

2: 54.0945 [mm]

Aviary: A Transformational Tool For Aircraft Design

www.nasa.gov

Carl Recine, ARC, Aviary Co-Lead

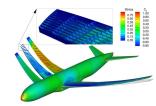
Jason Kirk, LaRC, Aviary Lead Eliot Aretskin-Hariton, Aviary Feature Developer

Presentation Roadmap

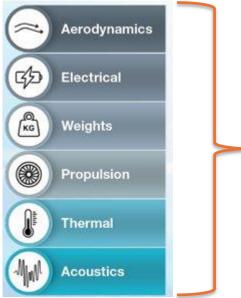
- 1. What is Aviary?
- 2. What challenges does Aviary solve?
- 3. New features and upcoming additions
- 4. Walkthrough using Aviary

Aviary: An Open-Source Tool for Next-Gen Tool for Aircraft Design

Challenge


- Existing conceptual design tools limited in capability to model and determine trends with advanced configurations and new technologies
- Need for better analysis & optimization techniques to produce more performant and robust designs

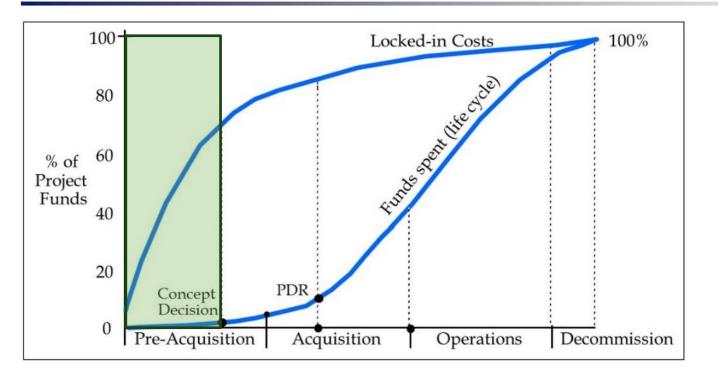
advanced concepts



analysis of coupled subsystems

Objectives

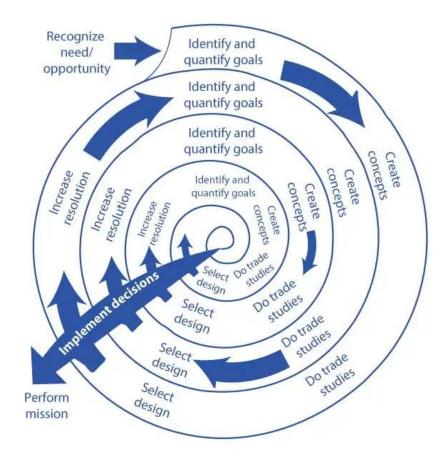
- Maintain capabilities of legacy tools
- Support electrified vehicles out-of-the-box
- Easy integration of external models
- Use state-of-the-art analysis and optimization techniques, with a focus on gradient-based optimization
- Open-source release, maximize partner collaboration



Presentation Roadmap

1. What is Aviary?

- 2. What challenges does Aviary solve?
- 3. New features and upcoming additions
- 4. Walkthrough using Aviary


Conceptual Design: An Iterative Process

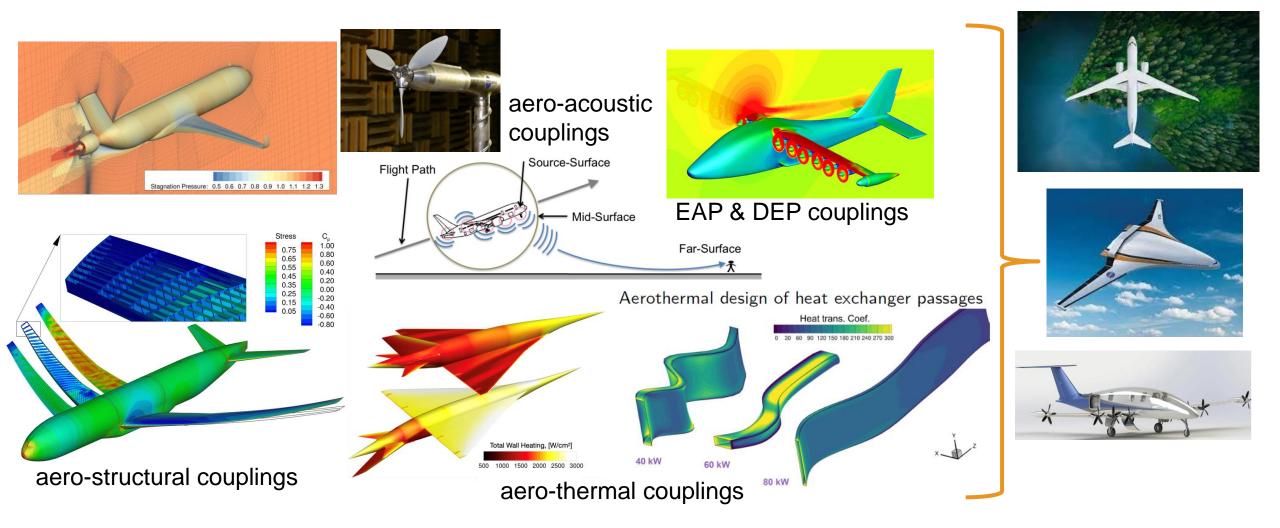
Conceptual design process has the most design freedom Key decisions must be made before "locked-in" For NASA Aeronautics:

- Which vehicle configurations are worth pursuing?
- What technologies buy their way onto a vehicle?
- What are the projected performance and cost?

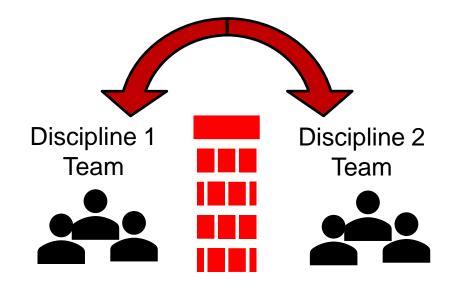
- Iteration is key time and resources are limited
- Quantity of analysis allows exploration of more of the design space
- Quality of analysis reduces risk on key decisions

Aircraft Design

- Always a compromise between competing disciplines
 - Structures
 - Aerodynamics
 - Propulsion
 - Controls
 - etc...
- Discipline experts must work together and compromise on a design – this takes time!

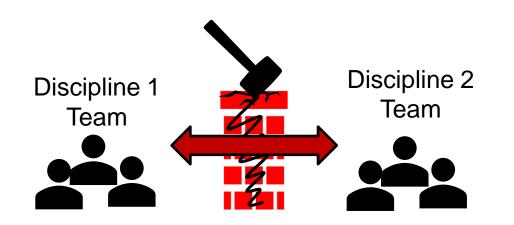


Complex Coupling Between Disciplines



Aircraft system-level metrics are dependent on interactions between technologies

Historical Aircraft Design Method


Aircraft is treated as the sum of its parts

- Teams conduct analysis independently
- Data thrown "over-the-wall"
- Manual iteration required

Old method too slow to rapidly iterate Complex interactions missed, suboptimal design

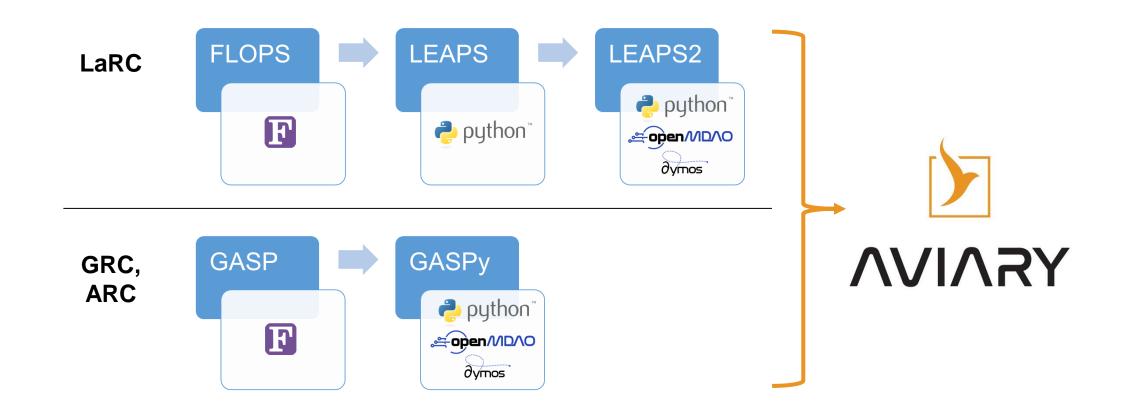
Advanced Digital Design Method

- Discipline analysis connected through software
- No "wall", teams work on the same aircraft level model
- Version control for models
- No manual iteration needed

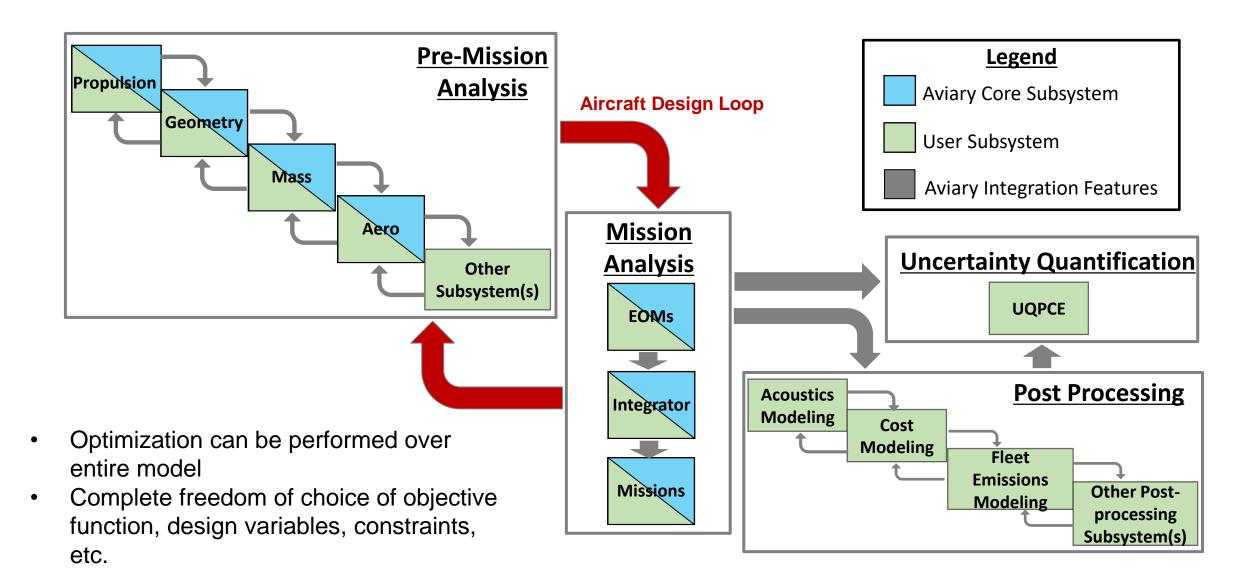
Complex interactions are captured, aircraft is designed holistically

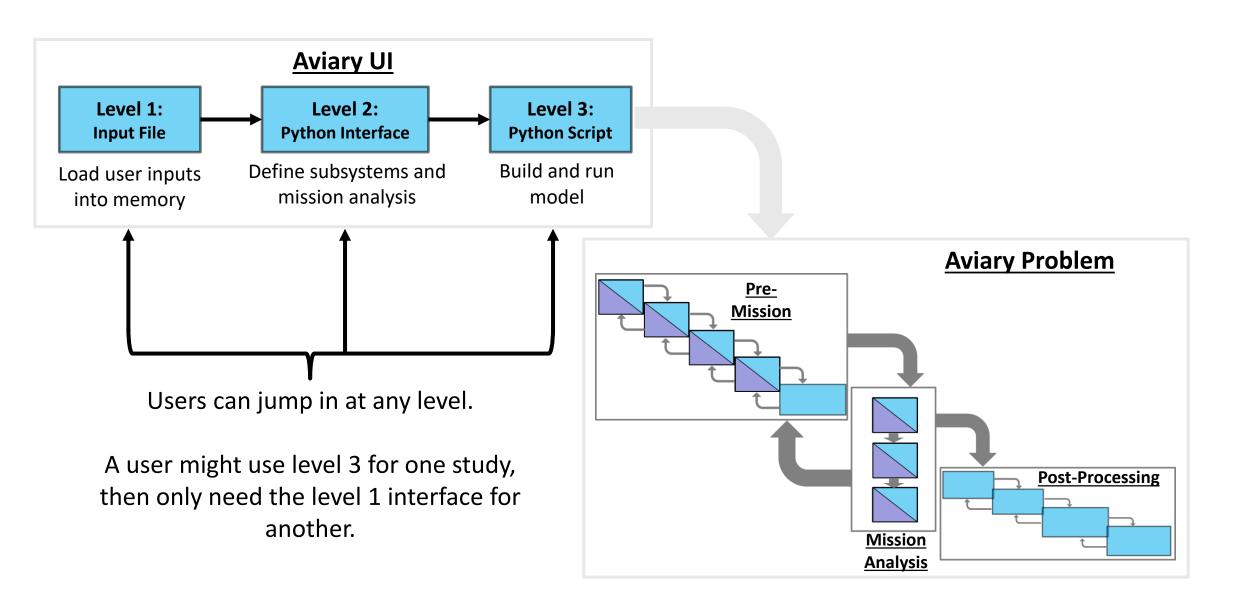
Aviary enables this conceptual aircraft design workflow

Aviary is NASA's next-generation conceptual aircraft modeling and optimization framework


Aviary's goals are to:

- Combine the capabilities of legacy codes into a single tool
- Use a modern code architecture, built in Python, that enables easy modification of source code and modular analysis that can be easily swapped with custom tools or methods
- Perform state-of-the-art coupled optimization with epenMDAO, dymos
- Provide capability to analyze advanced future aircraft concepts, including electrification
- Open-source release for maximum impact to the aerospace research community


History Of Aviary



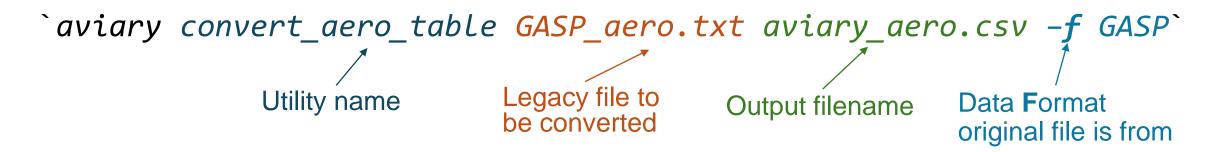
Aviary is a Modular, Extensible Design Framework

Aviary's User Interface

Adding External Subsystems

- User-defined modules need to tell Aviary what to expect from your system:
 - The states you want to integrate across the mission
 - Any new variables your system needs
 - The constraints, parameters, and design variables
- Aviary provides the `SubsystemBuilderBase` object, which you use to create your builder

```
def build pre mission(self):
   Build an OpenMDAO system for the pre-mission computations of the subsystem.
   Required for subsystems with pre-mission computations.
   Used in level3.py to build the pre-mission system.
   Returns
    -----
   pre mission sys : openmdao.core.System
        An OpenMDAO system containing all computations that need to happen in
       the pre-mission (formerly statics) part of the Aviary problem. This
       includes sizing, design, and other non-mission parameters.
    . . .
   return om.Group()
def get states(self):
   Return a dictionary of states defined by this subsystem.
   Required for subsystems with mission-based dynamics.
   Note that there must be outputs provided by the user's model that provide
   the time derivative of each state. The convention is to name the output
   f"{state name} rate", where `state name` is the name of the state variable.
   Use in the phase builders (e.g. cruise phase.py) when other states are added to the phase.
   Returns
    _ _ _ _ _ _ _
   states : dict
       A dictionary where the keys are the names of the state variables
       and the values are dictionaries with the following keys:
        - 'units': a string indicating the units of the state variable
        - any additional keyword arguments required by Dymos for the state variable.
   return {}
                                                                                                    14
```



Presentation Roadmap


- 1. What is Aviary?
- 2. What challenges does Aviary solve?
- 3. New features and upcoming additions
- 4. Walkthrough using Aviary

Convert a FLOPS or GASP aero table into Aviary format using:

Convert a GASP propeller map into Aviary format using:

Ø

README License

This is a supplemental repository where the Aviary community, students and professors, and enthusiasts, can share aircraft models, engines, mission models, and external subsystem builders/wrappers. This was created as a supplement of the Aviary repo. The <u>official Aviary repo</u> only includes aircraft used for testing and didactic examples and there was a need for a place for people to share other models.

The examples in this repo are typically the work of students and no guarantees are given to the accuracy or quality of these models. You are welcome to share and use any of these example aircraft. When uploading a model we encourage you to cite your sources for where you got your data so that other users can trace your footsteps.

Only publicly available data should be shared in this repository. Please exercise caution and carefully review your models for sensitive data before submitting. You are responsible for checking models you share with the community. Thank you for contributing!

https://github.com/OpenMDAO/Aviary_Community

class TurbopropModel(EngineModel): """

EngineModel that combines a model for shaft power generation (default is EngineDeck) and a model for propeller performance (default is Hamilton Standard).

\sim propulsion

- \checkmark gearbox
- > model
- > test
- 🕏 __init__.py
- gearbox_builder.py
- ✓ motor
 - > model
 - > test
- 🔷 __init__.py
- motor_builder.py
- \checkmark propeller
- ✤ __init__.py
- hamilton_standard.py
- 🕏 propeller_map.py
- propeller_performance.py


```
def test_multiengine_fixed(self):
```

```
test_phase_info = deepcopy(local_phase_info)
method = ThrottleAllocation.FIXED
```

```
test_phase_info['climb']['user_options']['throttle_allocation'] = method
test_phase_info['cruise']['user_options']['throttle_allocation'] = method
test_phase_info['descent']['user_options']['throttle_allocation'] = method
```

```
engine1 = build_engine_deck(engine_1_inputs)[0]
engine1.name = 'engine_1' # 28k TurboFan
engine2 = build_engine_deck(engine_2_inputs)[0]
engine2.name = 'engine_2' # 22k TurboFan
```

```
prob = AviaryProblem()
```

prob.load_inputs(inputs, test_phase_info, engine_builders=[engine1, engine2])

Off-Design Mission Analysis Capability

prob.setup()
prob.set_initial_guesses()
prob.run_aviary_problem()
prob.save_sizing_to_json()

Fallout Mission
prob_fallout = prob.fallout_mission()

Alternate Mission
prob_alternate = prob.alternate_mission()

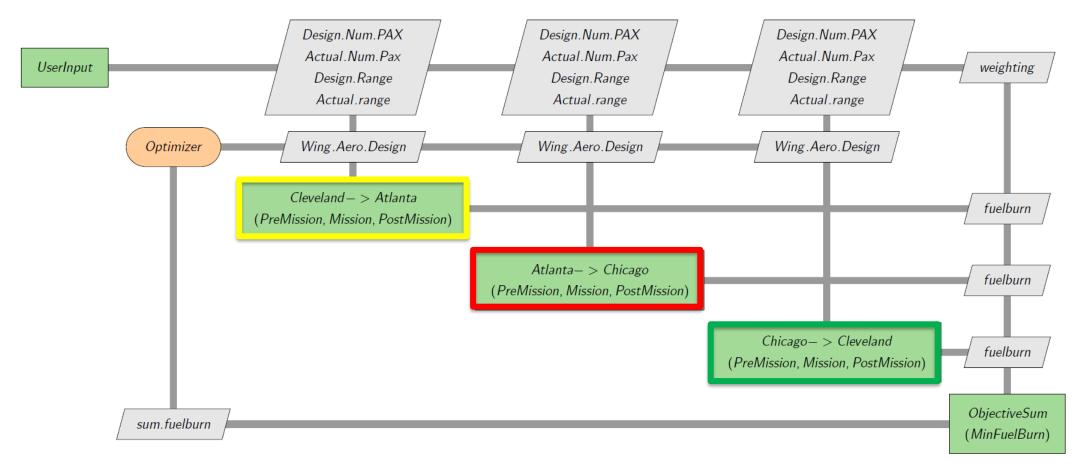
def fallout_mission(self, run_mission=True,

json_filename='sizing_problem.json',
mission_mass=None, payload_mass=None,
phase_info=None, verbosity=Verbosity.BRIEF):

def alternate_mission(self, run_mission=True,

json_filename='sizing_problem.json',
payload_mass=None, mission_range=None,
phase_info=None, verbosity=Verbosity.BRIEF):

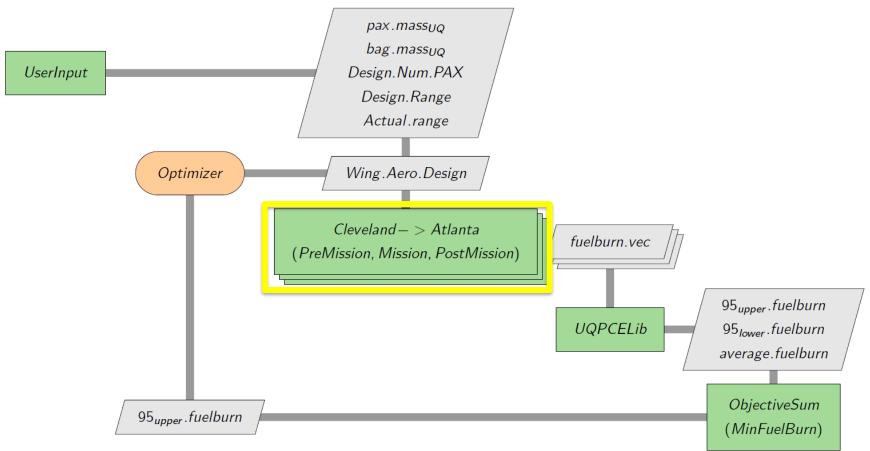
"aircraft:design:compute_htail_volume_coeff", false, "unitless", "<class 'bool'>" "aircraft:design:compute_vtail_volume_coeff", false, "unitless", "<class 'bool'>" "aircraft:design:part25_structural_category", З, "unitless", "<class 'int'>" "aircraft:design:reserve fuel additional", 3000, "lbm", "<class 'int'>"


ر ا

ر ا

ر ا

Multi-Mission Design (coming soon w/ PR #529)


- Adds the capability to run one aircraft design in multiple missions
- Example model route Cleveland -> Atlanta -> Chicago
- Differentiates between "Design" Pax & Range vs. As-flown Pax & Range

Uncertainty Quantification with Multi-Mission (coming soon AIAA Paper)

- Demonstrates capability to combine UQPCE and Aviary for single leg
- Adds uncertainty to passenger & bag mass and propulsion
- UQPCE Library leveraged to post-process fuel burn and build confidence intervals

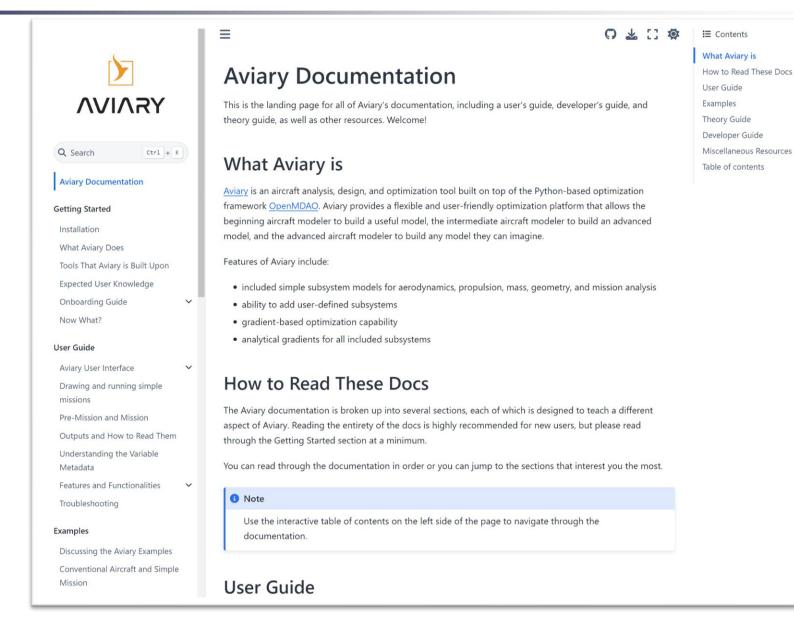


Presentation Roadmap

- 1. What is Aviary?
- 2. What challenges does Aviary solve?
- 3. New features and upcoming additions
- 4. Walkthrough using Aviary

- Follow the instructions in Aviary's documentation to get your Python environment set up
- Once you are ready, Aviary can be installed as follows:

This will install the latest release of Aviary and all of its dependencies.


That's it! If you've done that successfully, you can now use Aviary in your Python environment.

• For the latest development version of Aviary, obtain the code directly from GitHub and install

https://openmdao.github.io/Aviary/getting_started/installation.html

Aviary's Documentation

- As an example, we will run NASA's N3CC aircraft using Aviary
 - The N3CC is an advanced single-aisle transport, EIS 2035
 - It is a FLOPS model, which we will convert to an Aviary model then run

The N3CC Model

FLOPS-formatted engine deck

Turbofan_22k.txt

FLOPS input file N3CC_FLOPSin.txt

REF MDL N3CC (26616) AR11 1220t 1340p turbofan_Z2k M785 20210721 0.00 0.0 0.0 50. 22200.5 0.0 5157.3 0.2323 17.737 BOPTION 0.00 0.0 44. 17760.5 0.0 3879.8 0.2123 18.493 ! Program Control, Execution, Analysis and Plot Option Data morporl, incise-0, incost-0, iffice-0 0.00 0.0 38. 1320.3 0.0 2255.1 0.2023 19.670 morporl, noise-0, incost-0, iffice-0 0.00 0.0 38. 1100.2 0.0 2255.1 0.2032 20.522 ! Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.0 35. 1110.0 0.0 0.205. 110.0 0.0 0.2153.1 0.2032 20.523 ! Takeoff and Climb Profile File for Noise Calculations (MPROF) 0.00 0.0 32. 880.2 0.0 170.58 0.2037 21.499 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 47. 20834.5 3161.7 463.7 70.633 17.759 ! Drag Polar Plot File (POLPLOT) 0.10 0.0 32. 12291.7 340.6									
&OPTION 0.00 0.0 44. 17760.5 0.0 3879.8 0.2185 18.493 ! Program Control, Execution, Analysis and Plot Option Data 0.00 0.0 41. 15540.4 0.0 3300.0 0.2185 19.097 mpproint-1, iont-1, inal-3, inerg-0, itakof-1, iland-1 0.00 0.0 35. 11100.2 0.0 2756.1 0.2020 20.525 mpproint-1, noise-0, ifite-0 0.00 0.0 25. 0.00 0.2017 20.979 ! Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.0 22. 8882.0 0.0 1368.2 0.2017 20.979 ixfl=1 0.00 0.0 26. 4440.1 0.0 964.9 0.217 23.420 0.00 0.0 21. 1110.0 0.0 500.3 0.4507 55.372 ! Takeoff and Climb Profile File for Noise Calculations (NPROF) 0.10 0.0 44. 18751.0 3461.7 4653.7 0.2233 17.560 npfile=1 0.0 0.4 18751.0 3461.7 4659.7 40.253.1 17.560 0.10	REF MDL N3CC (26616) AR11 1220t 1340p turbofan_22k M785 20210721	0.00	0.0	50.	22200.5	0.0	5157.3	0.2323	17.737
! Program Control, Execution, Analysis and Plot Option Data 0.00 0.10 1.1 10.10 0.10 0.10 0.10 0.11 10.10 0.12 10.907 mprint=1, iopt=1, ianal=3, ineng=0, itakof=1, iland=1 0.00 0.0 0.0 0.0 2255.1 0.2022 20.252 nopro-1, noise=0, icost=0, ifite=0 0.00 0.0 235.1 0.2255.1 0.2023 20.252 nopro-1, noise=0, icost=0, ifite=0 0.00 0.0 2.0 380.2 0.0 136.2 0.2255.1 0.2023 20.252 nopro-1, noise=0, icost=0, ifite=0 0.00 0.0 2.0 888.2 0.0 170.0.3 0.2023 20.252 20.252 nopro-1, noise=0, icost=0, ifite=0 0.00 0.0 2.0 888.2 0.0 170.0.3 0.2023 20.252 20.252 nopro-1, noise=0, icost=0, ifite=0 0.00 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 0.2123 10.4202 20.252 10.55 ixfl=1 0.00 0.0 0.0 0.0 0.0 0.0 0.0 <		0.00	0.0	47.	19980.5	0.0	4500.3	0.2252	17.955
I Program Control, Execution, Analysis and Plot Option Data 0.00 0.0 38. 13320.3 0.0 2756.1 0.2069 19.670 mprint-1, iopt-1, ional-3, ineng-0, itakof-1, iland-1 0.00 0.00 35. 11100.2 0.0 2255.1 0.2032 20.252 nopro-1, noise-0, icost-0, ifite-0 0.00 0.00 0.0 32. 8880.2 0.0 1790.8 0.2017 20.937 ! Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.00 0.0 21. 1110.0 0.0 964.9 0.217 23.442 ixfl=1 0.00 0.0 21. 1110.0 0.0 50.3 3299.9 5279.7 0.2689 17.655 npfile=1 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.719 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 32. 1027.7 2383.1 2060.2 0.257.2 20	&OPTION	0.00	0.0	44.	17760.5	0.0	3879.8	0.2185	18.493
mprint=1, iopt=1, ianal=3, ineng=0, itakof=1, iland=1 0.00 0.0 35. 153.0.3 0.0 275.1 0.2032 20.252 nopro=1, noise=0, icost=0, ifite=0 0.00 0.0 35. 11100.2 0.0 2255.1 0.2032 20.352 nopro=1, noise=0, icost=0, ifite=0 0.00 0.0 32. 8880.2 0.0 1790.8 0.2017 20.932 1 Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.0 25. 0.203. 0.203.2 21.429 0.00 0.0 25. 0.00 0.0 25. 0.203. 0.4507 55.372 1 Takeoff and Climb Profile File for Noise Calculations (NPROF) 0.10 0.0 44.1 0.00 50.3 329.9 5279.7 0.2633 17.750 npfile=1 0.10 0.0 44. 18751.0 3041.7 4059.2 2254.3 18.761 lpfile=0 0.10 0.0 44. 18751.0 3041.7 4059.2 2543 18.761 lpile=0 0.10 0.0 41.110.0 0.0 21.21.3 2991.4 246.7 <td></td> <td>0.00</td> <td>0.0</td> <td>41.</td> <td>15540.4</td> <td>0.0</td> <td>3300.0</td> <td>0.2123</td> <td>19.097</td>		0.00	0.0	41.	15540.4	0.0	3300.0	0.2123	19.097
nopro=1, noise=0, icost=0, ifite=0 0.00 0.01 53. 11100.2 0.00 0.02 201.232 I Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.0 22. 888.2 0.0 1368.2 0.2017 20.979 ixfl=1 0.00 0.0 22. 886.4 0.0 9.217 23.442 0.00 0.0 22. 110.0 0.0 560.3 3299.9 5279.7 0.2689 17.625 npfile=1 0.00 0.0 21. 110.0 0.0 4507.5 53.72 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 41. 16665.2 2919.7 3496.0 0.2543 18.761 lpfile=0 0.10 0.0 41. 16665.2 2919.7 3496.0 0.2543 18.761 lpfile=0 0.10 0.0 41. 16665.2 2919.7 3496.0 0.2543 18.761 lpolp=1, polalt=3000.0, 0.10 0.0 35. 12412.3 2544.1 2457.4 0.250 19.731 l Drag Polar Plot File		0.00	0.0	38.	13320.3	0.0	2756.1	0.2069	19.670
1 Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.0 <		0.00	0.0	35.	11100.2	0.0	2255.1	0.2032	20.252
1 Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT) 0.00 0.0 26. 4440.1 0.0 964.9 0.2173 23.442 ixfl=1 0.00 0.0 21. 1110.0 0.0 500.3 0.4507 55.372 ! Takeoff and Climb Profile File for Noise Calculations (NPROF) 0.10 0.0 50. 22936.3 3299.9 5279.7 0.2633 17.750 npfile=1 0.10 0.0 44. 18751.0 3041.7 4653.7 0.2533 17.750 1 Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 1 Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2523 19.61 1 prile=0 0.10 0.0 35. 1242.3 2594.1 246.7 0.2510 19.731 1 Drag Polar Plot File (POLPLOT) 0.10 0.0 23. 10237.7 233.1 2000.9 0.2547 20.126 ipolp=1, polalt=39000.6, 0.45222, 0.785 0.10	nopro=1, noise=0, icost=0, i+ite=0	0.00	0.0	32.	8880.2	0.0	1790.8	0.2017	20.979
ixfl=1 0.00 0.0 25. 4440.1 0.0 560.3 0.2173 23.442 0.00 0.0 21. 1110.0 0.0 500.3 3299.9 5279.7 0.2689 17.625 npfile=1 0.10 0.0 440.1 1605.2 2919.7 0.2689 17.625 0.10 0.0 44. 18751.0 3041.7 4653.7 0.2633 17.750 1 Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2543 18.761 1 pfile=0 0.10 0.0 44. 18665.2 2919.7 3496.0 0.2547 18.761 1 polat=29000.0, 0.10 0.0 35. 12412.3 2594.1 2464.7 0.2510 19.731 ! Drag Polar Plot File (POLPLOT) 0.10 0.0 25. 12412.3 2594.1 2464.7 0.2560 20.506 nmach = 3, pmach=0.3, 0.45222, 0.785 0.10 0.0 22. 0.207.7 238.1 200.9 242.215 0.20 0.0 47.	L Dist files for VELODE Completel Interface Destangenesses (MENDLOT)	0.00	0.0	29.	6660.2	0.0	1368.2	0.2054	21.499
0.00 0.0 21. 1110.0 0.0 500.3 0.4567 55.372 1 Takeoff and Climb Profile File for Noise Calculations (NPROF) 0.10 0.0 50.22936.3 3299.9 5279.7 0.2683 17.625 npfile=1 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2633 17.750 1 Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 1 Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 1 Drag Polar Plot File (POLPLOT) 0.10 0.0 35. 12412.3 2594.1 2464.7 0.2510 19.731 1 Drag Polar Plot File (POLPLOT) 0.10 0.0 29. 8024.0 2133.1 2000.9 0.2547 28.162 ipolp=1, polalt=39000.0, mach = 3, pmach=0.3, 0.45222, 0.785 0.10 0.0 29.8024.0 2133.1 2000.9 0.2547 28.166 1 Ingi		0.00	0.0	26.	4440.1	0.0	964.9	0.2173	23.442
9.10 0.0 47. 20834.5 3161.7 4653.7 0.2633 17.750 npfile=1 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 35. 12412.3 2594.1 2464.7 0.2510 19.161 0.10 0.0 32. 10237.7 2383.1 2000.9 0.2547 20.126 ipolp=1, polalt=39000.0, 0.00 22. 10237.7 2383.1 2000.9 0.2550 20.506 nmach = 3, pmach=0.3, 0.45222, 0.785 0.10 0.0 21. 2380.8 1399.0 576.5 0.5872 28.966 ! Engine Performance Data Plot File (THRPLOT) 0.20 0.0 44. 20360.0 6251.2 4256.6 0.3017 17.711 ! Design History Plot File (HISPLOT) 0.20 0.0 44. 20360.0 6251.2 4256.6 0.3017	1211-1	0.00	0.0	21.	1110.0	0.0	500.3	0.4507	55.372
npfile=1 0.10 0.0 47. 20834.5 3161.7 4653.7 0.2633 17.750 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 41. 1665.2 2919.7 3496.0 0.2533 18.761 lpfile=0 0.10 0.0 35. 12412.3 2594.1 2464.7 0.2510 19.731 ! Drag Polar Plot File (POLPLOT) 0.10 0.0 32. 10237.7 2383.1 2000.9 0.2547 20.126 ipolp=1, polalt=39000.0, 0.10 0.0 25. 171.8 1844.5 1138.1 0.2650 20.506 nmach = 3, pmach=0.3, 0.45222, 0.785 0.10 0.0 21. 2380.8 1399.0 576.5 0.5872 28.966 ! Engine Performance Data Plot File (THRPLOT) 0.20 0.0 44. 233.3 6481.1 4836.8 0.3047 17.401 ! Design History Plot File (HISPLOT) 0.20 0.0 41.	I Takeoff and (limb Profile File for Noise Calculations (NPROF)	0.10	0.0	50.	22936.3	3299.9	5279.7	0.2689	17.625
0.10 0.0 44. 18751.0 3041.7 4059.2 0.2584 18.179 ! Approach and Landing Profile File for Noise Calculations (LPROF) 0.10 0.0 41. 1665.2 2919.7 3496.0 0.2543 18.161 lpfile=0 0.10 0.0 35. 12412.3 2594.1 2464.7 0.2510 19.731 ! Drag Polar Plot File (POLPLOT) 0.10 0.0 32. 10237.7 2383.1 2000.9 0.2547 20.126 ipolp=1, polalt=39000.0, 0.10 0.0 21. 138.1 0.2650 20.506 nmach = 3, pmach=0.3, 0.45222, 0.785 0.10 0.0 21. 238.8 139.0 1561.0 0.2872 28.506 ! Engine Performance Data Plot File (THRPLOT) 0.10 0.0 21. 238.8 139.90 576.5 0.5872 28.966 ipltth=2 0.20 0.0 44. 2036.0 6251.2 4256.6 0.3017 17.711 ! Design History Plot File (HISPLOT) 0.20 0.0 44. 2036.0 6251.2 4256.6 0.3002 18.138		0.10	0.0	47.	20834.5	3161.7	4653.7	0.2633	17.750
1. Approach and Landing Horrie File (or Morrie	·····	0.10	0.0	44.	18751.0	3041.7	4059.2	0.2584	18.179
lpfile=00.100.038.14543.02761.22972.40.252319.1610.100.035.12412.32594.12464.70.251019.7311Drag Polar Plot File (POLPLOT)0.100.032.10237.72383.12000.90.254720.156ipolp=1, polalt=39000.0,0.022.10237.72383.12000.90.254720.126mach = 3, pmach=0.3, 0.45222, 0.7850.100.026.5771.81844.51138.10.289821.2150.100.021.2380.81399.0576.50.587228.966! Engine Performance Data Plot File (THRPLOT)0.200.044.20360.06251.24256.60.304717.370ipltth=20.200.044.20360.06251.24256.60.304717.401! Design History Plot File (HISPLOT)0.200.044.20360.06251.24256.60.304717.411! Design History Plot File (HISPLOT)0.200.038.16309.05727.53184.60.300218.138iplths=00.200.038.16309.05727.53184.60.301018.434/0.200.035.14231.25413.32672.20.303018.805	! Approach and Landing Profile File for Noise Calculations (LPROF)	0.10	0.0	41.	16665.2	2919.7	3496.0	0.2543	18.761
! Drag Polar Plot File (POLPLOT) ipolp=1, polalt=39000.0, nmach = 3, pmach=0.3, 0.45222, 0.785 ! Engine Performance Data Plot File (THRPLOT) ipltth=2 ! Design History Plot File (HISPLOT) ! Design History Plot File (H		0.10	0.0	38.	14543.0	2761.2	2972.4	0.2523	19.161
ipolp=1, polalt=39000.0, nmach = 3, pmach=0.3, 0.45222, 0.785 ! Engine Performance Data Plot File (THRPLOT) ipltth=2 ! Design History Plot File (HISPLOT) ! Design History Plot File (HISPLOT) 0.20 0.0 44. 20360.0 6251.2 4256.6 0.3017 17.711 0.20 0.0 44. 20360.0 6251.2 4256.6 0.3017 17.711 0.20 0.0 44. 18364.7 6019.6 3706.3 0.3002 18.138 iplths=0 / /		0.10	0.0	35.	12412.3	2594.1	2464.7	0.2510	19.731
nmach = 3, pmach=0.3, 0.45222, 0.7850.100.026.5771.81844.51138.10.289821.2150.100.021.2380.81399.0576.50.587228.966! Engine Performance Data Plot File (THRPLOT)0.200.050.24389.76753.85444.70.308717.370ipltth=20.200.044.20360.06251.24256.60.301717.711! Design History Plot File (HISPLOT)0.200.041.18364.76019.63706.30.300218.138iplths=00.200.035.14231.25413.32672.20.303018.805	! Drag Polar Plot File (POLPLOT)	0.10	0.0	32.	10237.7	2383.1	2000.9	0.2547	20.126
0.100.021.2380.81399.0576.50.587228.966! Engine Performance Data Plot File (THRPLOT)0.200.050.24389.76753.85444.70.308717.370ipltth=20.200.047.22353.36481.14836.80.304717.401! Design History Plot File (HISPLOT)0.200.044.20360.06251.24256.60.301717.711! Design History Plot File (HISPLOT)0.200.041.18364.76019.63706.30.300218.138iplths=00.200.035.14231.25413.32672.20.303018.805	ipolp=1, polalt=39000.0,	0.10	0.0	29.	8024.0	2133.0	1561.0	0.2650	20.506
! Engine Performance Data Plot File (THRPLOT) 0.20 0.0 50. 24389.7 6753.8 5444.7 0.3087 17.370 ipltth=2 0.20 0.0 47. 22353.3 6481.1 4836.8 0.3047 17.401 ! Design History Plot File (HISPLOT) 0.20 0.0 44. 20360.0 6251.2 4256.6 0.3017 17.711 ! Design History Plot File (HISPLOT) 0.20 0.0 41. 18364.7 6019.6 3706.3 0.3002 18.138 iplths=0 0.20 0.0 35. 16309.0 5727.5 3184.6 0.3010 18.434 / 0.20 0.0 35. 14231.2 5413.3 2672.2 0.3030 18.805	nmach = 3, pmach=0.3, 0.45222, 0.785	0.10	0.0	26.	5771.8	1844.5	1138.1	0.2898	21.215
ipltth=2 0.20 0.0 47. 22353.3 6481.1 4836.8 0.3047 17.401 0.20 0.0 44. 20360.0 6251.2 4256.6 0.3017 17.711 0.20 0.0 41. 18364.7 6019.6 3706.3 0.3002 18.138 iplths=0 / 0.20 0.0 38. 16309.0 5727.5 3184.6 0.3010 18.434 0.20 0.0 35. 14231.2 5413.3 2672.2 0.3030 18.805		0.10	0.0	21.	2380.8	1399.0	576.5	0.5872	28.966
0.200.044.20360.06251.24256.60.301717.711! Design History Plot File (HISPLOT)0.200.041.18364.76019.63706.30.300218.138iplths=00.200.038.16309.05727.53184.60.301018.434/0.200.035.14231.25413.32672.20.303018.805	5					6753.8	5444.7	0.3087	
! Design History Plot File (HISPLOT) 0.20 0.0 41. 18364.7 6019.6 3706.3 0.3002 18.138 iplths=0 0.20 0.0 38. 16309.0 5727.5 3184.6 0.3010 18.434 / 0.20 0.0 35. 14231.2 5413.3 2672.2 0.3030 18.805	ipltth=2	0.20		47.		6481.1	4836.8	0.3047	17.401
iplths=0 0.20 0.0 38. 16309.0 5727.5 3184.6 0.3010 18.434 0.20 0.0 35. 14231.2 5413.3 2672.2 0.3030 18.805									
/ 0.20 0.0 35. 14231.2 5413.3 2672.2 0.3030 18.805									
	1pitns=0								
0.20 0.0 32. 12066.9 5012.5 2198.3 0.3116 18.974	/								
		0.20	0.0	32.	12066.9	5012.5	2198.3	0.3116	18.974

- Both of these files need to be converted to Aviary format
 - Aviary includes command-line utilities that will do this for us!

Aviary Utilities

Aviary's utilities can be found in the documentation, or with aviary --help or aviary -h

usage: aviary [-h] [·	aviary -h version]		
aviary Command Line	Tools		
options: -h,help version	show this help message and exit show version and exit		will be using these
Tools:		util	ities
convert_aero_tab	le Conver <u>ts ELOPS- or G</u> ASP-formatted aero data files <u>inte Aviary CSV format</u> .	1.	Convert input file
convert_engine ←	Converts FLOPS- or GASP-formatted engine decks into Aviary csv format. FLOPS decks are changed	2.	Convert engine deck
	from column-delimited to csv format with added headers. GASP decks are reorganized into column based csv. T4 is recovered through calculation. Data points whose T4 exceeds T4max are removed.	3.	Draw mission profile
convert_prop_tabl	Converts GASP formatted propeller map file into Aviary csv format.	4.	Run mission
dashboard draw_mission	Run the Dashboard tool Allows users to draw a mission profile for use in Aviary.		
fortran_to_aviary		5.	View results in dashboard
h	Converts legacy Fortran input decks to Aviary csv based decks		
hangar plot drag polar	Allows users that pip installed Aviary to download models from the Aviary hangar Plot a Drag Polar Graph using a provided polar data csv input		
run_mission	Runs Aviary using a provided input deck		

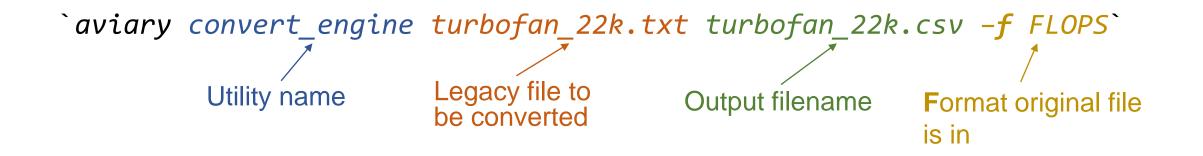
Convert the FLOPS input file into Aviary format using:

N3CC.csv

...

created 10/17/24 at 15:43 by
FLOPS-derived aircraft input deck converted from N3CC_FLOPSin.txt

Input Values


aircraft:air_conditioning:mass_scaler,0.98094,unitless aircraft:anti_icing:mass_scaler,0.53202,unitless aircraft:apu:mass_scaler,1.02321,unitless aircraft:avionics:mass_scaler,1.123226,unitless aircraft:canard:laminar_flow_lower,0,unitless aircraft:canard:laminar_flow_upper,0,unitless aircraft:canard:laminar_flow_upper,0,unitless aircraft:canard:mass_scaler,1,unitless aircraft:crew_and_payload:baggage_mass_per_passenger,35,lbm aircraft:crew_and_payload:flight_crew_mass_scaler,1,unitless aircraft:crew_and_payload:mass_per_passenger,165,lbm aircraft:crew_and_payload:misc_cargo,0,lbm

Unconverted Values
AERIN.clapp,2
AERIN.dratio,1
AERIN.elodma,0
AERIN.elodss,0
AERIN.flldg,8190

- FLOPS variables were matched to equivalent Aviary variables
- At the bottom of the file are unconverted variables
 - These are unused by Aviary or not yet implemented (such as mission definition)
 - Manually review these!

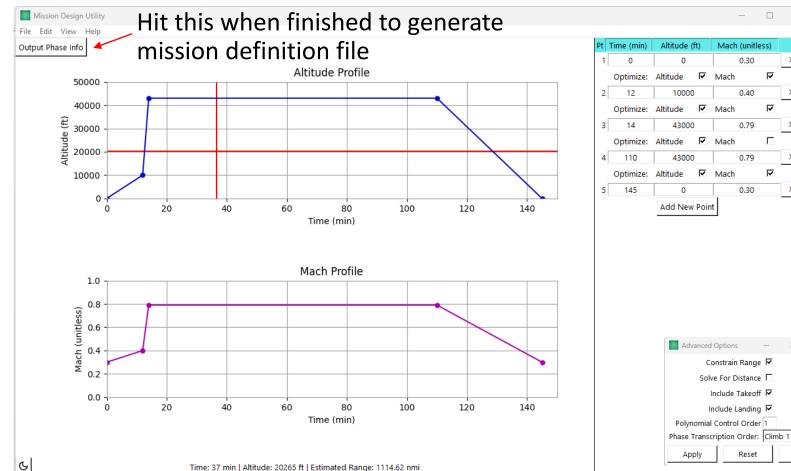
Convert Engine Deck

Convert the FLOPS-formatted engine deck to Aviary format using:

Check the Generated Engine Deck

turbofan_22k.csv

created 10/17/24 at 15:13 by


FLOPS-derived engine deck converted from turbofan_22k.txt

Mach_Number,	Altitude (ft),	Throttle,	Gross_Thrust (1bf),	Ram_Drag (1bf),	Fuel_Flow (lb/h),	NOx_Rate (lb/h)
0.0,	0.0,	21.0,	1110.0,	0.0,	500.3,	55.372
0.0,	0.0,	26.0,	4440.1,	0.0,	964.9,	23.442
0.0,	0.0,	29.0,	6660.2,	0.0,	1368.2,	21.499
0.0,	0.0,	32.0,	8880.2,	0.0,	1790.8,	20.979
0.0,	0.0,	35.0,	11100.2,	0.0,	2255.1,	20.252
0.0,	0.0,	38.0,	13320.3,	0.0,	2756.1,	19.67
0.0,	0.0,	41.0,	15540.4,	0.0,	3300.0,	19.097
0.0,	0.0,	44.0,	17760.5,	0.0,	3879.8,	18.493
0.0,	0.0,	47.0,	19980.5,	0.0,	4500.3,	17.955
0.0,	0.0,	50.0,	22200.5,	0.0,	5157.3,	17.737
0.0,	2000.0,	21.0,	1061.5,	0.0,	472.8,	54.005
0.0,	2000.0,	26.0,	4246.0,	0.0,	917.9,	23.255
0.0,	2000.0,	29.0,	6369.0,	0.0,	1302.4,	21.423
0.0,	2000.0,	32.0,	8492.0,	0.0,	1706.2,	20.883
0.0,	2000.0,	35.0,	10615.1,	0.0,	2149.0,	20.188
0.0,	2000.0,	38.0,	12738.0,	0.0,	2632.7,	19.552
0.0,	2000.0,	41.0,	14861.1,	0.0,	3149.6,	19.014
0.0,	2000.0,	44.0,	16984.1,	0.0,	3709.7,	18.353
0.0,	2000.0,	47.0,	19107.0,	0.0,	4307.7,	17.846
0.0,	2000.0,	50.0,	21230.1,	0.0,	4936.7,	17.715
0.0,	5000.0,	21.0,	989.3,	0.0,	434.8,	52.114
0.0,	5000.0,	26.0,	3957.4,	0.0,	850.3,	23.0
0.0,	5000.0,	29.0,	5936.0,	0.0,	1206.2,	21.325
0.0,	5000.0,	32.0,	7914.8,	0.0,	1582.5,	20.728

 Aviary uses a 2D, column separated table with headers including units

Draw a Mission Profile

`aviary draw mission`

- Points can be added by clicking on the plots or manually typing them out
- This mission was set to match the FLOPS model
 - Allow optimizer to pick alt, Mach except for fixed Mach cruise
- Add takeoff and landing using 'Edit' -> 'Advanced **Options'**

- 3

w)

Cancel

Examine Mission Definition File

outputted_phase_info.py

```
phase info = {
    'pre_mission': {'include_takeoff': True, 'optimize_mass': True},
    'climb_1': {
        'subsystem options': {'core aerodynamics': {'method': 'computed'}},
        'user options': {
            'optimize mach': True,
            'optimize altitude': True,
            'polynomial control order': 1,
            'use polynomial control': True,
            'num segments': 4,
            'order': 3,
            'solve_for_distance': False,
            'initial_mach': (0.3, 'unitless'),
            'final mach': (0.4, 'unitless'),
            'mach bounds': ((0.27999999999999997, 0.4200000000000000), 'unitless'),
            'initial altitude': (0.0, 'ft'),
            'final altitude': (10000.0, 'ft'),
            'altitude_bounds': ((0.0, 10500.0), 'ft'),
            'throttle enforcement': 'path constraint',
            'fix initial': True,
            'constrain_final': False,
            'fix duration': False,
            'initial_bounds': ((0.0, 0.0), 'min'),
            'duration_bounds': ((6.0, 18.0), 'min'),
       },
        'initial guesses': {'time': ([0.0, 12.0], 'min')},
   },
    'climb 2': {
        'subsystem_options': {'core_aerodynamics': {'method': 'computed'}},
        'user options': {
            'optimize_mach': True,
            'optimize altitude': True,
```

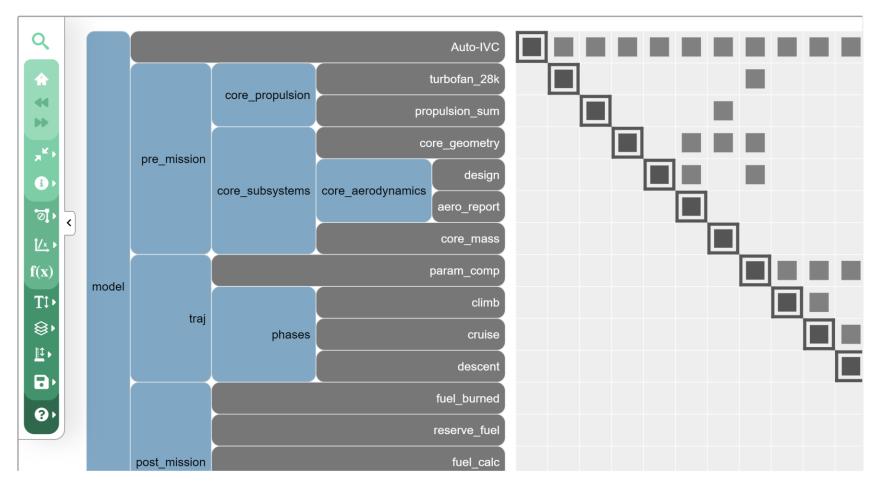
- This file, referred to as "phase_info", directly interfaces with dymos
- It can be directly modified by users to fine-tune mission definition

The mission we set up can be run using `aviary run_mission N3CC.csv`

Aviary assumes we are using the auto-generated *outputted_phase_info.py*, if we want to use a
different mission you can specify that file after the input file

You can also run this aircraft model using the Python interface, which gives you a few more options. For a simple problem like ours, it looks like this:

```
prob = av.run_aviary(
    "N3CC.csv", phase_info, optimizer="SLSQP"
)
```



View Your Results

Open the Aviary dashboard using: `aviary dashboard N3CC`

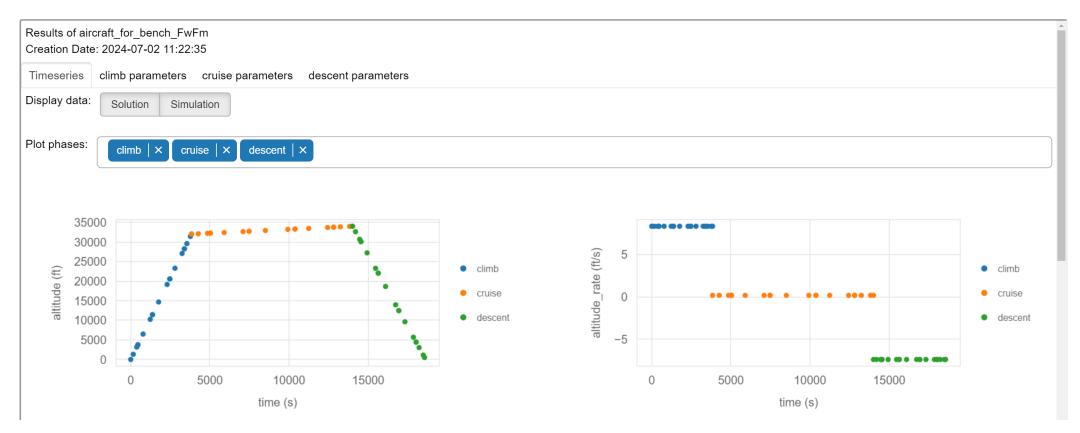
View your Results

Aviary Dashboard for aircraft_for_bench_FwFm

The N2 diagram, sometimes referred to as an eXtended Design Structure Matrix (XDSM), is a powerful tool for understanding your model in OpenMDAO. It is an N-squared diagram in the shape of a matrix represent used to systematically identify, define, tabulate, design, and analyze functional and physical interfaces

Understand, debug, and parse results with interactive reports

- High-level summary of final aircraft design
- Detailed optimization reports
- Detailed reports from each subsystem
- Plots and figures of aircraft trajectory and timedependent variables



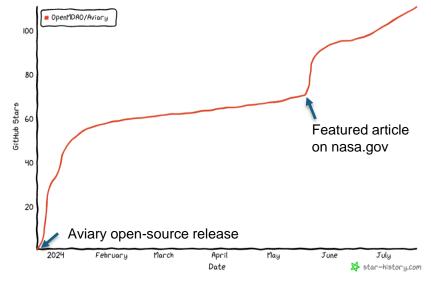
View Your Results

Aviary Dashboard for aircraft_for_bench_FwFm

Model	Op	timization	Results	Subsyst	ems		
Mission	Summ	ary Traj e	jectory Results Report Avia		Aviary Variables	Timeseries Mission Output Report	Aircraft 3d model

This is one of the most important reports produced by Aviary. It will help you visualize and understand the optimal trajectory produced by Aviary. Users should play with it and try to grasp all possible features. This timeseries tab, users can select which phases to view. Other features include hovering the mouse over the solution points to see solution value and zooming into a particular region for details, etc.

Aviary is already being used across industry, government, and academia



Results

- Aviary was open-source released at end of CY23
- Aviary has been used by AATT to model TTBW with external tool integration
- Built-in capabilities expanding under EPFD partnership to include hybrid and all-electric engines and distributed propulsion

Significance

- Aviary has been used in published design studies, advancing the state-of-the-art for conceptual aircraft design at NASA
- Aviary has gathered widespread interest with partners in industry, government, and academia using the tool and providing feedback
- Over 120 GitHub stars and counting!

"Stars" on Aviary GitHub Repository

External Users/Partners Boeing* Georgia Tech* Northrop Grumman* University of Michigan Naval Research Lab **The Aviary Team**

Current Members

- Jason Kirk (LaRC)
- Eliot Aretskin-Hariton (GRC)
- Xun Jiang (LaRC)
- Ken Moore (GRC)
- Carl Recine (ARC)
- Herb Schilling (GRC)
- Chris Bennett (LaRC)
- Kaushik Ponnapalli (GRC)

Past Members

- Darrell (DJ) Caldwell (LaRC)
- Jennifer Gratz (GRC)
- John Jasa (GRC)
- Kenny Lyons (ARC)
- Ben Margolis (ARC)
- Samara Murri (formerly LaRC)
- Erik Olson (LaRC)
- Janet Ross (LaRC)
- Dahlia Pham (ARC)
- Jeff Chapman (GRC)

Current and Past Advisors

- Rob Falck (GRC)
- Joseph Garcia (ARC)
- Justin Gray (formerly GRC)
- Eric Hendricks (GRC)
- Ben Phillips (LaRC)

Start Using Aviary Today!

Email <u>agency-aviary@mail.nasa.gov</u> to connect with the Aviary team

Or find and install Aviary through GitHub: <u>https://github.com/OpenMDAO/Aviary</u> Or through the Python package manager: `pip install om-aviary`

Aviary activities are co-funded by the T³, AATT, and EPFD projects