

Lattice Confinement Fusion-Fast-Fission

Disruptive Technologies Briefing Space Economy and Advanced Manufacturing Working Group November 4, 2024 Washington, D.C.

L. P. Forsley¹ CTO, Global Energy Corporation, Annandale, VA; San Diego, CA PI, Lattice Confinement Fusion Fast-Fission Project, NASA GRC, Cleveland, OH

> Dr. P. A. Mosier-Boss Chief Scientist, Global Energy Corporation, San Diego, CA

Dr. T. L. Benyo PI, Lattice Confinement Fusion Project, NASA GRC Cleveland, OH

^{1.} <u>Iforsley@gechybrid.com</u>, <u>lawrence.p.forsley@nasa.gov</u>

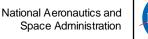
• Lattice Confinement Fusion (LCF)

- Published 2020, Physical Review C^{1,2}
- Patented and Commercialized 2024, Astral Systems
 - LCF in compact neutron generator 50x increase in neutron flux, 99% from LCF
 - Produce medical radioisotopes

• LCF Fast-Fission Hybrid Reaction

- No Enriched Uranium
- Demonstrated with US Navy and GEC
- Modeling and Scaling under NIAC and NSF funding

Application


- Deep space
 - Power: Icy worlds
 - Propulsion: Nuclear Electric Propulsion
 - Planetary Surface Power: Lunar and Mars
- Terrestrial
 - DoD Operational Energy
 - Onsite power for Data Centers

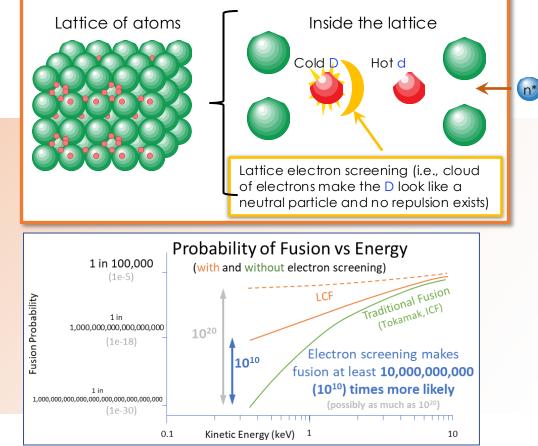
^{1.} V. Pines, et al, "Nuclear Fusion Reactions in Deuterated Metals", Phys Rev C, **101**, (20Apr2020) 044609.

^{2.} B. M. Steinetz, et al, "Novel Nuclear Reactions Observed in Bremsstrahlung-Irradiated Deuterated Metals", Phys Rev C, 101, (20Apr2020) 044610.

Lattice Confinement Fusion (LCF) How it Works

- Traditional fusion: Heats plasma 10x hotter than center of sun hard to control
- LCF addresses the pressure, temperature, and containment challenges with fusion
 - Heats up very few atoms at a time
 - Approaches solar fuel density
 - Lattice provides containment and screening

Technical Details Simplified

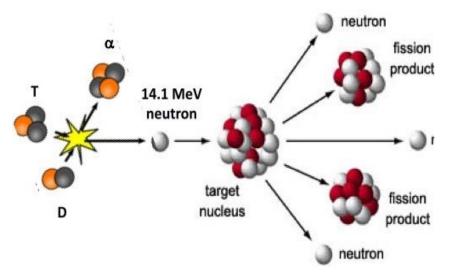

Part A: Electron Screening (increases fusion probability)

 Part B: High Fuel Density

 (billion times more dense than magnetic fusion)

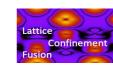
 (+ trigger)

 A + B
 = Viable Fusion



LCF Hybrid Fusion-Fast Fission

Takes advantage of both processes


- Fusion reactions provide the neutrons to fission non-fissile material, natural uranium, thorium, DU
- No enriched uranium: No LEU, HALEU or HEU
- Require ~2 MeV neutrons to fission natural thorium uranium and spent nuclear fuel rods
- Fusion reactions provide up to 14.1 MeV neutrons

GEC patented technology

US Patent 8,419,919, System and Method for Generating Particles: *fast neutrons and charged particles*

Fusion Reaction	MeV	Occurrence	useful particle energy (MeV)
D(d,n) ³ He	4.00	primary $\approx 50\%$	n=2.45
D(d,p)T	3.25	primary $\approx 50\%$	p=3.00
D(³He,p)α	18.30	secondary	p=15.00
D(t,n)α	17.60	secondary	n=14.10
T(t,α)2n	11.30	low probability	n=1 to 9
³ He(³ He,α)2p	12.86	low probability	p=1 to 10
Fission Reaction	MeV	Occurrence	useful particle/energy (MeV)
²³² Th(n, γ) <i>f</i>	200	high probability	n=1 to 9
²³² Th(p, γ) <i>f</i>	200	some probability	p=1 to 10
²³⁸ U(n, γ) <i>f</i>	200	high probability	n=1 to 9
²³⁸ U(p, γ)f	200	some probability	p=1 to 10

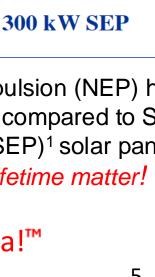
Application

- Deep space •
 - Power
 - Melt through 45 km of Ice shells of Icy worlds
 - Nuclear Electric Propulsion
 - Planetary Surface Power
 - 10 100 kWe Lunar and Martian Power
 - Untended operation 5+ years

Terrestrial

- DoD Operational Energy < 1 MWe
- Small Modular Reactors: Data Centers > 1 MWe

Going Forward


- NIAC LANL MCNP Modeling finished
- NSF Supported Scaling on-going

Nuclear Electric Propulsion (NEP) heat dissipation panels as compared to Solar Electric Propulsion (SEP)¹ solar panels. Mass, volume, lifetime matter!

68.6 m

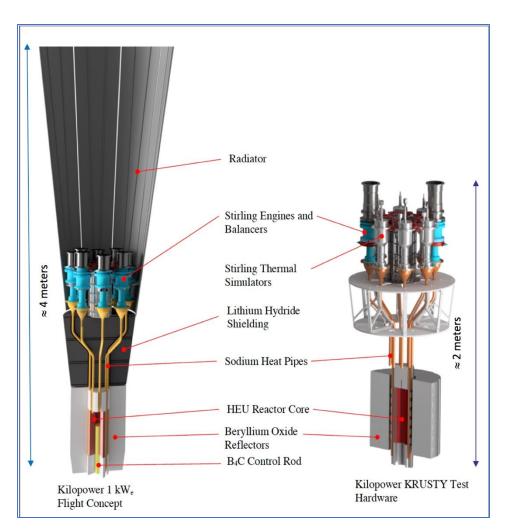
300 kW NEP

If It's safe enough to launch from Florida, its safe enough to use in Florida![™]

Backup Slides

Confinem

6

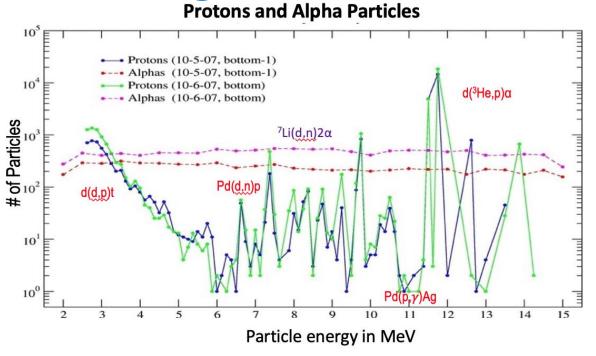


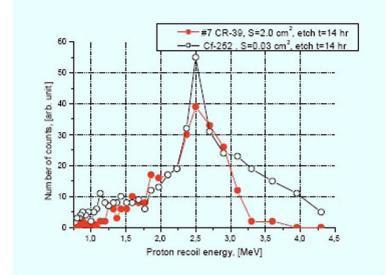
Comparison

Comparing tests of unoptimized LCF Hybrid to Krusty

- LCF Hybrid and the Kilopower KRUSTY are fast fission reactors.
- Hybrid: 38 mg of 99.3 % ²³⁸U (0.7% ²³⁵U), 33.5 hours (arbitrary)
- KRUSTY: 28 kg of 93.0 % enriched ²³⁵U (7% ²³⁸U), 28 hours (arbitrary)
- One thermal watt requires 3×10^{10} fissions/s.
- KRUSTY : 9 × 10¹⁰ fissions/cm³/s. (given 3 W/cm³)
- Hybrid: 10⁴ 10⁶ n/s from a volume of 3 × 10⁻⁵ cm³ (38 % Krusty power density)

LCF would only replace the Kilopower enriched ²³⁵U core, controls and shielding while retaining power conversion, heat pipe and thermal radiator.


Kilopower Flight Concept



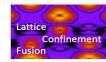
LCF Nuclear Reaction

Energetic Particle Cascade Spectroscopy

NASA JSC Linear Energy Transfer Analysis (CR-39) from two experiments^{1,2}: <u>e.g.</u> ⁷Li(d,n)2 α 3-body nuclear reaction and neutron induced recoils. Neutron recoils: 1 - 4.5 MeV

Recoil Particle energy in MeV

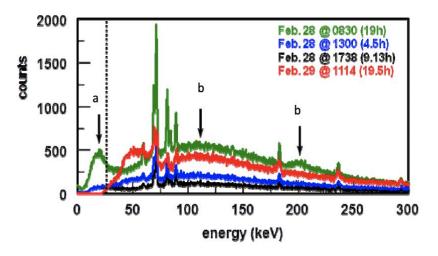
SRI, (Menlo Park, CA), replication of SPAWAR patented protocol analyzed at Lebedev Institute (Moscow, Russia)³ Grey: ²⁵²Cf neutron source, Red: PdD/Ag

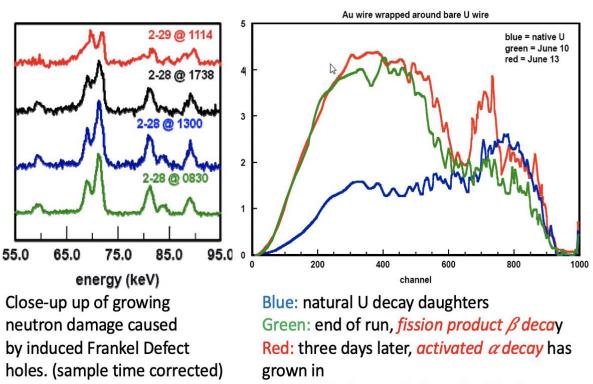

¹P.A. Mosier-Boss, F.E. Gordon, L.P. Forsley, D. Zhou," Detection of high energy particles using CR-39 detectors part 1: Results of microscopic examination, scanning, and LET analysis", *International Journal of Hydrogen Energy* **42**, 1 (2017) pp 416-428.

² US Patent #8,419,919, "System and Method for Generating for Particles", (2013).

³A.G. Lipson, A.S. Roussetski, E.I. Saunin, F. Tanzella, B. Earle and M. McKubre, "Analysis of the CR-39 detectors from SRI's SPAWAR/Galileo type electrolysis experiments #7 and #5. Signature of possible neutron emission", 8th Int. Workshop on Anomalies in Hydrogen/Deuterium Loaded Metals, (2007).

NETS-18

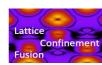

Proton's and alpha's specie and energy measured using NASA JSC Linear Energy Transfer Analysis Code. No uranium or thorium were used.


LCF Fast-Fission Hybrid Reactions (deuterated U) Gamma, Alpha and Beta Spectroscopy

HPGe γ Spectroscopy

^aNeutron capture within HPGe getter resulting in internal β induced bremstrahlung and decays, below the HPGe crystal Al window energy cut-off.

^bRising baseline due to neutron elastic scattering off Ge atoms.



Fission products and activation

Liquid Scintillator α , β spectroscopy

Fast Neutron production rate estimated at 10⁶ n/second

¹ Boss, Forsley and McDaniel, "INVESTIGATION OF NANO-NUCLEAR REACTIONS IN CONDENSED MATTER - FINAL REPORT", DTRA, (2016).

