National Aeronautics and Space Administration

Aviary: A Transformational Tool
For Aircraft Design

Carl Recine, ARC, Aviary Co-Lead

Jason Kirk, LaRC, Aviary Lead
Rz 99V Eliot Aretskin-Hariton, Aviary Feature Developer

Presentation Roadmap

1.

What is Aviary?
What challenges does Aviary solve?
New features and upcoming additions

Walkthrough using Aviary

Aviary. An Open-Source Tool for
Next-Gen Tool for Aircraft Design

Challenge R —

« Existing conceptual design tools limited in capability to ‘;\% e
model and determine trends with advanced Ty, |
configurations and new technologies " advanced concepts

* Need for better analysis & optimization techniques to
produce more performant and robust designs

9pax DEP

X- ;{ A —
@ Aerodynamics analysis of coupled
subsystems

@ Electrical — ObjeCtiveS

e « Maintain capabilities of legacy tools
‘ ‘eights
> — « Support electrified vehicles out-of-the-box

<

@ JES Unified Aviary - Easy integration of external models

@) T Model . Use state-of-the-art analysis and optimization

techniques, with a focus on gradient-based optimization
« Open-source release, maximize partner collaboration

Presentation Roadmap

1.

What is Aviary?
What challenges does Aviary solve?
New features and upcoming additions

Walkthrough using Aviary

Conceptual Design: An Iterative Process

100

80

% of ©0
Project

Funds
40

20

Concept

Decision

Locked-in Costs : » 100%

Pre-Acquisition

Acquisition T Operations | Decommission

Conceptual design process has the most design freedom
Key decisions must be made before “locked-in”

For NASA Aeronautics:

* Which vehicle configurations are worth pursuing?
* What technologies buy their way onto a vehicle?
* What are the projected performance and cost?

Iteration is key — time and resources are limited
Quantity of analysis allows exploration of more

of the design space

Quality of analysis reduces risk on key decisions

Recognize
need/
opportunity

Perform
mission

Identify and
quantify goals

Identify and
quantify goals

Identify and
quantify goals

Identify and
quantify goals

Aircraft Design @

« Always a compromise between
competing disciplines

roomen, s ’ﬁ— :
— Structures %;‘“”'i\ | IDEAL PLANE) o
: \ g, N OR WHAT HAPPENS IF ONE ¥l -
— Aerodynamics N Sz, TEAM GETS TRE'R OWN WAY L PRNCRKE
— Propulsion PROPULSION A.K.A. The Imperrance of L™
GROVP STEMS A
- etC. . % NGRA 8oy Q
- g 0\
. . . . o\) o e N N\ /\w \L
e Discipline experts must work — Iz~ RSAQR) e \ a i \
pline exp | LT S s g —SEE N
together and compromise on _ [0] V) ~L...,:: ‘\i“---‘,'." :{ S Sndi— T
a design — this takes time! &= =5, TEAM YA /(
—<ngig prroN AN S SH \ ExecuTive
> S’WNCW?& LEADERSW\P
‘W_PsM
TEAM

A\RCRAFT DESIOGN 1S A TEAM SPORT
_’J

T ——————————— S —
e —————————————S——

Complex Coupling Between Disciplines

Aircraft system-level metrics are dependent on interactions between technologies

¥ aero-acoustic
couplings

Source-Surface

vasuiace AP & DEP couplings

Far-Surface

N

Aerothermal design of heat exchanger passages
Heat trans. Coef.

0 30 60 90 120 150 180 210 240 270 300

Total Wall Heating, [W/cm?]

500 1000 1500 2000 2500 3000 40 kW 60 kW

aero-structural couplings

80 kW

aero-thermal couplings —

Historical Aircraft Design Method @

LN

Discipine 1 EEM piscipline 2 Alircraft Is treated as the sum of its parts

Team —— Te:m
ot 22 | +)=)).

Teams conduct analysis independently
Data thrown “over-the-wall”
Manual iteration required

Old method too slow to rapidly iterate

Complex interactions missed, suboptimal design

Advanced Digital Design Method

Discipline 2
Team

Discipline 1
Team

« Discipline analysis connected through software
 No “wall”, teams work on the same aircraft level

model Complex interactions are captured,

* Version control for models aircraft is designed holistically
 No manual iteration needed

Aviary enables this conceptual aircraft desigh workflow

Aviary is NASA’s next-generation conceptual @/
aircraft modeling and optimization framework

Aviary’s goals are to:

« Combine the capabilities of legacy codes into a single tool

Use a modern code architecture, built in Python, that enables easy maodification of source code and

modular analysis that can be easily swapped with custom tools or methods

. i
N T seghenammin Tty

» Perform state-of-the-art coupled optimization with ,ErgpenMD/\O, ay‘rnos
* Provide capability to analyze advanced future aircraft concepts, including electrification

* Open-source release for maximum impact to the aerospace research community

Combine legacy Coupled Open source
tools Optimizations software

Modular for
modification and Analyze advanced
substitution concepts

10

History Of Aviary

LaRC

@ python’

GRC,
ARC

-

¥

NVINRY

11

Aviary Is a Modular, Extensible Design Framework

Pre-Mission

LGeo etryj
T | s
T | me)

Analysis

t Other
Subsystem(s)

* Optimization can be performed over
entire model

« Complete freedom of choice of objective
function, design variables, constraints,
etc.

Mission
Analysis

E S

.

Integrator

Aircraft Design Loop

>

&

Legend

Aviary Core Subsystem
User Subsystem

. Aviary Integration Features

Uncertainty Quantification

~ 2

Missions

ﬂ UQPCE

Acoustics | Post Processing

Modeling Cost
L Modeling)
Fleet
—— Emissions }
Other Post-
Modeling)
b processing
Subsystem(s)

12

Aviary’s User Interface

Aviary Ul
Level 1 | Level 2: |
Input File Python Interface

Level 3:

Python Script

Define subsystems and
mission analysis

Load user inputs
into memory

A A

Build and run

model

A

|

Users can jump in at any level.

A user might use level 3 for one study,
then only need the level 1 interface for
another.

Pre-
Mission
— Mission

-

U

.M

Aviary Problem

U

C

R

— Post-Processing

)

(S

Mission
Analysis

_—

13

Adding External Subsystems

« User-defined modules need to tell Aviary what
to expect from your system:
— The states you want to integrate across the mission
— Any new variables your system needs
— The constraints, parameters, and design variables

» Aviary provides the "SubsystemBuilderBase
object, which you use to create your builder

def

build_pre_mission(self):

Build an OpenMDAC system for the pre-mission computations of the subsystem.
Required for subsystems with pre-mission computations.

Used in level3.py to build the pre-mission system.

Returns

pre_mission_sys : openmdao.core.System
An OpenMDAQ system containing all computations that need to happen in
the pre-mission (formerly statics) part of the Aviary problem. This
includes sizing, design, and other non-mission parameters.

return om.Group{)
get_states(self):
Return a dictionary of states defined by this subsystem.
Required for subsystems with mission-based dynamics.
Mote that there must be outputs provided by the user's model that provide
the time derivative of =ach state. The convention is to name the output
f"{state_name}_rate”, where “state_name” is the name of the state variable.
Use in the phase builders {e.g. cruise_phase.py) when other states are added to the phase.
Returns
states : dict

A dictionary where the keys are the names of the state variables

and the wvalues are dictionaries with the following keys:

- 'units’: a string indicating the units of the state variable
- any additional keyword arguments required by Dymos for the state variable.

return {}

14

Presentation Roadmap

1.

2.

3.

4.

What is Aviary?
What challenges does Aviary solve?
New features and upcoming additions

Walkthrough using Aviary

15

Converters for aerodynamic and propeller tables @

Convert a FLOPS or GASP aero table into Aviary format using:

“aviary convert aero table GASP aero.txt aviary aero.csv -f GASP"

/ Fe / /

Utility name Legacy file to Output filename Data Format
be converted original file is from

Convert a GASP propeller map into Aviary format using:

“aviary convert prop table GASP Prop.map output.prop -f GASP"

/ _ d /

Utility name Legacy file to Output filename Data Format
be converted original file is from

16

Repository for community made models @

(1] README &8 License V4

This is a supplemental repository where the Aviary community, students and professors, and enthusiasts, can share
aircraft models, engines, mission models, and external subsystem builders/wrappers. This was created as a
supplement of the Aviary repo. The official Aviary repo only includes aircraft used for testing and didactic examples
and there was a need for a place for people to share other models.

The examples in this repo are typically the work of students and no guarantees are given to the accuracy or quality of
these models. You are welcome to share and use any of these example aircraft. When uploading a model we
encourage you to cite your sources for where you got your data so that other users can trace your footsteps.

Only publicly available data should be shared in this repository. Please exercise caution and carefully review your
models for sensitive data before submitting. You are responsible for checking models you share with the community.
Thank you for contributing!

https://github.com/OpenMDAO/Aviary_Community

17

Turboprop (and electroprop)

v propulsion
TurbopropModel (EngineModel): v gearbox

UML)

> model
> test

_init__py
gearbox_builder.py

EngineModel that combines a model for shaft power generation

(default is EngineDeck)

and a model for propeller performance
(default is Hamilton Standard).

v motor
> model

> test
_init__.py
motor_builder.py

v propeller
_init__py
hamilton_standard.py

propeller_map.py
propeller_performance.py

18

Heterogeneous engines

- test_multiengine_ fixed(self):

test_phase_info = deepcopy(local_phase_info)
method = ThrottleAllocation.FIXED

test_phase_info['climb']['user_options']['throttle _allocation'] = method
test _phase_info['cruise’']['user_options']['throttle allocation'] = method
test_phase_info['descent’']['user_options']['throttle _allocation'] = method

enginel = build_engine_deck(engine_1 inputs)[@]
enginel.name = ‘engine 1°
engine2 = build _engine_deck(engine_ 2 inputs)[@]
engine2.name = ‘engine 2'

prob = AviaryProblem()

prob.load_inputs(inputs, test_phase_info, engine_builders=[enginel, engine2])

Off-Design Mission Analysis Capability

prob.setup()

prob.set_initial guesses()
prob.run_aviary_problem()
prob.save_sizing to_json()

prob_fallout = prob.fallout_mission()

prob_alternate = prob.alternate_mission()

fallout_mission(self, run_mission= ,

json_filename='sizing problem.json’,
mission_mass= , payload mass= 5
phase_info= , verbosity=Verbosity.BRIEF):

alternate _mission(self, run_mission= ,
json_filename='sizing problem.json’,
payload_mass= , mission_range= ,
phase_info= , verbosity=Verbosity.BRIEF):

"aircraft:design:

2
"unitless"”,
1

"¢class 'bool'>"

"aircraft:design:

"aircraft:design:

3000,
|Ilbrn|I,
"¢class

compute_htail_volume_coeff",

compute_vtail_volume_coeff",

:part25_structural_category”,

reserve_fuel_ additional”,

20

Multi-Mission Design (coming soon w/ PR #529)

« Adds the capability to run one aircraft design in multiple missions

« Example model route Cleveland -> Atlanta -> Chicago
« Differentiates between “Design” Pax & Range vs. As-flown Pax & Range

Design.Num.PAX Design.Num.PAX Design.Num.PAX
Actual Num.Pax Actual Num.Pax Actual Num.Pax
Userlnput)))
Design. Range Design.Range Design.Range
Actual .range Actual .range Actual .range

Wing.Aero.Design Wing.Aero.Design /ﬁ/ Wing.Aero.Design /

[
Cleveland — > Atlanta

Atlanta— _
(PreMission, Mission, PostMission) q
Chi — > Cleveland
o Misson Pt

(PreMission, Mission, PostMission)
(PreMission, Mission, PostMission)

ObjectiveSum
(MinFuelBurn)

/ sum.fuelburn

Uncertainty Quantification with Multi-Mission
(coming soon AIAA Paper)

vavavavavava

uuuuuuuuuuu

KENTUCKY

« Demonstrates capability to combine UQPCE and Aviary for single leg

‘‘‘‘‘‘‘‘‘‘‘‘‘

 Adds uncertainty to passenger & bag mass and propulsion e
« UQPCE Library leveraged to post-process fuel burn and build confidence intervals

;,-"f pax.massyq ffl
/ bag.massyg f.f
Userlnput f/f Design.Num.PAX f‘f
f.- Design.Range ;f;
| Actual .range ,.«'f

{
/

—

/ Optimizer \ /f Wing . Aero.Design ,-’;
\ / L || /
Cleveland— > Atlanta / H
o o o fuelburn.vec |//]
(PreMission, Mission, PostMission) /1]

/ /
/ 95 ypper - fuelburn /

UQPCELib [OBiower-fuelburn |

!

/ average.fuelburn |
! /

/ ObjectiveSum
[95,pper.fuelburn | i
L (MinFuelBurn)

22

Presentation Roadmap

1.

What is Aviary?
What challenges does Aviary solve?
New features and upcoming additions

Walkthrough using Aviary

23

Installing Aviary

* Follow the instructions in Aviary’s documentation to get your Python environment set up
« Once you are ready, Aviary can be installed as follows:

The simplest way to install Aviary to use pip in a terminal:
pip install om-aviary

This will install the latest release of Aviary and all of its dependencies.

That's it! If you've done that successfully, you can now use Aviary in your Python environment.

« For the latest development version of Aviary, obtain the code directly from GitHub and
install

https://openmdao.github.io/Aviary/getting started/installation.html

&

24

https://openmdao.github.io/Aviary/getting_started/installation.html

Aviary’s Documentation

Y]

NVINRY

Q Search ctrl [+ K
Aviary Documentation

Getting Started
Installation
What Aviary Does
Tools That Aviary is Built Upon
Expected User Knowledge
Onboarding Guide

Now What?

User Guide

Aviary User Interface

Drawing and running simple

missions
Pre-Mission and Mission
Outputs and How to Read Them

Understanding the Variable
Metadata

Features and Functionalities

Troubleshooting

Examples

Discussing the Aviary Examples

Conventional Aircraft and Simple

Mission

= 0O % I

Aviary Documentation

This is the landing page for all of Aviary's documentation, including a user's guide, developer’s guide, and
theory guide, as well as other resources. Welcome!

What Aviary is

Aviary is an aircraft analysis, design, and optimization tool built on top of the Python-based optimization
framework OpenMDAO. Aviary provides a flexible and user-friendly optimization platform that allows the
beginning aircraft modeler to build a useful model, the intermediate aircraft modeler to build an advanced
model, and the advanced aircraft modeler to build any model they can imagine.

Features of Aviary include:

¢ included simple subsystem models for aerodynamics, propulsion, mass, geometry, and mission analysis
e ability to add user-defined subsystems
¢ gradient-based optimization capability

¢ analytical gradients for all included subsystems

How to Read These Docs

The Aviary documentation is broken up into several sections, each of which is designed to teach a different
aspect of Aviary. Reading the entirety of the docs is highly recommended for new users, but please read
through the Getting Started section at a minimum.

You can read through the documentation in order or you can jump to the sections that interest you the most.

© Note

Use the interactive table of contents on the left side of the page to navigate through the
documentation.

User Guide

i= Contents

What Aviary is

How to Read These Docs
User Guide

Examples

Theory Guide

Developer Guide
Miscellaneous Resources

Table of contents

25

Example Problem

* As an example, we will run NASA's N3CC aircraft using Aviary
« The N3CC is an advanced single-aisle transport, EIS 2035
« Itis a FLOPS model, which we will convert to an Aviary model then run

26

The N3CC Model

« Both of these files need to be converted to Aviary format

FLOPS input file

N3CC_FLOPSIn.txt

REF MDL N3CC (26616) AR11 1228t 134@p turbofan_22k M785 28218721
&OPTION
! Program Control, Execution, Analysis and Plot Option Data

mprint=1, iopt=1, ianal=3, ineng=0, itakof=1, iland=1
nopro=1, noise=8, icost=@, ifite=0

! Plot files for XFLOPS Graphical Interface Postprocessor (MSMPLOT)

ixfl=1

! Takeoff and Climb Profile File for Noise Calculations (NPROF)
npfile=1

! Approach and Landing Profile File for MNoise Calculations (LPROF)

1pfile=0

! Drag Polar Plot File (POLPLOT)
ipolp=1, polalt=39000.8,
nmach = 3, pmach=0.3, ©.45222, ©.785

! Engine Performance Data Plot File (THRPLOT)
ipltth=2

! Design History Plot File (HISPLOT)
iplths=08
/!

FLOPS-formatted engine deck

Aviary includes command-line utilities that will do this for us!

OO0 0000000000000 O0O00000000000D

.0a
.08
.68
.6@
.6a
6@
0@
0@
.0a
.0a
.1@
.1@
.1@

.18
.1@
.1@
.1@
.1@
.1@
.28
.20
.20
.20
.20
.28

OO0 0000000000000 00000000000
OO0 00 0000000000000 000000000D

50.
47.

41,
38.
35.
32.
29.
26.
21.
5@.
47.

41.
38.
35.
32.
29.
26.
21.
5a.
47.

41.
38.
35.

Turbofan _22k.txt

22200.
19986.
17766.
15548.
13328.
111e8.

8886.

6668.

4448.

1118.
22936.
20834.
18751.
16665.
14543.
12412.
18237.

8024.

5771.

2388.
24389.
22353.
20368.
18364.
163@9.
14231.
12866.

(0= S v I v I VR IR - B - B v BN R WU IR T S T o R IR W I~ T Sy T S R W S R W RV |

=

3299.
3161.

3ed1
2919

2761.
2594,

2383

2133.
1844.

1399

6753.
6481.

6251

6019.
5727.
5413.
5e12.

000000000

LMW o EOEDNAREERE NS00 000000030

5157.
4508.
3879.

33680

2756.
2255.

1798

1368.
964.

500

5279.
4653.

4859
3496

2972,
2464,

2000

1561.
1138.

576

5444,
4836.

4256

3706.
3184.
2672,
2198.

[s I WU o T+ R (R, B o B o R R N+ T I R R W N T I I >+ < R W R)

[s* s> B~ R B e B v I v B s B a s B v B v B+ T o B o- B e B v B v B+ B v i wv I o B o+ B v I ov B v]

.2323
. 2252
. 2185

2123

.2869
.2832

2017

.2854
.2173

4507

. 2689
L2633

2584
2543

.2523
.251@

2547

.2650
.2898

5872

.3e87
.3e47

3017

.3002
.3e1e
.3e3e
.3116

17.
17.
493
19.
19.
20.
20.
.499
L4432
55.
17.
17.
18.
.761
19.
19.
28.
20.
21.
28.
17.
.41
17.
18.
434
18.
974

18

21
23

17

18

737
955

ag7
678
252
979

372
625
758
179

161
731
126
586
215
966
378

711
138

8a5

27

Aviary Utilities

aviary -h

lusage: aviary [-h] [--version]
aviary Command Line Tools

options:

-h, --help show this help message and exit

--version show version and exit

Tools:
|

convert_aero_table

Convert Ch . ASP-formatted aero data files ipte—Aviary T Ormat:
convert_engine onverts FLOPS- or GASP-formatted engine de pte—Aviary csv_foerfiat. FLOPS decks are changed
from column-delimited to csv_foemest with added headers. G4SP decks are reorganized into column
based csv. T4 is recovered throwstr calcwdation. Data-points whose T4 exceeds T4max are removed.
convert_prop_table
erverts GASB—formatted-propeller map £i#Te into Aviary csv format.
dashboard Run—¢te DashbgardTool
draw_mission Allows #=sErs to draw a misston profile for use in Aviary.
fortran_to_aviary
Converts lega Fortran input decks to Aviary csv based decks
hangar Allo users that pip installed Aviary to download models from the Aviary hangar
plot_drag_polar PTot a Drag Polar Graph using a provided polar data csv input
run_mission Runs Aviary using a provided input deck

Aviary’s utilities can be found in the documentation, or with ‘aviary --help or aviary -h

We will be using these
utilities

Convert input file

Convert engine deck
Draw mission profile

Run mission

View results in dashboard

AN

28

Convert Input File

Convert the FLOPS input file into Aviary format using:

“aviary fortran to aviary N3CC FLOPSin.txt -o N3CC.csv -L FLOPS®

/ e / /

Utility name Legacy file to Output filename Legacy code
be converted original file is from

&

29

Check the Generated Input File

N3CC.csv

created 18/17/24 at 15:43 by

FLOPS-derived aircraft input deck converted from N3CC _FLOPSin.txt

Input Values

aircraft:
aircraft:
aircraft:
aircraft:

air conditioning:mass_scaler,B.98894,unitless
anti icing:mass_scaler,8.53202,unitless
apu:mass_scaler,1.82321,unitless
avionics:mass_scaler,1.123226,unitless

FLOPS variables were matched to
equivalent Aviary variables

At the bottom of the file are
unconverted variables

aircraftt:canard:laminar_flow_lower,B,unitless — These are unused by Aviary or not yet
aircraft:canard:laminar_flow upper,8,unitless . .. <
aircraft:canard:mass_scaler,]l,unitless Implemented (SUCh as mission deflnltlon)
aircraft:crew_and_payload:baggage mass_per passenger,35,1bm — Manually review these!

aircraft:
aircraft:
aircraft:

crew_and payload:flight crew mass scaler,l,unitless
crew_and_payload:mass_per_passenger,165,1bm
crew_and payload:misc_cargo,®,lbm

Unconverted Values

AERIN.clapp,?
AERIN.dratio,l
AERIN.elodma,d
AERIN.elodss,B
AERIN.f11dg,8198

30

Convert Engine Deck

Convert the FLOPS-formatted engine deck to Aviary format using:

“aviary convert engine turbofan 22k.txt turbofan 22k.csv -f FLOPS"

/ - e /

Utility name Legacy file to - - _
y b6 converted Output filename iI;oi:]mat original file

Check the Generated Engine Deck

turbofan 22k.csv

created 18/17/24 at 15:13 by .
FLOPS-derived engine deck converted from turbofan 22k.txt o AVIa ry uses a 2D’ C0|umn
Mach_Number, Altitude (ft), Throttle, Gross Thrust (1bf), Ram_Drag (1bf), Fuel Flow (1b/h), NOx Rate (1b/h) se pa rated table W|th
9.0, 0.0, 21.9, 1110.0, 0.0, 500.3, 55.372
9.0, 0.0, 26.9, 4440.1, 0.0, 964.9, 23.442 . . .
0.0, 0.0, 29.9, 6660.2, 0.0, 1368.2, 21.499 headerS |nCIUd|ng units
9.0, 0.0, 32.0, 8880.2, 0.0, 1790.8, 20.979
9.0, 0.0, 35.9, 11100.2, 0.0, 2255.1, 20.252
9.0, 0.0, 38.0, 13320.3, 0.0, 2756.1, 19.67
0.0, 0.0, 41.0, 15549. 4, 0.0, 3300.0, 19.097
0.0, 0.0, 44.09, 17760.5, 0.0, 3879.8, 18.493
8.0, 0.0, 47.0, 19980.5, 0.0, 4500.3, 17.955
9.0, 0.0, 50.9, 22200.5, 0.0, 5157.3, 17.737
9.0, 2000.9, 21.0, 1061.5, 0.0, 472.8, 54.005
0.0, 2000.9, 26.9, 4246.0, 0.0, 917.9, 23.255
9.0, 2000.9, 29.9, 6369.0, 0.0, 1302.4, 21.423
9.0, 2000.0, 32.0, 8492.0, 0.0, 1706.2, 20.883
9.0, 2000.9, 35.0, 10615.1, 0.0, 2149.9, 20.188
0.0, 2000.9, 38.0, 12738.90, 0.0, 2632.7, 19.552
0.0, 2000.9, 41.0, 14861.1, 0.0, 3149.6, 19.014
8.0, 2000.0, 44.0, 16984.1, 0.0, 3709.7, 18.353
9.0, 2000.9, 47.0, 19107.90, 0.0, 4307.7, 17.846
9.0, 2000.9, 50.9, 21230.1, 0.0, 4936.7, 17.715
0.0, 5000.0, 21.0, 989.3, 0.0, 434.8, 52.114
9.0, 5000.0, 26.9, 3957.4, 0.0, 850.3, 23.0
9.0, 5000.0, 29.9, 5936.0, 0.0, 1206.2, 21.325
9.0 5000.0, 32.0 7914.8, 0.0 1582.5 20.728

[
[
[
[

Draw a Mission Profile

“aviary draw _mission

| 3 3 a.C .
\::)iijetpuEt::Zi'thas:Ellr;foHEi/ Hlt thls V(\jlhfen:'nIShfeld © generate pt| Time (min) | Altitude (ft) | Mach (unitless) * POIntS can be addEd by
MISSION GeTIIE O o clicking on the plots or

1 0 o 0.30

50000 - Altitude Profile Optimize: Aiude ¥ Mach - ﬂ
40000 7 ! : 2 Opt:riize: Altitu:}euw W Mach - ~ ﬂ m a n u a I |y typl n g th e m O Ut
% 30000 - [\ 3 .14. | 43000 0.79 ﬂ . . .
e one w0 © - » This mission was set to
S

/ \ o w e # magtch the FLOPS model

’ S . S R T oo * Allow optimizer to pick alt,
Mach except for fixed Mach
Mach Profile cru |Se

i, | ‘ » Add takeoff and landing
/j \ = using ‘Edit’ -> ‘Advanced

Constrain Range W
Z 02- M ’
- Solve For Distance [O t I O n S
| | | | | | | Include Takeoff ¥ p
0 20 40 60 80 100 120 140 Include Landing
Time (min) Palynomial Control Order |1

Phase Transcription Order: |Climb 1 =] 3
Apply | Reset | Cancel |

g Time: 37 min | Altitude: 20265 ft | Estimated Range: 1114.62 nmi

xamine Mission Definition File

outputted _phase_info.py

phase_info = {
"pre_mission’: {'include_takeoff’': True, 'optimize_mass': True

' This file, referred to as

'subsystem_options’': {'core_serodynamics': {'method’': 'computed'}}, " o) . o
'us tions': {
e options's { phase info”, directly interfaces
‘optimize_altitude': True, .
‘polynomial_control_order’: 1, th d
'Eze_;?{yromiz;_Ezrtiol "t True, W I y m O S
‘num_segments’: 4,
‘order’: 3,

()

* It can be directly modified by

‘solve_for_distance’: False,

"initial _mach': (8.3, ‘unitlesz"),

‘final_mach': (@.4, 'unitless’), . . °
'mach_bounds': ((®.27929920992099007, ©.42000000000000004), 'unitless'), u Se rs to fl n e—t u n e m |SS | O n
"initial_altitude’: (8.8, 'ft'),

"final_altitude': (1@eee.s8, 'ft'), d f' *L
‘altitude_bounds': ((©.8, 1lesee.a), 'ft'), e Inltlon
‘throttle_snforcement’: 'path_constraint’,
"fix_initial': True,
‘constrain_final': False,
"fix_duration': False,
"initial_bounds': ((e.e, @.8), 'min'),
"duration_bounds': ((6.e, 18.8), 'min"),
s
"initial guesses': {'time': ([©.@, 12.8], 'min')},
.\J
"climb_2":
"subsystem_options': {'core_serodynamics': {'method’': 'computed'}},
'user_options': {
‘optimize_mach': True,
‘optimize_altitude': True,

Run the Mission @

The mission we set up can be run using “aviary run_mission N3CC.csv’

« Aviary assumes we are using the auto-generated outputted phase_info.py, if we want to use a
different mission you can specify that file after the input file

You can also run this aircraft model using the Python interface, which gives you a few more options.
For a simple problem like ours, it looks like this:

prob = av.run_aviary(
"N3CC.csv", phase_info, optimizer="SLSQP"
)

35

View Your Results

Open the Aviary dashboard using: “aviary dashboard N3CC"

36

View your Results @/

Aviary Dashboard for aircraft_for_bench_FwFm

Maodel Optinlwizat'\on] Results I Subslystems l Understand’ debug’ and parse
Inputs N2 Trajectory Linkage Report . . .

results with interactive reports
e High-level summary of final

BEEEEEEEEER aircraft design

Auto IVC
] O * Detailed optimization
propulsmn sum . . re ports
(coro_goomein)] B EE * Detailed reports from each
il O subsystem
repm * Plots and figures of aircraft

The N2 diagram, sometimes referred to as an eXtended Design Structure Matrix (XDSM), is a powerful tool for understanding your model in OpenMDAQ. It is an N-squared diagram in the shape of a matrix represent
used to systematically identify, define, tabulate, design, and analyze functional and physical interfaces

Q

mass & trajectory and time-
dependent variables

param _comp

climb

c:rwse

descent

fuel | _burned

reserve_fuel

fuel_calc
37

View Your Results

Aviary Dashboard for aircraft_for_bench_FwFm

Model l Optimization I Results] Subsystems]

Mission Summary] Trajectory Results Report] Aviary Variables] Timeseries Mission Output Report] Aircraft 3d model 1

This is one of the most important reports produced by Aviary. It will help you visualize and understand the optimal trajectory produced by Aviary. Users should play with it and try to grasp all possible features. This 1
timeseries tab, users can select which phases to view. Other features include hovering the mouse over the solution points to see solution value and zooming into a particular region for details, etc.

Results of aircraft_for bench_FwFm .
Creation Date: 2024-07-02 11:22:35

Timeseries climb parameters cruise parameters descent parameters

Display data: [Solution | Simulation]

Flotphesss: |

35000

ge® o oo o oo 0 eoe & «se o e me

30000 ’o [

25000 h g 5
3 . X ® climb % ® climb
;; 20000 Fd ° 7 =
E 15000 . ® cruise S0 e o 00 o 60 0 cos® ® cruise
= [) [}
T 10000 4 .. ® descent E ® descent

5000 . ® 5

0o ¢ A ®wse ®@e we me
0 5000 10000 15000 0 5000 10000 15000
time (s) time (s)

38

Aviary is already being used across

iIndustry, government, and academia

Results

Aviary was open-source released at end of CY23

Aviary has been used by AATT to model TTBW with external tool
integration

Built-in capabilities expanding under EPFD partnership to include
hybrid and all-electric engines and distributed propulsion

Significance

Aviary has been used in published design studies, advancing the
state-of-the-art for conceptual aircraft design at NASA

Aviary has gathered widespread interest with partners in
industry, government, and academia using the tool and providing
feedback

Over 120 GitHub stars and counting!

® OpentIDAD/Aviary

\

Featured article
on nasa.gov

o
o

GitHub Stars

£
o

L]
o

W Aviary open-source release

2024 February March April May June July
Date 24 star-history.com

“Stars” on Aviary GitHub Repository

External Users/Partners
Boeing*
Georgia Tech*

Northrop Grumman*
University of Michigan
Naval Research Lab

*MBSA&E NRA Partners
39

The Aviary Team

Current Members

« Jason Kirk (LaRC)

« Eliot Aretskin-Hariton (GRC)
« Xun Jiang (LaRC)

« Ken Moore (GRC)

« Carl Recine (ARC)

* Herb Schilling (GRC)

« Chris Bennett (LaRC)

« Kaushik Ponnapalli (GRC)

Past Members

Darrell (DJ) Caldwell (LaRC)
Jennifer Gratz (GRC)

John Jasa (GRC)

Kenny Lyons (ARC)

Ben Margolis (ARC)

Samara Murri (formerly LaRC)

Erik Olson (LaRC)
Janet Ross (LaRC)
Dahlia Pham (ARC)
Jeff Chapman (GRC)

&

Current and Past Advisors
Rob Falck (GRC)

« Joseph Garcia (ARC)

« Justin Gray (formerly GRC)
« Eric Hendricks (GRC)

« Ben Phillips (LaRC)

40

Start Using Aviary Today! @

SCAN HERE

Email agency-aviary@mail.nasa.gov
to connect with the Aviary team

]

NVINRY

Or find and install Aviary through GitHub:
https://qithub.com/OpenMDAOQO/Aviary
Or through the Python package manager:
‘pip install om-aviary

Aviary activities are co-funded by the T3, AATT, and EPFD projects

41

https://github.com/OpenMDAO/Aviary
mailto:agency-aviary@nasa.gov
mailto:agency-aviary@nasa.gov
mailto:agency-aviary@nasa.gov

	intro
	Slide 1
	Slide 2: Presentation Roadmap
	Slide 3: Aviary: An Open-Source Tool for Next-Gen Tool for Aircraft Design

	what challenges does aviary solve
	Slide 4: Presentation Roadmap
	Slide 5: Conceptual Design: An Iterative Process
	Slide 6: Aircraft Design
	Slide 7: Complex Coupling Between Disciplines
	Slide 8: Historical Aircraft Design Method
	Slide 9: Advanced Digital Design Method
	Slide 10
	Slide 11: History Of Aviary
	Slide 12: Aviary is a Modular, Extensible Design Framework
	Slide 13: Aviary’s User Interface
	Slide 14: Adding External Subsystems

	development
	Slide 15: Presentation Roadmap
	Slide 16: Converters for aerodynamic and propeller tables
	Slide 17: Repository for community made models
	Slide 18: Turboprop (and electroprop)
	Slide 19: Heterogeneous engines
	Slide 20: Off-Design Mission Analysis Capability
	Slide 21: Multi-Mission Design (coming soon w/ PR #529)
	Slide 22: Uncertainty Quantification with Multi-Mission (coming soon AIAA Paper)

	walkthrough
	Slide 23: Presentation Roadmap
	Slide 24: Installing Aviary
	Slide 25: Aviary’s Documentation
	Slide 26: Example Problem
	Slide 27: The N3CC Model
	Slide 28: Aviary Utilities
	Slide 29: Convert Input File
	Slide 30: Check the Generated Input File
	Slide 31: Convert Engine Deck
	Slide 32: Check the Generated Engine Deck
	Slide 33: Draw a Mission Profile
	Slide 34: Examine Mission Definition File
	Slide 35: Run the Mission
	Slide 36: View Your Results
	Slide 37: View your Results
	Slide 38: View Your Results

	closing
	Slide 39: Aviary is already being used across industry, government, and academia
	Slide 40: The Aviary Team
	Slide 41: Start Using Aviary Today!

