

Historical Context

1 9 9 5

Interagency Report on Orbital Debris

NASA issues a comprehensive set of orbital debris mitigation guidelines

2 0 0 4

Meteoroid Environment Office

Established by OSMA in response to growing concerns about meteoroid impacts on spacecraft

2 0 1 9

ODMSP Updated

Provides a reference to promote efficient and effective space safety practices 2 0 2 4

NASA Space Sustainability Strategy

Volume 1: Earth Orbit with the follow-on Volume for Cislunar Space and the Lunar Surface

1 9 7 9

ODPO

Established the Orbital Debris Program Office to observe, understand, monitor, and model space debris 2 0 0 1

ODMSP

The first version of the Orbital Debris Mitigation Standard Practices is established 2 0 0 5

CARA

Conjunction
Assessment Risk
Analysis program
set up to assess risk
of close approaches

2021 & 2022

National Orbital Debris R&D Plan and Implementation Strategy

Shift to integrated approach for space sustainability, calling for coordinated national effort

NASA Defines Space Sustainability as:

The ability to **maintain the conduct of space activities** indefinitely into the future in a manner that is safe peaceful, and responsible to meet the needs of the present generation while preserving the outer space environment for future activities and limiting harm to terrestrial life.

- Develop a Framework for Assessing Space Sustainability
- Prioritize the Ways to Minimize
 Uncertainties About Orbital
 Debris and Operations
- Lower Barriers Through
 Developing and Transferring
 Technology
- Update or Develop Policies that Provide Incentives to Support Space Sustainability
- Continue and Improve
 Coordination and Collaboration
 Outside of NASA
- 6 Improve NASA-internal Organization

NASA'S SPACE SUSTAINABILITY STRATEGY

VOLUME 1: EARTH ORBIT

NASA'S SPACE SUSTAINABILITY STRATEGY

VOLUME 1: EARTH ORBIT

DIRECTOR OF SPACE SUSTAINABILITY

A SINGLE, SHARED FRAMEWORK

IDENTIFY AND MINIMIZE CRITICAL UNCERTAINTIES

NEW TECHNOLOGY DEVELOPMENT

UPDATED POLICY NEEDS

COORDINATING A
MULTILATERAL RESPONSE

NASA is seeking input on Lunar Surface and Cislunar Space Sustainability

Space Sustainability is:

 The ability to maintain the conduct of space activities indefinitely into the future in a manner that is safe peaceful, and responsible to meet the needs of the present generation while preserving the outer space environment for future activities and limiting harm to terrestrial life.

Space Sustainability is not:

- Funding stability of programs
- Building a cislunar economy

What are the major challenges, and potential technology or policy solutions, associated with:

- Keeping missions alive long enough to complete their mission and post-mission phases?
- Ensuring that missions don't interfere with each other?
- Ensuring that the operating environment is sustainably used so that future missions can operate?

Please provide any thoughts or feedback via email to: thomas.j.colvin@nasa.gov or travis.f.blake@nasa.gov

FOR THE SECRETS OF THE UNIVERSE

October 30, 2024 | Lunar Exploration Analysis Group Annual Meeting