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Extreme Temperatures
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Lunar Temperatures

Lunar South Pole
Temperature MappiNg . paylight temperatures near the

W\l &7~ Moon's equator ~ 208°F (-133°C)
e |- | to 250°F (121°C)
“N_. | * Nightfall at the equator drops to
_208°F (-133°C).
M- | « NASA's Lunar Reconnaissance

T 00 Water
|

Orbiter has measured
temperatures lower than -410°F
- (-246°C).
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The Radiation Environment
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« Charged Particles: Protons, heavy ions, neutrons includes X —
rays, UV rays
 Planetary asteroid debris as micrometeors. ‘

https://radhome.gsfc.nasa.gov/radhome/RPO_slides.htm




The Moon is Like a Giant Capacitor

The Moon is charged by all the
charged particles in the
heliosphere.

UV light also deposit
photoelectrons or creates ion
and secondary electrons from
striking regolith particles

During Corona Mass Ejections 208
while traveling the wake of B tecon oiven -
the Earth's Magnetosphere, ¥

negative potentials of -4000
volts as well as dielectric
breakdown have been
observed.

Solar Wind lons

CHARACTERIZING THE NEAR LUNAR PLASMA ENVIRONMENT. T. J. Stubbs, Goddard Earth
Science and Technology Center, and NASA Goddard Space Flight Center, Mail
Code 674, Greenbelt, MD 20771, (Timothy.J.Stubbs.1@gsfc.nasa.gov)



The Lunar Regolith

Regolith Is unconsolidated

rocky material (minerals,

glasses, volcanic rock) that

covers bedrock.

Lunar Regolith Dust :

o <20 micronsto~1 cm

« Electrostatic

« Abrasive with sharp
edges




Apollo Era Space Suit and Lunar Dust

Spacesuit : Teflon coated fiber glass fibers Alan Bean Apollo 12 Mission

0
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-~ 1.ORBIT EVERY 12 HOURS .

ORBITS :
" BETWEEN

1,243 AND 22,236
MILES

Challenges with High Power  mebium earts onair o)
Transmission In Space
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Powering Up The Future in Space

1Best Electrical Insulation Candidates
* Fluoropolymer (FP )
« Polyimides (Pl)

Apollo 15

Cold Cathode lon
Gauge (CCIG)
Experiment

Challenges for Reliable HV Power Transmission
« High electric fields (HEF)
« FP susceptible to radiation and creep effecting | 5%/

reliability ;
« Taped wrapped Pl is hot extrudable Photo AS15-86-

11595
Historically Apollo ALSEP missions,

« Pll, 70W, 16V, 400 Hz (Apollo 17)

Future Lunar Economy gy g

1KV, 1 kHz PT or 60 kW, 2.5 kV e or 3 kVpe at 1 kHz A "
power grids,

Best SOA candidate materials are well known N
Earth, their HV stress, fields and aging rates are Concept of Nuclear Electric
unknown in extreme environments Propulsion spacecraft



Concept of Artemis Base Camp Micro-grid

Trade studies focused on primary W W
power disfribution system ettt pabitat | | < ol “% et
» Architecture (radial, ring, mesh) sthm |

. Power fype (AC vs DC)
* Voltage: (600V — 6 kV) L orimary
- Data contains estimated mass of D) D Bus M vetion
converters + cables A
Results
*Voltage 3 kV has mass
advantages

*AC vs DC is marginal
*Technology limitations need to
be considered

J. Csank, J. H. Scoftt, Advanced Research Projects Agency Energy, April 29, 2022
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Technical Challenges: Partial Discharge and
Partial discharge in COI'O ﬂ ®

10 000

: Electrodes: parallel plates
void parac’ plates
b{QQQ Temperature: 300 K (23 °C)
Electrical 6000 Frequency: 400 Hz
Insulation 4000 Air
2 230 Volts
T 2000
3 F = 400 Hz
s 1000
Spacing S 800
= ) CO,
= 600 —
= 400
E
gas 200
Pressure
. 0.5 5 10 20 50 100 200
Insulated Wire Pressure x spacing (Torr-cm)

Conductor Breakdown Voltage of Several Gases as a Function of pd at Room Temperature

The minimum voltage for electrical discharge between two metal conductors at high
altitude will occur at ~ 327 V. At 400 Hz the minimum voltage drops to 230 V for arcing to
occvur. Additionally, voids, defects and contaminants in electrical insulation can
experience intensified local discharge called partial discharge.

Chart Reference: NASA-HDBK-4007 W/CHANGE 3
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Thermal, Elecirical, Mechanical and
Environmental Challenges

Temperature Swings

Electrical Stress and High Electric
Fields

Mechanical Stress from
manufacturing, transport, handling
onto spools, loading or installing in
spacecraft and deployment
Environments from sitting on launch
site, lift-off conditions, time of flight
INn standard atmospheric pressures
to vacuum.




Other Considerations

 Wires and Cables for
Mega Watts of power
In a future Lunar
Economy or Nuclear
propulsion vehicles
must be safe and
reliable. x

« Wiring can contribute /
50% or more of the -
Payload increasing
COSTs.

« We need lightweight,
safe and reliable
solutions.

%?

7«

credits: NASA Orion Serwce Modu



MASA Materials R&D for High Power
High Voltage Transmission


http://www.nasa.gov/

NASA developed a Micro-Multilayered-
Multifunctional Electrical Insulation (MMEI)

Compared to SOA Teflon-Kapton-
Teflon (TKT)
Other multifunctional layer « 91 % increase in dielectric break-
e.g., corona barrier; Kapton® CR down VoIToge

Other multifunctional layer « 99% decrease in insulation thickness
e.g., EMI shielding; CNT

High dielectric layer

e.q.. Kapton® Pl
S "y

)
o

Highest increase: ~ 91%
= ~98% thickness reduction
(0.54 vs. 24.6 mm)

Bond layer, fuse-bondable
& as a moisture barrier
e.g., PFA, PEEK, PET, PP, PE

(9]
o

S
o

+ y=7.3031In(x) + 35.151

o ————
-

y=7.6739In(x) + 35.323

N
o

Dielectric Breakdown Voltage, V,, kV
= w
o o

Thickness
limit, ~0.15

o

Overall Thickness, mm 18



Improved Properties of Polymer with Fillers

Water-chilled rollers and air knife ¥
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Demonstrated better Thermal
Take upspool| QNG Electrical Performance
with ceramic fillers.

Dielectric breakdown (in oil) - -
- - Breakdown voltage (in oil) —— PPSU-A

12 2 2 4 8 12 16

hBN loading, wt% hBN loading, wt%

T. Williams, B. Nguyen and W. Fuchs, 2020 IEEE 3rd International Conference on Dielectrics (ICD), 2020, pp. 541-545, doi: 10.1109/1CD46958.2020.9341910

Tiffany Williams, Baochau Nguyen, Witold Fuchs 19
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Electrical Conductivity
(k, S/m)

Tensile Strength
(o, MPa)

Key Feature

Electroless plating [2]

Self-fueled
electrodeposition [3]

Super-aligned CNTs [4]

Cu-Ti alloy matrix [5]

SPS composites, not
aligned [6]

Higher ampacity [4,7]

500-650
287
362 *Oys

275

Carbon
Nanotube (CNT)
Yarn

1.3 x 10¢

1500

Electrical
Conductivity (k)

?0% IACS

51% IACS
46.8 MS/m

93% IACS
93% IACS

46-47 MS/m

Lightweighting Conductor

Now

Insulation

Cu Conductor

Future
Insulation
n[Q1] -
Cu/CNT ‘
Composite Composite

Conductor
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LIg

hter weight Cu/CNT Conductor

Correlate electrical
and mechanical
behaviors via 4-
probe electrical
resistance (ER) and
acoustic emission
(AE) monitoring

Cu/ CNT composite
provides opportunity
to further reduce
wire/cable weight
while maintain most
of the electrical i

NASA GRC AS-Fablrcated

conductivity of the fpwakopc ke

conductor and Y e |
increase strength.

Condustivity, MS/m

Conductivity
4 — Stress

Conductivity (MS/m)
Stress (MPa)

Fracture Evolution
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Good Insulation Properties

NASA Glenn Research Center (GRC) v' Constant wide band gap above 5.2 eV

has 2 decades of expertise
synthetizing BNNTs and other BN
nanomaterials for different
Aerospace applications due to their

Good Mechanical Strength
High Thermal Conductivity
v Thermal Conductivity (W/(m-K)):

Ballistic Armor

multifunctionality v BNNT > 600, W/m-K
BN Applications: v h-BN in plane > 100, W/m-K
v’ Aerospace structures and components v h-BN through plane ~ 30 W/m-K
v' Radiation Shielding v' Ability to dissipate heat in nano electrics
¥’ Electric propulsion components Promising results in thermal shock
v’ Energy Storage experiments
v' Tribology  Chemically and Thermally Stable
v' Thermoelectric v Hydrophobic
v
v

v Chemical stability

Cosmetics v Oxidation in air above 1100 °C




What Can We Do With h-BN ¢

Make them into nanosheets to
Increase surface area

We can fill them or coat
them with other
materials. To change
properties

And make composites.

[ I I |

hBNdiamHNO 4.0kV . 7mm x9.00k SE(U) WZINB I 5.00um



ESI 21 Topic 1: Materials For High Voltage Power vasa
Transmission on the Moon .

Pl: Mehran Tehrani and
Co-Pl: Michael Cullinan,
University of Texas at Austin

Dr. Zhiting Tian,
Cornell University

EMI shieldin

Objectives: Design, manufacture, and
characterize ultra-conducting Objectives Create mulfifunctional

graphene-copper wires for high NAaNo composites with improved
voltage applications. thermal , electric & shielding properties.

24




The Pale Blue Dot
This Is our Earth, our HOME

The Pale Blue Dot is @
photograph of Earth taken Feb.
14, 1990, by NASA's Voyager 1
at a distance of 3.7 billion miles
from the Sun. The image inspired
the fitle of scienfist Carl Sagan's
book, "Pale Blue Dot: A Vision of
the Human Future in Space," in
which he wrote: "Look again aft
that dot. That's here. That's
home. That's us."

https://www.youtube.com/watch?v=GO5FwsblpT8

https://science.nasa.gov/resource/voyager-1s-pale-blue-dot/
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Thank you!
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