows that, for a 6000 (6k) voxelization, there is a significant difference
between the periodic models and the laminate model, but for all four more refined RUCs, the discrepancy
is small. There is still, however, some discrepancy in the tow volume fractions as a function of RUC
voxel refinement, with this discrepancy decreasing as the refinement is increased (as expected). In
addition to the Abaqus and NASMAT voxelated models, predictions have made using classical
lamination theory (CLT) with a tow volume fraction of 58.9%. This value is plotted in Figure 23 for
comparison with the voxelated RUC models, although this is a single prediction (not a function of number
of voxels) based on a [90/30/–30/30]s laminate. The MATLAB code provided by Aboudi et al. (2021) was
used for the CLT calculations wherein the ply properties were determined from an HFGMC RUC
consisting of the tow material and matrix material, as depicted in Figure 24.

TABLE 1.—CONSTITUTIVE MATERIAL PROPERTIES OF TOWPREG
WITH 65% FIBER VOLUME FRACTION (T700/EPOXY)

E11, MPa E22, MPa E33, MPa ν12, - ν13, - ν23, - G12, MPa G13, MPa G23, MPa
143970 7450 7450 0.27 0.0676 0.0676 5600 3700 3700

NASA/TM-20240013073 21

TABLE 2.—CONSTITUTIVE MATERIAL
PROPERTIES OF EPOXY MATRIX

E, MPa ν, -
3300 0.35

Figure 23.—Volume fraction of the tows within the composite for each of the models as a function

of RUC voxel refinement. For the simplified periodicity and laminate cases, the Abaqus model
and the NASMAT model have identical tow volume fractions. The classical lamination theory
(CLT) prediction is not based on voxelization; a single value is plotted for comparison.

Figure 24.—HFGMC RUC used to calculate the ply properties for use in the CLT prediction of the composite

properties.

Results and Discussion
Predictions of Effective Properties

In order to compare the different numerical methods and periodicity conditions, multiple models were
created that were both analyzed in Abaqus or NASMAT (Table 3). Here, one can see that there are 5
different models, according to their periodicity conditions. Additionally, a CLT model was created and
compared against those in NASMAT and Abaqus, but it is not listed in Table 3. As discussed above, five
different refinement levels, ranging from 6000 (6k) voxels to 750,000 (750k) voxels, were created and
used to determine when the elastic moduli converged. The criterion for convergence was set to 5%,
whereby the elastic constants at the higher refinement level was compared with the ones below. Not only
must the difference in predicted moduli be below 5%, but it must be below this value for at least two
consecutive refinement levels to be considered converged. In this case, the 2 highest refinement levels
(384k, 750k) all showed converged behavior, having changes in elastic moduli below 5%.

Tow

Matrix

NASA/TM-20240013073 22

TABLE 3.—MODELS ORGANIZED ACCORDING TO
THEIR DIFFERENT PERIODICITY CONDITIONS

Model Simplified Periodicity Real Periodicity
NASMAT Wound RUC x
Abaqus Wound RUC x x
NASMAT Laminated RUC x
Abaqus Wound RUC x

For the Abaqus RUC models, the wound RUC was simulated with both simplified periodicity and

real periodicity while the laminated RUC required only simplified periodicity; since the laminated RUC
has no undulations, simplified periodicity and real periodicity give identical results. For the NASMAT
RUCs, only simplified periodicity conditions could be used since there is no way, currently, to stagger the
periodicity conditions.

Figure 25 compares the predicted in-plane Young’s moduli of the composite. In all cases, greater E11
is predicted (compared to E22) because the RUC band pattern (and CLT layup) is 75% ±30° and only 25%
90° (see Figure 25). Within the Abaqus results (solid lines), it is clear that the presence of undulation has
a noticeable effect. For example, in the case of the 750k voxel RUC, neglecting the undulation results in
an E11 and E22 that are 6.2 and 6.7% higher (respectively) than the prediction with real periodicity. The
differences in the Abaqus results for real vs. simplified periodicity are relatively small, with E11 and E22
exhibiting only a 1.1 and 2.5% difference (respectively) for the 750k voxel case. Although this difference
is small, it may become significant if damage occurs. Due to the different periodicity conditions, the loads
are carried differently in the domain of both RUCs, affecting how damage progresses within the domain
(see RUC Generation Program Explanation, specifically the section concerning the periodicity
conditions).

The NASMAT results for the laminate cases (with no undulation) in Figure 25 agree very well with
the corresponding Abaqus results. NASMAT’s E11 predictions are within 2.5% for discretization levels at
or above 162k, while for E22, the NASMAT and Abaqus predictions are nearly identical when neglecting
the undulation. For the simple periodicity case, which includes the undulations, the NASMAT E11
predictions are 1.5 to 2.9% lower than Abaqus for discretization levels at or above 162k with the
discrepancy decreasing for increasing refinement. The NASMAT to Abaqus agreement is even better in
the E22 predictions, with NASMAT predicting 0.8 to 2.1% lower values (again, at or above the or above
162k discretization). The main difference between finite element models, like Abaqus, and the HFGMC
model within NASMAT is the method used to enforce continuity and periodicity. Finite element models
do this in point-wise manner at the nodes, whereas HFGMC does this via surface averages over the sub-
volume faces. The results in Figure 25 indicate that the impact of this difference decreases as each method
converges based on its discretization. Figure 25 indicates that a refinement of 162k voxels is reasonably
converged compared to the results for the more refined models. A slight anomaly is present in the data is
386k E11 prediction by Abaqus with the real periodicity, which is a bit higher than expected.

As mentioned, a prediction of the in-plane moduli was also made using CLT, wherein the ply
properties were determined via an HFGMC model whose RUC is shown in Figure 24. This RUC provides
a close representation of the tow architecture used in the more refined Abaqus and NASMAT models, and
the RUC reflects the tow volume fraction of the more refined models quite well (see Figure 23). The
Abaqus and NASMAT laminate predictions (neglecting the undulations) are generally within 3 to 4% of
the CLT results, which is evidence that the models are implemented correctly.

NASA/TM-20240013073 23

Figure 25.—Predicted effective in-plane Young’s Moduli, E11 and E22, of the composite as a

function of RUC voxel refinement. The classical lamination theory (CLT) prediction is not based
on voxelization; a single value is plotted for comparison.

Figure 26 presents the in-plane shear modulus, G12, predictions of the Abaqus, NASMAT, and CLT
models. The trends and differences among the predictions are similar to those observed in the E11
predictions in Figure 25, with the exception of the effect of RUC discretization. The number of voxels in
the RUC appears to have a greater impact on the G12 predictions compared to both the E11 and E22
predictions, with a greater discrepancy between the coarser models and their more refined counterparts.

Figure 27 compares the predicted in-plane Poisson’s ratio, ν12, among the models. The Abaqus and
NASMAT models without undulation predict a lower ν12 compared to the cases with undulation.
Interestingly, the CLT prediction is somewhat higher compared to the Abaqus and NASMAT predictions,
and it actually is closer to the Abaqus and NASMAT predictions that include undulation. This is likely
coincidental as there is often significant variability in micromechanics prediction of matrix dominated
Poisson ratio’s (c.f., Aboudi et al., 2021), as they are based on small induced transverse strains. A key
distinction of the CLT model is that the yarns and matrix are homogenized to obtain effective ply
properties, whereas the Abaqus and NASMAT models retain separate yarn and matrix phases at the RUC
scale. Figure 25 to Figure 27 indicate that this difference impacts the effective ν12 prediction to a greater
extent compared to the moduli predictions.

NASA/TM-20240013073 24

Figure 26.—Predicted effective in-plane shear modulus, G12, of the composite as a function of

RUC voxel refinement. The classical lamination theory (CLT) prediction is not based on
voxelization; a single value is plotted for comparison.

Figure 27.—Predicted effective in-plane Poisson’s ratio, σ12, of the composite as a function of RUC

voxel refinement. The classical lamination theory (CLT) prediction is not based on voxelization; a
single value is plotted for comparison.

NASA/TM-20240013073 25

Predictions of Local Stress Fields

Figure 28 to Figure 30 show the 750k voxel Abaqus predictions for local stress fields in the yarns,
with the matrix between the yarns removed. These figures show the local in-plane normal and shear (σ11,
σ22, and σ12) fields, respectively, in response to a corresponding applied unit global stress component
(with all other global stress components kept at 0). Three Abaqus cases are compared: real periodicity,
simple periodicity, and laminate representation (with no yarn undulation). The results are generally quite
similar, with the differences between real and simple periodicity confined to the undulation regions. The
laminate representation, which has no yarn undulation, appears to approximate the yarn stresses away
from the undulations quite well.

Similarly, Figure 31 and Figure 32 show the 750k voxel Abaqus predictions for the in-plane normal
local stress fields in the matrix, with the yarns removed. Again, each local component shown in each
figure is in response to an applied corresponding unit global stress component. Stress concentrations
arising between the yarns are clear on the top surface of the RUC. The real and simple periodicity
predictions are again quite similar, with the real periodicity exhibiting some greater stress concentrations
for the σ11 field (c.f., Figure 31 top edge on faces normal to the x1-direction). In the σ22 field (Figure 32),
it appears that the simple periodicity predicts higher concentrations at some points. The matrix stresses for
the laminate representation of the composite are quite different from the models that include undulation.
There are still stress concentrations between the yarns, but the concentrations in the undulation regions
are (obviously) absent. Note that the matrix stress magnitudes are much lower than the yarn stress
magnitudes (due to the lower stiffness of the matrix, see Table 1 and Table 2). Given that the effective
properties are directly related to the volume averages of the stress components, the differences observed
in the matrix stress distributions contribute less to the composite effective properties than do the higher
stresses in the yarns. This is one reason the effective properties predicted by the laminate representation
are in reasonably good agreement with the other models despite the significant discrepancies in the local
matrix stress fields. The more approximate nature of the laminate representation matrix stress fields also
suggests that, if progressive damage were considered in the models, the laminate predictions would also
be more approximate compared to the models that include the undulation.

Figure 33 to Figure 37 compare the in-plane local stress field predictions of NASMAT with Abaqus
for the 750k voxel model with simple periodicity. Again, each local stress component shown is in
response to the corresponding applied global stress component, and the stress fields in the yarns and the
stress fields in the matrix are shown separately. The NASMAT local stress field predictions are in good
agreement with the Abaqus predictions, with NASMAT appearing to predict slightly higher stress
concentrations in the tows and Abaqus predicting slightly higher concentrations in the matrix. The good
correspondence between NASMAT and Abaqus in terms of the local field predictions corresponds with
the good agreement observed in their predicted effective properties.

NASA/TM-20240013073 26

Figure 28.—Abaqus σ11 local stress field predictions
(in MPa) for the yarns when the RUC is subjected to
a global unit σ11 stress (with all other global stress
components equal to zero). (a) Real periodicity.
(b) Simple periodicity. (c) Laminate (no undulation)

Figure 29.—Abaqus σ22 local stress field predictions
(in MPa) for the yarns when the RUC is subjected to
a global unit σ22 stress (with all other global stress
components equal to zero). (a) Real periodicity.
(b) Simple periodicity. (c) Laminate (no undulation).

NASA/TM-20240013073 27

Figure 30.—Abaqus σ12 local in-plane shear stress
field predictions (in MPa) for the yarns when the
RUC is subjected to a global unit σ12 in-plane shear
stress (with all other global stress components equal
to zero). (a) Real periodicity. (b) Simple periodicity.
(c) Laminate (no undulation).

Figure 31.—Abaqus σ11 local in-plane shear stress
field predictions (in MPa) for the matrix when the
RUC is subjected to a global unit σ11 stress (with all
other global stress components equal to zero).
(a) Real periodicity. (b) Simple periodicity.
(c) Laminate (no undulation).

NASA/TM-20240013073 28

Figure 32.—Abaqus σ22 local stress field predictions
(in MPa) for the matrix when the RUC is subjected to
a global unit σ22 stress (with all other global stress
components equal to zero). (a) Real periodicity.
(b) Simple periodicity. (c) Laminate (no undulation).

Figure 33.—Comparison of (a) Abaqus and (b) NASMAT σ11 local stress field predictions (in MPa) for the yarns when
the RUC is subjected to a global unit σ11 stress (with all other global stress components equal to zero).

Figure 34.—Comparison of (a) Abaqus and (b) NASMAT σ22 local stress field predictions (in MPa) for the yarns when
the RUC is subjected to a global unit σ22 stress (with all other global stress components equal to zero).

NASA/TM-20240013073 29

Figure 35.—Comparison of (a) Abaqus and (b) NASMAT σ12 local in-plane shear stress field predictions (in MPa) for
the yarns when the RUC is subjected to a global unit σ12 in-plane shear stress (with all other global stress
components equal to zero).

Figure 36.—Comparison of (a) Abaqus and (b) NASMAT σ11 local stress field predictions (in MPa) for the matrix
when the RUC is subjected to a global unit σ11 stress (with all other global stress components equal to zero).

Figure 37.—Comparison of (a) Abaqus and (b) NASMAT σ22 local stress field predictions (in MPa) for the matrix when
the RUC is subjected to a global unit σ22 stress (with all other global stress components equal to zero).

NASA/TM-20240013073 30

Conclusion
The subject of this paper was the elastic analysis of RUCs representing a wound composite

represented as a laminate compared to a more accurate representation accounting for undulations of the
yarns. In particular, a script (given in the Appendix) for generating wound RUCs was presented and a
study was undertaken to examine, evaluate, and compare quantitatively the following aspects of modeling
wound composites: (1) the effect of undulations, (2) the effect of model type (Abaqus vs. NASMAT), and
(3) the effect of simplified vs. more realistic PBCs.

Initially, the RUCs were compared against each other using their effective engineering constants. To
this end, a study was undertaken to determine the geometric refinement (voxel count) at which the
engineering constants would converge as well as the corresponding tow volume fraction at each voxel
count. Considering five refinements, ranging from 6,000 (6k) to 750,000 (750k) voxels, it was shown that
at a voxel count of 384k the models converged for all elastic moduli. The RUC with the highest values of
E11, E22, and G12 was the laminated RUC in both Abaqus and NASMAT, while the RUC with real PBCs
had very similar engineering constants to the RUC with simple PBCs in Abaqus. The RUC with the
lowest values of E11, E22, and G12 was the wound RUC with simple PBCs in NASMAT. For verification,
the results from Abaqus and NASMAT were also compared against effective engineering constants
calculated using CLT (with effective ply properties determined using HFGMC). CLT predicted values of
E11, E22, and G12 that landed in the middle of the range of other results, however, CLT predicted a higher
value of Poisson’s ratio than the other methods.

In addition, predicted elastic stress fields were compared for the 750k voxel models. Specifically, the
laminated RUC, the wound RUC with simple PBCs, and the wound RUC with real PBCs simulated in
Abaqus were compared, while the NASMAT and Abaqus predictions were compared for the wound RUC
with simple PBCs. The Abaqus real and simple PBC local stress field predictions were in good
agreement, as were those of NASMAT and Abaqus. The biggest observed discrepancy in the local stress
fields was in the matrix between the laminate representation and the representations that included the
undulations. Compared to the laminate RUC, the wound RUC undulation regions have stress levels 1.5 to
2.0 times greater in magnitude for both σ11 (Figure 31) and σ22 (Figure 32). This would be expected to
affect nonlinear model predictions (e.g., progressive damage), but the effective properties presented
herein are only minorly affected because of the lower stiffness of the matrix compared to the yarns.

Based on this study, the following conclusions can be made:

1. The effective engineering constants of a laminated RUC will generally be somewhat higher than
those of a wound RUC, regardless of the boundary conditions.

2. Simulating the wound RUC with both simple PBCs and real PBCs revealed that the differences in
effective engineering constants are quite small. Additionally, the elastic stress fields between the two
models were very similar. Thus, using simple PBCs instead of the real PBCs to simulate a wound
composite should yield a good approximation of the effective engineering constants and local elastic
stress fields. This simplification may be less effective in the presence of nonlinearities such as local
constituent damage.

3. Additionally, the predicted effective engineering constants and the local elastic stress fields between
both Abaqus and NASMAT were in good agreement (in terms of both stress field magnitude and
distribution), even when comparing real and standard periodicity against each other. However, the
difference between both programs becomes apparent when comparing run times for the 750k voxel
models. In Abaqus it was possible to leverage both the GPU (Nvidia RTX 4080 16Gb) and CPU
(AMD Threadripper Pro 5995X 64C/128T) during computation while NASMAT could only access

NASA/TM-20240013073 31

the CPU. For the sake of brevity, the solver times for the wound RUCs will only be compared, since
the same trend also holds true for the laminated RUCs. In Abaqus, using C3D8R elements, the total
solver time using 1x logical processor (thread) and 1x GPU was 2257s and 1297s for real periodicity
and standard periodicity, respectively. Additionally, the solver time for the same models in Abaqus
using 64x logical processors (threads) for real periodicity was 706s and for standard periodicity it was
301s. In NASMAT, the total solver time using 3D HFGMC for standard periodicity using 64x logical
processors (threads) was 3362s, a more than 10x difference in runtime when compared against
Abaqus. Based on the homogenization theory used in NASMAT, the runtimes can change drastically.
Multi-step homogenization can also be used to reduce the size of the global problem, leading to
improved run times.

4. CLT provides a prediction of the effective engineering constants that fits the middle of the data;
however, the prediction of Poisson’s ratio was highest of all methods, thus appearing to be
overpredicted.

5. Based on the elastic stress fields in the matrix, it seems that the highest stressed regions occur near
points of undulation, indicating that damage would likely initiate in these regions. When compared to
the laminate RUC, the wound RUC undulation regions have stress levels 1.5 to 2.0 times greater in
magnitude for both σ11 (Figure 31) and σ22 (Figure 32). These are neglected by the laminate
representation, and they also represent the regions of the largest discrepancies among the models.

6. All analyses in Abaqus leveraged the GPU (Nvidia RTX 4080 16Gb) during computation while the
NASMAT models used strictly the CPU (AMD Threadripper Pro 5995X 64C/128T).

Furthermore, the study conducted herein will be extended to the following topics:

1. Thermal Loading: Mechanical loading in the elastic regime has been thoroughly investigated in the
manuscript, particularly the resulting in plane elastic stress fields. A simple extension of this model to
include thermal loading in the elastic regime can be done, wherein a unit uniform temperature change
would be applied, resulting in local stress fields due to the mismatch in properties between the yarns
and the matrix.

2. Multistep Homogenization: In the present study, the one step 3D HFGMC homogenization technique
was implemented, effectively modeling a RUC at a single length scale. However, it is possible to
perform a multistep homogenization, reducing the size of the global problem (in terms of systems of
equations), leveraging NASMAT’s recursive modeling ability. In this case, a RUC consisting of fiber
and matrix constituents is homogenized and represents effective yarn properties. Next, these yarn unit
cells are stacked / oriented appropriately to represent locally the layup and are subsequently
homogenized. Finally, these stacks are placed accordingly as to reconstruct the desired global RUC
and homogenized using 2D homogenization at the global scale, smearing the properties effectively
into a single plane at the highest length scale.

NASA/TM-20240013073 33

Appendix—RUC Generation Code
from TexGen.Core import *
import math

###

#-- Classes
###

class BandDefinition:
 """Class for defining yarn characteristics"""

 def __init__(self, yarn_width: float, yarn_thickness: float, yarn_count:
float, yarn_spacing: float = 0, shape_factor: float = 1, shape: str =
"PowerEllipse") -> None:
 # -- Exceptions
 if yarn_width <= 0:
 raise ValueError("Yarn width must be finite and positive")
 if yarn_thickness <= 0:
 raise ValueError("Yarn thickness must be finite and positive")
 if yarn_count == 1:
 print("Yarn count is equal to 1, yarn spacing has been set to 0")
 yarn_spacing = 0

 # -- Band Attributes
 self.yarn_width = yarn_width
 self.yarn_thickness = yarn_thickness
 self.yarn_count = yarn_count
 self.yarn_spacing = yarn_spacing
 self.shape = shape
 self.shape_factor = shape_factor
 self.band_width = self.yarn_width * self.yarn_count + (self.yarn_count -
1) * self.yarn_spacing

 def yarn_shape(self):
 "Method for defining the yarn cross section shape"
 if self.shape == "Lenticular":
 return CSectionLenticular(self.yarn_width, self.yarn_thickness)
 elif self.shape == "Ellipse":
 return CSectionEllipse(self.yarn_width, self.yarn_thickness)
 elif self.shape == "PowerEllipse":
 return CSectionPowerEllipse(self.yarn_width, self.yarn_thickness,
self.shape_factor)

class WoundPattern:
 """Class defining the wound pattern to the generated pattern"""

 def __init__(self, band_straight: object, band_angled: object, band_count:
int, band_space: float, angle: float, band_gap_z: float = 0, render_hoop:
bool = False) -> None:
 # -- Exceptions
 if band_count <= 0:
 raise ValueError("A postive, integer number of yarns must be defined")
 if angle < 0 or angle > 70:
 raise ValueError("Yarn angle must be between 0 degrees and 70 degrees")

NASA/TM-20240013073 34

 if band_space < 0:
 raise ValueError("Yarn spacing must be greater than or equal to 0")

 # -- Primitive Pattern Attributes
 self.band_straight = band_straight
 self.band_angled = band_angled
 self.band_gap_z = band_gap_z
 self.band_space = band_space
 self.band_count = band_count
 self.render_hoop = render_hoop

 # -- Derived Local Pattern Attributes
 self._ANGLE = angle * math.pi / 180
 self._VB_OFFSET = (self.band_angled.band_width / 2) /
math.cos(self._ANGLE)
 self._VB_OFFSET_GAP = self.band_space / (math.cos(self._ANGLE))
 self._XB_DOMAIN_LENGTH = self.band_count * self.band_straight.band_width
+\ (self.band_count - 1) * self.band_space
 self._YB_DOMAIN_LENGTH = self._XB_DOMAIN_LENGTH * (1 +
math.sin(self._ANGLE))

 # -- Private TexGen Band Lists
 self._band_list_straight =
self.__generate_Bandlist(band=self.band_straight)
 self._band_list_angled = self.__generate_Bandlist(band=self.band_angled)
 self.extra_band_list = self.__generate_Bandlist(band=band_angled)
 self.extra_band_list_lower = self.__generate_Bandlist(band=band_angled)
 self.hoop_band_list = self.__generate_Bandlist(band=band_angled)
 self.extra_band_list.pop(), self.extra_band_list_lower.pop()

 self._Textile = CTextile()
 self.bottom_y_domain = self._YB_DOMAIN_LENGTH - self.band_count *
self.band_angled.band_width / math.cos(self._ANGLE) - (self.band_count) *
self.band_space / math.cos(self._ANGLE) - self._XB_DOMAIN_LENGTH *
math.tan(self._ANGLE)
 self.top_y_domain = 0.5 * self.band_space / math.cos(self._ANGLE)
 # + (self.band_angled.yarn_width + 2 * self.band_space) / (2 *
math.cos(self._ANGLE))

 def __generate_Bandlist(self, band: object) -> list[list]:
 "Returns a tuple containing tuples of yarn objects for each yarn in each
band"
 return [[CYarn() for _ in range(band.yarn_count)] for _ in
range(self.band_count)]

 def __get_diamond_pattern(self) -> None:
 "Private method for calculating straight sections inside WoundPattern
class"

 inc = self.band_straight.band_width / 4 # -- mm
 for ib, band in enumerate(self._band_list_straight):
 # -- starting center coordinate for each angled band
 x_ab0 = self._XB_DOMAIN_LENGTH
 y_ab0 = self._YB_DOMAIN_LENGTH - ib * (self.band_angled.band_width +
self.band_space) / math.cos(self._ANGLE) - 0.5 * self.band_angled.yarn_width
/ math.cos(self._ANGLE)

NASA/TM-20240013073 35

 y_ab0_hoop = self._YB_DOMAIN_LENGTH - ib * (self.band_angled.band_width
+ self.band_space) / math.cos(self._ANGLE) - 0.5 *
self.band_angled.yarn_width / math.cos(self._ANGLE)
 z_ab0 = 0 - self.band_gap_z / 2 if ib == len(self._band_list_straight)
- 1 else self.band_straight.yarn_thickness + self.band_gap_z / 2
 # -- starting center coordinate for each straight band
 x_sb0 = (ib + .5) * self.band_straight.band_width + ib *
self.band_space
 # - 0.5 * self.band_space
 y_sb0 = 0
 z_sb0 = self.band_straight.yarn_thickness - self.band_gap_z / 2
 # -- end coordinate of each angled band
 x_ab1 = x_sb0
 y_ab1 = y_ab0 - abs(x_ab1 - x_ab0) * math.tan(self._ANGLE)
 z_ab1 = 0 - self.band_gap_z / 2 if ib == len(self._band_list_straight)
- 1 else self.band_straight.yarn_thickness + self.band_gap_z / 2

 for iy, yarn in enumerate(band):
 # -- adjusts the y coordinate in each band based on angle
 seq_yarn_y_adjust = (self.band_straight.yarn_width +
self.band_straight.yarn_spacing) * math.tan(self._ANGLE)

 # -- starting coordinate for each angled yarn relative to center
starting coordinate of angled band ib
 x_ay0 = x_ab0
 y_ay0 = y_ab0 - iy * (self.band_straight.yarn_width +
self.band_straight.yarn_spacing) / math.cos(self._ANGLE)
 z_ay0 = z_ab0
 # -- starting coordinate for each straight yarn relative to center of
straight band ib
 x_sy0 = x_sb0 + (iy - 0.5 * (self.band_straight.yarn_count - 1)) *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing)
 y_sy0 = y_sb0 - self.band_straight.yarn_width + iy *
seq_yarn_y_adjust
 z_sy0 = self.band_straight.yarn_thickness - self.band_gap_z / 2
 # -- end coordinate for each angled yarn relative to center end
coordinate of angled band ib
 x_ay1 = x_sb0 + 0.5 * self.band_straight.band_width +
1.5*self.band_space
 y_ay1 = y_ay0 - abs(x_ay0 - x_sb0 - 0.5 *
self.band_straight.band_width - 1.5*self.band_space)* math.tan(self._ANGLE)
 z_ay1 = z_ab1
 # -- end coordinate for each straight yarn relative to center of
straight band ib
 x_sy1 = x_sb0 + (iy - 0.5 * (self.band_straight.yarn_count - 1)) *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing)
 y_sy1 = y_ab1 - (self.band_straight.yarn_count / 2 - 0.5) *
self.band_straight.yarn_width * math.tan(self._ANGLE) -
(self.band_straight.yarn_count / 2 - 0.5) * self.band_straight.yarn_width /
math.cos(self._ANGLE) - ((self.band_straight.yarn_count - 1) / 2) *
self.band_straight.yarn_spacing * math.tan(self._ANGLE) + iy *
seq_yarn_y_adjust - \
 ((self.band_straight.yarn_count / 2) * self.band_straight.yarn_width
/ math.cos(self._ANGLE) + 0.5 * self.band_space / math.cos(self._ANGLE))
 # y_sy1 = (y_ab1 - (self.band_straight.yarn_count / 2 - 0.5) *
self.band_straight.yarn_width * math.tan(self._ANGLE) -
(self.band_straight.yarn_count / 2 - 0.5) * self.band_straight.yarn_width /

NASA/TM-20240013073 36

math.cos(self._ANGLE) - ((self.band_straight.yarn_count - 1) / 2) *
self.band_straight.yarn_spacing * math.tan(self._ANGLE) -
((self.band_straight.yarn_count - 1) / 2)* self.band_angled.yarn_spacing /
math.cos(self._ANGLE)) + iy * seq_yarn_y_adjust - \
 # ((self.band_straight.yarn_count / 2) *
self.band_straight.yarn_width / math.cos(self._ANGLE) +
((self.band_straight.yarn_count - 1) / 2) * self.band_angled.yarn_spacing /
math.cos(self._ANGLE) + 0.5 * self.band_space / math.cos(self._ANGLE))
 z_sy1 = z_sb0

 # -- Points for straight yarns
 # point_list_straight_bot_0 = [(x_sy0, -0.5 * self._YB_DOMAIN_LENGTH,
z_sy0 - self.band_straight.yarn_thickness), (x_sy0, y_sy1 - (self.band_count
- ib - 1) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE) - self.band_space / math.cos(self._ANGLE), z_sy0 -
self.band_straight.yarn_thickness)]
 # point_list_straight_top_0 = [(x_sy0, y_sy1 - (self.band_count - ib
- 1) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE) + 1 * self.band_space / math.cos(self._ANGLE),
self.band_angled.yarn_thickness + self.band_gap_z / 2), (x_sy0, y_sy1 +
self.band_angled.band_width / math.cos(self._ANGLE),
self.band_angled.yarn_thickness + self.band_gap_z / 2)]
 # point_list_straight_bot_1 = [(x_sy0, y_sy1 +
self.band_angled.band_width / math.cos(self._ANGLE) + 2*self.band_space /
math.cos(self._ANGLE), z_sy0 - self.band_straight.yarn_thickness), (x_sy0,
1.25*self._YB_DOMAIN_LENGTH, z_sy0 - self.band_straight.yarn_thickness)]
 point_list_straight_bot_0 = [(x_sy0, -0.5 * self._YB_DOMAIN_LENGTH,
z_sy0 - self.band_straight.yarn_thickness), (x_sy0, y_sy1 - (self.band_count
- ib - 1) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE) - 2 * self.band_space / math.cos(self._ANGLE), z_sy0 -
self.band_straight.yarn_thickness)]
 point_list_straight_top_0 = [(x_sy0, y_sy1 - (self.band_count - ib -
1) * (self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE)
+ 2 * self.band_space / math.cos(self._ANGLE),
self.band_angled.yarn_thickness + self.band_gap_z / 2), (x_sy0, y_sy1 +
self.band_angled.band_width / math.cos(self._ANGLE) - 1 * self.band_space /
math.cos(self._ANGLE), self.band_angled.yarn_thickness + self.band_gap_z /
2)]
 point_list_straight_bot_1 = [(x_sy0, y_sy1 +
self.band_angled.band_width / math.cos(self._ANGLE) + 3*self.band_space /
math.cos(self._ANGLE), z_sy0 - self.band_straight.yarn_thickness), (x_sy0,
1.25*self._YB_DOMAIN_LENGTH, z_sy0 - self.band_straight.yarn_thickness)]
 # -- Points for angled yarns
 # point_list_angled_0 = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0 +
abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 -
self.band_gap_z/2), (x_ay1, y_ay1, z_ay1 - self.band_gap_z/2)]
 # point_list_angled_1 = [(x_ay1 - 2 * self.band_space, y_ay1 - abs(2
* self.band_space) * math.tan(self._ANGLE), z_ay1 - self.band_gap_z/2 -
self.band_angled.yarn_thickness), (-0.25 * self._XB_DOMAIN_LENGTH, y_ay1 -
abs(0.25 * self._XB_DOMAIN_LENGTH + (x_ay1 - 2 * self.band_space)) *
math.tan(self._ANGLE) - abs(2 * self.band_space) * math.tan(self._ANGLE),
z_ay1 - self.band_gap_z/2 - self.band_angled.yarn_thickness)]
 # point_list_angled_11 = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0 +
abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 +
self.band_angled.yarn_thickness / 2 - self.band_gap_z / 2), (-.25 *
self._XB_DOMAIN_LENGTH, y_ay0 - abs(1.25 * self._XB_DOMAIN_LENGTH) *

NASA/TM-20240013073 37

math.tan(self._ANGLE), z_ay1 + self.band_angled.yarn_thickness / 2 -
self.band_gap_z / 2)]

 # point_list_angled_lower_0 = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0
+ abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 -
self.band_gap_z / 2 - self.band_angled.yarn_thickness),
(self._XB_DOMAIN_LENGTH + self.band_space, y_ay0 + abs(self.band_space) *
math.tan(self._ANGLE), z_ay1 - self.band_gap_z / 2 -
self.band_angled.yarn_thickness)]
 point_list_angled_0 = [(1.25*self._XB_DOMAIN_LENGTH -
self.band_space, y_ay0 + abs(0.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE), z_ay1 - self.band_gap_z/2), (x_ay1, y_ay1, z_ay1 -
self.band_gap_z/2)]
 # point_list_angled_0 = [(self._XB_DOMAIN_LENGTH - self.band_space,
y_ay0 - abs(self.band_space) * math.tan(self._ANGLE), z_ay1 -
self.band_gap_z/2), (x_ay1, y_ay1, z_ay1 - self.band_gap_z/2)]
 point_list_angled_1 = [(x_ay1 - 3 * self.band_space, y_ay1 - abs(3 *
self.band_space) * math.tan(self._ANGLE), z_ay1 - self.band_gap_z/2 -
self.band_angled.yarn_thickness), (-0.25 * self._XB_DOMAIN_LENGTH, y_ay1 -
abs(0.25 * self._XB_DOMAIN_LENGTH + (x_ay1 - 1 * self.band_space)) *
math.tan(self._ANGLE) - abs(1 * self.band_space) * math.tan(self._ANGLE),
z_ay1 - self.band_gap_z/2 - self.band_angled.yarn_thickness)]

 point_list_angled_lower_11_0 = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0
+ abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 +
0*self.band_gap_z / 2 + 0*self.band_angled.yarn_thickness),
(self._XB_DOMAIN_LENGTH + self.band_space, y_ay0 + abs(self.band_space) *
math.tan(self._ANGLE), z_ay1 + 0*self.band_gap_z / 2 +
0*self.band_angled.yarn_thickness)]
 point_list_angled_11 = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0 +
abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 +
self.band_gap_z/2), (-.25 * self._XB_DOMAIN_LENGTH, y_ay0 - abs(1.25 *
self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 + self.band_gap_z/2)]
 point_list_angled_11 = [(self._XB_DOMAIN_LENGTH - self.band_space,
y_ay0 - abs(self.band_space) * math.tan(self._ANGLE), z_ay1 +
self.band_gap_z/2), (-.25 * self._XB_DOMAIN_LENGTH, y_ay0 - abs(1.25 *
self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE), z_ay1 + self.band_gap_z/2)]

 # point_list_angled_e_upper = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0
+ abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) + (2*ib + 1) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2), (-.25 * self._XB_DOMAIN_LENGTH, y_ay0 -
abs(1.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) + (2*ib + 1) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2)]
 # point_list_angled_e_lower_0 = [(1.25 * self._XB_DOMAIN_LENGTH,
y_ay0 + abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) -
(self.band_count) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 - self.band_gap_z / 2 -
self.band_angled.yarn_thickness), (self._XB_DOMAIN_LENGTH + self.band_space,
y_ay0 + abs(self.band_space) * math.tan(self._ANGLE) - (self.band_count) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2 - self.band_angled.yarn_thickness)]
 # point_list_angled_e_lower_1 = [(self._XB_DOMAIN_LENGTH, y_ay0 +
abs(0 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) - (self.band_count) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),

NASA/TM-20240013073 38

z_ay1 - self.band_gap_z / 2), (-.25 * self._XB_DOMAIN_LENGTH, y_ay0 -
abs(1.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) -
(self.band_count) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 - self.band_gap_z / 2)]
 point_list_angled_e_upper = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0 +
abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) + (2*ib + 1) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2), (-.25 * self._XB_DOMAIN_LENGTH, y_ay0 -
abs(1.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) + (2*ib + 1) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2)]
 # point_list_angled_e_lower_0 = [(1.25 * self._XB_DOMAIN_LENGTH,
y_ay0 + abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) -
(self.band_count) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 - self.band_gap_z / 2 -
0*self.band_angled.yarn_thickness), (self._XB_DOMAIN_LENGTH +
self.band_space, y_ay0 + abs(self.band_space) * math.tan(self._ANGLE) -
(self.band_count) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 - self.band_gap_z / 2 -
0*self.band_angled.yarn_thickness)]
 point_list_angled_e_lower_0 = [(1.25 * self._XB_DOMAIN_LENGTH, y_ay0
+ abs(.25 * self._XB_DOMAIN_LENGTH) * math.tan(self._ANGLE) -
(self.band_count) * (self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 - self.band_gap_z / 2 -
self.band_angled.yarn_thickness), (self._XB_DOMAIN_LENGTH + self.band_space,
y_ay0 + abs(self.band_space) * math.tan(self._ANGLE) - (self.band_count) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2 - self.band_angled.yarn_thickness)]
 point_list_angled_e_lower_1 = [(self._XB_DOMAIN_LENGTH -
self.band_space, y_ay0 - abs(0 * self._XB_DOMAIN_LENGTH - self.band_space) *
math.tan(self._ANGLE) - (self.band_count) * (self.band_angled.band_width +
self.band_space) / math.cos(self._ANGLE), z_ay1 - self.band_gap_z / 2), (-.25
* self._XB_DOMAIN_LENGTH, y_ay0 - abs(1.25 * self._XB_DOMAIN_LENGTH -
self.band_space) * math.tan(self._ANGLE) - (self.band_count) *
(self.band_angled.band_width + self.band_space) / math.cos(self._ANGLE),
z_ay1 - self.band_gap_z / 2)]
 # -- Points for hoop layers
 point_list_hoop_bot = [(1.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop -
iy * (self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) - abs(.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE), z_ay1 + 2.5 * self.band_angled.yarn_thickness / 2), (-
.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop - iy *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) + abs(1.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE), z_ay1 + 2.5 * self.band_angled.yarn_thickness / 2)]
 point_list_hoop_top = [(1.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop -
iy * (self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) - abs(.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE) - 0.5*(self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 + 7 * self.band_angled.yarn_thickness / 2 +
self.band_gap_z), (-.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop - iy *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) + abs(1.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE) - 0.5*(self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 + 7 * self.band_angled.yarn_thickness / 2 +
self.band_gap_z)]

NASA/TM-20240013073 39

 # -- Yarn Generation
 if ib < self.band_count - 1:
 create_yarn_segment(coordinate_list=point_list_straight_bot_0,
yarn=yarn, yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_straight_top_0,
yarn=yarn, yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_straight_bot_1,
yarn=yarn, yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)

 # -- new
 # create_yarn_segment(coordinate_list=point_list_angled_lower_0,
yarn=self._band_list_angled[ib][iy],
yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)

 create_yarn_segment(coordinate_list=point_list_angled_0,
yarn=self._band_list_angled[ib][iy],
yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_angled_1,
yarn=self._band_list_angled[ib][iy],
yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_angled_e_upper,
yarn=self.extra_band_list[ib][iy], yarn_shape=self.band_angled.yarn_shape(),
increment=inc, rotation=-self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_angled_e_lower_0,
yarn=self.extra_band_list_lower[ib][iy],
yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_angled_e_lower_1,
yarn=self.extra_band_list_lower[ib][iy],
yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)
 self.__instantiate_yarn(yarn_list=self.extra_band_list[ib])
 self.__instantiate_yarn(yarn_list=self.extra_band_list_lower[ib])

 else:
 create_yarn_segment(coordinate_list=point_list_straight_bot_0,
yarn=yarn, yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_straight_top_0,
yarn=yarn, yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_straight_bot_1,
yarn=yarn, yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)

 create_yarn_segment(coordinate_list=point_list_angled_lower_11_0,
yarn=self._band_list_angled[ib][iy],
yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_angled_11,
yarn=self._band_list_angled[ib][iy],

NASA/TM-20240013073 40

yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)

 if self.render_hoop is True:
 # -- Adds Hoop Layers
 if ib == 0:
 create_yarn_segment(coordinate_list=point_list_hoop_bot,
yarn=self.hoop_band_list[0][iy], yarn_shape=self.band_angled.yarn_shape(),
increment=inc, rotation=self._ANGLE)
 repeat_vector_bot = XYZ(0, (self.band_space +
self.band_angled.band_width) / math.cos(self._ANGLE), 0)
 self.hoop_band_list[ib][iy].SetRepeats([repeat_vector_bot])

 elif ib == self.band_count-1:
 create_yarn_segment(coordinate_list=point_list_hoop_top,
yarn=self.hoop_band_list[ib][iy], yarn_shape=self.band_angled.yarn_shape(),
increment=inc, rotation=self._ANGLE)
 repeat_vector_top = XYZ(0, (self.band_space +
self.band_angled.band_width) / math.cos(self._ANGLE), 0)
 self.hoop_band_list[ib][iy].SetRepeats([repeat_vector_top])

 # -- Interpolates over nodes to create yarn
 self.__instantiate_yarn(yarn_list=band)
 self.__instantiate_yarn(yarn_list=self._band_list_angled[ib])
 self.__instantiate_yarn(yarn_list=self.hoop_band_list[0])
 self.__instantiate_yarn(yarn_list=self.hoop_band_list[-1])

 def __get_lamination_pattern(self) -> None:

 inc = self.band_straight.band_width / 4 # -- mm
 for ib, band in enumerate(self._band_list_straight):
 # -- starting center coordinate for each angled band
 x_ab0 = 1.25 * self._XB_DOMAIN_LENGTH
 y_ab0 = self._YB_DOMAIN_LENGTH - ib * (self.band_angled.band_width +
self.band_space) / math.cos(self._ANGLE) - 0.5 * self.band_angled.yarn_width
/ math.cos(self._ANGLE)
 y_ab0_hoop = self._YB_DOMAIN_LENGTH - ib * (self.band_angled.band_width
+ self.band_space) / math.cos(self._ANGLE) - 0.5 *
self.band_angled.yarn_width / math.cos(self._ANGLE)
 z_ab0 = self.band_straight.yarn_thickness + self.band_gap_z / 2
 # -- starting center coordinate for each straight band
 x_sb0 = (ib + .5) * self.band_straight.band_width + ib *
self.band_space
 # - 0.5 * self.band_space
 y_sb0 = 0
 z_sb0 = self.band_straight.yarn_thickness - self.band_gap_z / 2
 # -- end coordinate of each angled band
 x_ab1 = -0.25 * self._XB_DOMAIN_LENGTH
 y_ab1 = y_ab0 - abs(x_ab1 - x_ab0) * math.tan(self._ANGLE)
 z_ab1 = self.band_straight.yarn_thickness + self.band_gap_z / 2

 for iy, yarn in enumerate(band):
 # -- adjusts the y coordinate in each band based on angle
 seq_yarn_y_adjust = (self.band_straight.yarn_width +
self.band_straight.yarn_spacing) * math.tan(self._ANGLE)

NASA/TM-20240013073 41

 # -- starting coordinate for each angled yarn relative to center
starting coordinate of angled band ib
 x_ay0 = x_ab0
 y_ay0 = y_ab0 - iy * (self.band_straight.yarn_width +
self.band_straight.yarn_spacing) / math.cos(self._ANGLE)
 z_ay0 = z_ab0
 # -- starting coordinate for each straight yarn relative to center of
straight band ib
 x_sy0 = x_sb0 + (iy - 0.5 * (self.band_straight.yarn_count - 1)) *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing)
 y_sy0 = - 0.25 * self._YB_DOMAIN_LENGTH
 z_sy0 = self.band_straight.yarn_thickness - self.band_gap_z / 2
 # -- end coordinate for each angled yarn relative to center end
coordinate of angled band ib
 x_ay1 = x_ab1
 # y_ay1 = y_ab0 - iy * (self.band_straight.yarn_width +
self.band_straight.yarn_spacing) / math.cos(self._ANGLE)
 y_ay1 = y_ay0 - abs(x_ay1 - x_ay0)* math.tan(self._ANGLE)
 z_ay1 = z_ab1
 # -- end coordinate for each straight yarn relative to center of
straight band ib
 x_sy1 = x_sb0 + (iy - 0.5 * (self.band_straight.yarn_count - 1)) *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing)
 y_sy1 = 1.25 * self._YB_DOMAIN_LENGTH
 z_sy1 = z_sb0

 point_straight = [(x_sy0, y_sy0, z_sy0 -
self.band_straight.yarn_thickness / 2 - self.band_gap_z / 2), (x_sy1, y_sy1,
z_sy1 - self.band_straight.yarn_thickness / 2 - self.band_gap_z / 2)]
 point_angled = [(x_ay0, y_ay0, z_ay0), (x_ay1, y_ay1, z_ay1)]
 point_list_hoop_bot = [(1.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop -
iy * (self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) - abs(.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE), z_ay1 + 2.5 * self.band_angled.yarn_thickness / 2), (-
.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop - iy *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) + abs(1.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE), z_ay1 + 2.5 * self.band_angled.yarn_thickness / 2)]
 point_list_hoop_top = [(1.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop -
iy * (self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) - abs(.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE) - 0.5*(self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 + 4.5 * self.band_angled.yarn_thickness / 2 +
self.band_gap_z / 2), (-.25 * self._XB_DOMAIN_LENGTH, y_ab0_hoop - iy *
(self.band_straight.yarn_width + self.band_straight.yarn_spacing) /
math.cos(self._ANGLE) + abs(1.25 * self._XB_DOMAIN_LENGTH) *
math.tan(self._ANGLE) - 0.5*(self.band_angled.band_width + self.band_space) /
math.cos(self._ANGLE), z_ay1 + 4.5 * self.band_angled.yarn_thickness / 2 +
self.band_gap_z / 2)]

 if ib == 0:
 create_yarn_segment(coordinate_list=point_straight, yarn=yarn,
yarn_shape=self.band_straight.yarn_shape(), increment=inc,
rotation=self._ANGLE)
 create_yarn_segment(coordinate_list=point_angled,
yarn=self._band_list_angled[ib][iy],

NASA/TM-20240013073 42

yarn_shape=self.band_angled.yarn_shape(), increment=inc, rotation=-
self._ANGLE)
 create_yarn_segment(coordinate_list=point_list_hoop_bot,
yarn=self.hoop_band_list[0][iy], yarn_shape=self.band_angled.yarn_shape(),
increment=inc, rotation=self._ANGLE)

 repeat_vector_straight = XYZ(self.band_straight.band_width +
self.band_space, 0, 0)
 repeat_vector_angled = XYZ(0, (self.band_straight.band_width +
self.band_space) / math.cos(self._ANGLE), 0)
 repeat_vector_bot = XYZ(0, (self.band_space +
self.band_angled.band_width) / math.cos(self._ANGLE), 0)

 self.hoop_band_list[ib][iy].SetRepeats([repeat_vector_bot])
 yarn.SetRepeats([repeat_vector_straight])
 self._band_list_angled[ib][iy].SetRepeats([repeat_vector_angled])

 # self.__instantiate_yarn(yarn_list=band)
 self.__instantiate_yarn(yarn_list=self._band_list_angled[ib])

 # elif ib == self.band_count-1:
 # create_yarn_segment(coordinate_list=point_list_hoop_top,
yarn=self.hoop_band_list[ib][iy], yarn_shape=self.band_angled.yarn_shape(),
increment=inc, rotation=self._ANGLE)
 # repeat_vector_top = XYZ(0, (self.band_space +
self.band_angled.band_width) / math.cos(self._ANGLE), 0)
 # self.hoop_band_list[ib][iy].SetRepeats([repeat_vector_top])

 # self.__instantiate_yarn(yarn_list=self.hoop_band_list[0])
 # self.__instantiate_yarn(yarn_list=self.hoop_band_list[-1])

 def __instantiate_yarn(self, yarn_list) -> None:

 for yarn in yarn_list:
 # Set the interpolation function
 yarn.AssignInterpolation(CInterpolationCubic(True, True, True))
 # Set the resolution of the surface mesh created
 yarn.SetResolution(500, 50)
 # Add yarn to textile in TexGen
 self._Textile.AddYarn(yarn)

 def generate_wound_pattern(self) -> None:
 # -- Assign straigh sections to pattern
 self.__get_diamond_pattern()
 # self.__get_lamination_pattern()

 # Create a domain and assign it to the textile
 self._Textile.AssignDomain(CDomainPlanes(XYZ(0, self.bottom_y_domain, -1
* YARN_THICK), XYZ(self._XB_DOMAIN_LENGTH + self.band_space,
self._YB_DOMAIN_LENGTH + self.top_y_domain, 2*self.band_gap_z + 4 *
YARN_THICK)))
 # 4.5 * YARN_THICK
 # Add the textile
 AddTextile("Wound_Pattern_{}-Deg_{}-Bands".format(round(self._ANGLE * 180
/ math.pi), self.band_count), self._Textile)

NASA/TM-20240013073 43

###

#-- Utility Functions
###

def create_yarn_segment(coordinate_list: list, yarn: object, yarn_shape:
object, increment: float, rotation: float = 0) -> None:

 for i in range(len(coordinate_list)-1):
 assign_nodes(yarn=yarn, yarn_shape=yarn_shape,
coordinate_vector_0=coordinate_list[i],
coordinate_vector_1=coordinate_list[i+1], increment=increment,
cs_rotation=rotation)

def assign_nodes(yarn: object, yarn_shape: object, coordinate_vector_0:
tuple, coordinate_vector_1: tuple, increment: float, cs_rotation: float = 0,
) -> None:
 """Assigns a specified number of nodes to a specified yarn"""
 x0, y0, z0 = coordinate_vector_0

 dist = get_distance(coordinate_vector_0=coordinate_vector_0,
coordinate_vector_1=coordinate_vector_1)
 n_nodes = math.ceil(dist / increment)
 dx, dy, dz = vector_subtact(coordinate_vector_0=coordinate_vector_0,
coordinate_vector_1=coordinate_vector_1)
 inc_x, inc_y, inc_z = dx / n_nodes, dy / n_nodes, dz / n_nodes
 shape = CSectionPowerEllipse(YARN_WIDTH / math.cos(cs_rotation),
YARN_THICK, SHAPE_FACTOR)

 for j in range(n_nodes+1):
 node = CNode(XYZ(x0 + j*inc_x, y0 + j*inc_y, z0 + j*inc_z))
 node.SetAngle(cs_rotation)
 yarn.AddNode(node)

 yarn.AssignSection(CYarnSectionConstant(shape))

def vector_subtact(coordinate_vector_0: tuple, coordinate_vector_1: tuple) ->
tuple:
 "Performs element-wise subtraction on two vectors of length 3"
 if len(coordinate_vector_0) != len(coordinate_vector_1):
 raise ValueError("Vector 1 and vector 2 are not equal in length: ({} vs
{})".format(len(coordinate_vector_0), len(coordinate_vector_1)))

 x0, y0, z0 = coordinate_vector_0
 x, y, z = coordinate_vector_1

 return x - x0, y - y0, z - z0

def get_distance(coordinate_vector_0: tuple, coordinate_vector_1: tuple) ->
float:
 "Returns the distance between 2 points in 3D space"
 if len(coordinate_vector_0) != len(coordinate_vector_1):
 raise ValueError("Vector 1 and vector 2 are not equal in length: ({} vs
{})".format(len(coordinate_vector_0), len(coordinate_vector_1)))

NASA/TM-20240013073 44

 x0, y0, z0 = coordinate_vector_0
 x1, y1, z1 = coordinate_vector_1

 return math.sqrt((x1 - x0)**2 + (y1 - y0)**2 + (z1 - z0)**2)

###

-- User Defined Inputs
###

-- Band Definition Constants
YARN_WIDTH: float = 4.0
YARN_THICK: float = 0.4
YARN_COUNT: int = 2
YARN_SPACE: float = 0.0
YARN_SHAPE: str = "PowerEllipse"
SHAPE_FACTOR: float = 0.6

-- Pattern Definition Constants
BAND_ANGLE: float = 0
BAND_COUNT: int = 2
BAND_SPACE: float = .4
BAND_GAP_Z: float = 0.1

###

-- End of User Defined Inputs
###

-- Object Instantiation
BandStraight = BandDefinition(yarn_width=YARN_WIDTH,
yarn_thickness=YARN_THICK, shape=YARN_SHAPE,
 shape_factor=SHAPE_FACTOR, yarn_spacing=YARN_SPACE,
yarn_count=YARN_COUNT)
BandAngled = BandDefinition(yarn_width=YARN_WIDTH, yarn_thickness=YARN_THICK,
shape=YARN_SHAPE,
 shape_factor=SHAPE_FACTOR, yarn_spacing=YARN_SPACE,
yarn_count=YARN_COUNT)
Pattern = WoundPattern(band_straight=BandStraight, band_angled=BandAngled,
angle=BAND_ANGLE,
 band_gap_z=BAND_GAP_Z, band_count=BAND_COUNT,
band_space=BAND_SPACE, render_hoop=False)

-- Create Wound Pattern
Pattern.generate_wound_pattern()

NASA/TM-20240013073 45

References
Aboudi, J., Arnold, S.M., and Bednarcyk, B.A. (2013): Micromechanics of Composite Materials: A

Generalized Multiscale Analysis Approach. Elsevier, Oxford, UK.
Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Practical micromechanics of composite materials.

Butterworth-Heinemann, Oxford, United Kingdom (2021).
Bednarcyk, B.A., Aboudi, J., Arnold, S.M.: Micromechanics of composite materials governed by vector

constitutive laws. International Journal of Solids and Structures 110-111, 137–51 (2017).
https://doi.org/10.1016/j.ijsolstr.2017.01.033.

Brown, L.P. and Long, A.C. (2021) "Modelling the geometry of textile reinforcements for composites:
TexGen", Chapter 8 in "Composite reinforcements for optimum performance (Second Edition)", ed. P
Boisse, Woodhead Publishing Ltd, 2021, ISBN: 978-0-12-819005-0. https://doi.org/10.1016/B978-0-
12-819005-0.00008-3

Dassault Systemes. Abaqus (2024) [Computer Software]
Eschenauer, H., Olhoff, N., Schnell, W. (1997) Applied Structural Mechanics – Fundamentals of

Elasticity, Load-Bearing Structures, Structural Optimization, Springer-Verlag.
Jones, R.M. (1999) Mechanics of Composite Materials, Taylor & Francis.
Mittelstedt, C. (2022) Flächentragwerke – Scheiben, Platten, Schalen, Geschichtete Strukturen, Springer

Verlag.
Morozov, E.V. (2006) The effect of filament-winding mosaic patterns on the strength of thin-walled

composite shells, Composite Structures 76, 123-129.
NASA (2024). NASA Multiscale Analysis Tool (NASMAT): LEW-20244-1;

https://software.nasa.gov/software/LEW-20244-1, last accessed July 18, 2024.
Oller, S. (2014) Numerical Simulation of Mechanical Behaviour of Composite Materials. Springer,

International Center for Numerical Methods in Engineering, Barcelona, Spain.
Pineda, E.J., Bednarcyk, B.A., Ricks, T.M., Arnold, S.M., Henson, G. (2021) Efficient Multiscale

Recursive Micromechanics of Composites for Engineering Applications. International Journal for
Multiscale Computational Engineering 19(4) https://doi.org10.1615/IntJMultCompEng. 2021039732.

Schürmann, H. (2007) Konstruieren mit Faser-Kunststoff-Verbunden, Springer-Verlag.
Suquet P.M. (1987) Elements of homogenization for inelastic solid mechanics. Homogenization

Techniques for Composite Media. Ed. E. Sanchez-Palencia and A. Zaoui. Spring-Verlag, Berlin.
Talreja, R. (2024) Failure Analysis of Composite Materials with Manufacturing Defects, CRC Press.
Tew, B.W. (1995) Preliminary Design of Tubular Composite Structures Using Netting Theory and

Composite Degradation Factors, ASME Journal of Pressure Vessel Technology.
Vinson, J.R. (1993) The Behavior of Shells Composed of Isotropic and Composite Materials, Springer

Science.

https://doi.org/10.1016/j.ijsolstr.2017.01.033
https://doi.org/10.1016/B978-0-12-819005-0.00008-3
https://doi.org/10.1016/B978-0-12-819005-0.00008-3
https://software.nasa.gov/software/LEW-20244-1
https://doi.org10.1615/IntJMultCompEng.%202021039732

	TM-20240013073
	Abstract
	Introduction
	Filament Wound RUC Creation
	Filament Wound Pattern Generation
	RUC Generation Program Explanation

	Numerical Analysis of Filament Wound and Laminated RUCs
	Homogenization Method Used in NASMAT
	Periodicity Conditioned Prescribed in NASMAT and Abaqus

	Results and Discussion
	Predictions of Effective Properties
	Predictions of Local Stress Fields

	Conclusion
	Appendix—RUC Generation Code
	References

