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Abstract— We present LuVo, an initialization-free stereo
visual odometry (VO) method developed for the VIPER lu-
nar rover. We provide a novel stereo registration method
using LightGlue image feature matching in a warped, locally
planar space that improves matching robustness to larger
baseline stereo sequences and repetitive terrain that tradition-
ally challenge odometry approaches. We additionally introduce
methods that increase the usable image region for matching
by estimating a horizon cutoff in image space and enhance
robustness to stereo correspondence failures using a Manhattan
distance search for valid stereo points during cloud alignment.
We evaluate the performance of LuVo on a dataset of 155
simulated lunar stereo sequences and show that it significantly
improves registration accuracy and success rates for clouds
separated by both expected driving ranges below eight meters
and longer distance translations of up to 16 meters. While LuVo
is developed for VIPER, it can be used in other environments
featuring slip-prone and repetitive terrain that limit rover
travel.

[. INTRODUCTION

The VIPER lunar rover is designed to explore the south
pole of the Moon in search of water ice [1]. It navigates
using onboard wheel and inertial odometry, stereo cameras,
and front-facing lights, as shown in Fig. 2] VIPER performs
global pose estimation by matching panoramas to Digital
Elevation Models (DEMs) [2], but accuracy is limited to
meter-scale due to the low-resolution of the satellite images
used for DEM construction. Additionally, this is only done
every 50-100 meters to limit travel delay. To keep navigation
errors under three meters for every 224 meters of driving as
desired [1], reliable relative pose estimation is needed.

Lunar and Martian rovers use combinations of point cloud
alignment and feature tracking for relative localization [3].
Alignment methods, such as iterative closest point (ICP)
[4] and point-to-plane ICP [5], rely on low-noise pose
initialization. Similarly, feature tracking approaches require
either accurate pose initialization or large amounts of image
overlap [6], [7]. However, to conserve limited solar energy,
VIPER disables its cameras and lighting during drives and
only captures images every five to eight meters. These large
translations subject pose initialization using onboard wheel
odometry to accumulated drift due to wheel slip [8]. They
also limit image overlap for feature tracking, forcing VIPER
to seek alternative solutions for visual odometry.

Machine learning feature matchers, such as SuperGlue
[9] and LightGlue [10], increase matching robustness in
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redundant environments like the lunar surface. Since VIPER
and other recent rovers use ground-based servers [1], [11] or
landers [12], [13] for additional computation, these matchers
can be utilized for navigation. However, they still struggle
to handle significant scene changes rendered by long dis-
tance drives. Akin to Earth-based robots using geometric
assumptions such as the Manhattan World [14], VIPER and
other wheeled robots can address this by leveraging the
relatively flat terrain of the Moon and Mars, featuring few
non-planar obstacles. Navigation images can therefore be
projected to the ground plane, improving the visibility of
recurring features when faced with sizable image separations.

(a) LuVo registration.

(b) Cloud overlap.

Fig. 1. LuVo successfully registers stereo pairs separated by 8.3 meters
on the lunar surface using homography-based LightGlue image matching
shown in Fig. Here, warped-perspective left stereo images are displayed
with estimated matches drawn using colored lines. ICP, however, fails to
register the stereo clouds for the same data, illustrated in Fig. Sparsity
in the far range of the reference cloud in blue limits overlap for alignment
during longer distance drives.

We therefore present LuVo, an initialization-free lunar
stereo visual odometry method robust to large relative trans-
lations in slip-prone and repetitive environments. Our con-
tributions include:

o Image feature matching using LightGlue in a surface-
aligned space to improve matching success for large
baseline and repetitive images.

o Horizon row detection using valid stereo points to
increase the usable projected image area and further
boost matching performance.



e A Manhattan distance search for valid stereo points
in sparse regions of clouds to enhance registration
reliability.

e An analysis of ICP performance using different noise
profiles for predicted drive distances.

We evaluate LuVo on a dataset of 155 simulated lunar stereo
sequences and show that it exhibits significant improvements
in accuracy and success rates, both for expected driving
ranges and drives of up to 16 meters, compared to image
space matching and ICP-based methods. LuVo is designed
for lunar rovers, but can be used in other environments where
long relative translations and slip-prone or repetitive terrain
challenge visual odometry approaches.

II. RELATED WORK
A. Moon

The Yutu-2 lunar rover [15], [11] for the Chang’e 4
mission fuses inertial measurements with both SURF and
manually selected features using a bundle adjustment-based
pipeline. It captures stereo images in a panorama at various
yaw and pitch angles between drives, and later selects stereo
sequences containing the most overlap for relative pose
estimation. While VIPER records panoramic images every
50-100 meters for DEM-based global localization, it uses
stereo sequences taken at single viewpoints, spaced five
to eight meters apart, for relative navigation. This enables
faster operation, but prevents overlap from occurring beyond
sequential images as needed for persistent feature tracking.

The CADRE rovers [13] perform keyframe-based Kalman
Filter navigation by combining image features with IMU
and sun sensor readings. Concurrently, their lander tracks
the rovers using Ultrawide-band (UWB) sensors. Similarly,
the Pragyan rover [12] for Chandrayaan-3 employs an un-
specified stereo alignment method for navigation and relies
on its lander for additional stereo calculations. Keyframe-
based methods and stereo alignment both rely on repeated
feature visibility or low-noise pose initialization, which are
not available to VIPER due to its long-distance driving.

Wagner et al. [16] add Kanade-Lucas-Tomasi (KLT) [17]
feature tracks in a Kalman filter for the CSA Artemis project,
while Li er al. [18] use Harris corners and an image intensity
cost for feature matching. Both of these approaches, however,
assume small-baseline travel or high-precision initialization.

LunarNav [19] and ShadowNav [20] use stereo cameras
and LiDAR to detect craters and align them to crater land-
marks in orbital maps, but accuracy is limited to several me-
ters due to low map resolution. Chelmins et al. [21] propose
using radiometric ranging from Lunar Relay Satellites for
localization, but this yields an accuracy of only ~1 meter,
even after five minutes of processing.

B. Mars

Mars rovers, from Spirit and Opportunity [3] to Perse-
verance [22], perform visual odometry on a 20 MHz CPU
using Harris corner matches between stereo clouds. However,
they initialize stereo alignment with wheel odometry, which

limits driving distances in unconsolidated terrain to ensure
alignment begins near a local minimum.

The Ingenuity helicopter [23] uses a downward facing
camera to acquire KLT feature tracks. It fuses these with
IMU and LiDAR altimeter measurements using an Aug-
mented Kalman filter, but processes images at 30 Hz, pro-
viding much smaller relative translations than VIPER.

C. Earth

Similar to lunar and Martian approaches, other stereo and
RGB-D VO methods employ combinations of indirect feature
matching, direct feature matching, and cloud alignment.

1) Stereo: Indirect methods such as ORBSLAM-
ORBSLAM3 [24], [25], [7] use ORB feature matching
[26] along with the DBoW2 bag-of-words library [27] to
perform simultaneous localization and mapping (SLAM),
while OKVIS2 [28], [29] uses BRISK features [30] for
keyframe-based SLAM. These methods, however, require
repeated viewing of features for accurate tracking and loop
closures.

SVO [31], DSO [6], and Basalt [32] use direct costs for
image matching, and VINS-Mono and VINS-Fusion [33]
employ a combination of the two. Similarly, Kimera [34]
and Kimera2 [35] use KLT tracks paired with smart factors
[36] for relative pose estimation. Direct methods rely on
closely spaced images for reliable tracking and are therefore
not suitable for VIPER.

Guan et al. [37] and Saurer et al. [38] use ground plane
and weak Manhattan world assumptions to simplify relative
pose estimation, but detect and match features in image
space. LuVo matches images in projected space on the locally
planar lunar surface to improve reliability.

2) RGB-D: Kinectfusion [39] uses ICP to perform point
cloud alignment, while ElasticFusion [40] minimizes point-
to-plane errors with direct photometric costs and Zhang et
al. [41] uses KLT feature tracks [42]. However, each of these
methods rely on high-fidelity initialization or small-baseline
image sequences.

Fig. 2. Rendering of the VIPER lunar rover on the Moon.

III. SYSTEM OVERVIEW

LuVo estimates relative poses between sequential stereo
pairs separated by several meters in distance. An overview
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LuVo uses sequential stereo pairs and applies an adaptive homography procedure to project left images to a locally planar surface for matching.

It then computes feature matches using LightGlue before aligning the stereo clouds using nearby valid stereo points for each set of correspondences.

(a) Left image.

(b) Valid stereo image.

(c) Projected homography image.

Fig. 4. Estimated horizon cutoff row shown as a red dotted line in the
left stereo image in Fig. ffa] This is calculated using valid stereo points,
depicted as white pixels, in Fig. [#b] Removing the region above the horizon
increases the usable lunar surface region in the projected image, shown in
Fig. for subsequent image feature matching.

of the pipeline is illustrated in Fig. [3] LuVo’s adaptive
homography procedure first projects left stereo images onto
the planar lunar surface to improve feature matching, de-
scribed in more detail in It then detects feature matches
between sequential images in warped space using LightGlue,
as shown in Fig. [I] and explained in §V] Finally, it aligns
clouds using nearby valid stereo points, detailed further in

v

IV. ADAPTIVE HOMOGRAPHY

The adaptive homography procedure displayed in Fig. [3]
generates a surface-aligned image for feature matching. As
demonstrated in Fig. 5] matching in warped space improves
feature matching for images separated by large translations
compared to matching in image space. The adaptive nature
of the process stems from expanding the usable area of the

projected image by detecting the horizon cutoff, as described
in the following sections.

A. Initial Homography

The procedure first estimates the rotation from the camera
to ground plane ¢R per ():

‘R = 'R, 'R (1)

Here ¢R is the rotation from the camera frame to the body
frame, which is locally co-planar with the ground plane,
and ¢R, and [Rg are the pitch and roll components of ¢R
respectively. It then computes the initial homography matrix
H using the camera intrinsics K per [44]:

H = K¢RK™! )

B. Horizon Cutoff

The homography procedure estimates the horizon cutoff
row p in image space as illustrated in Fig. ] It uses
the successfully matched stereo points shown in Fig. [4b]
to find the first image row with a large enough ratio of
valid matches. Rows above the horizon estimate are either
empty space or distant landscape, unable to be correlated
during stereo matching, which are not useful for future image
feature matching in warped space.

If stereo matching struggles and no valid p is detected,
LuVo uses the pitch angle of the camera with respect to the
ground plane v to estimate p per (3):

p=cy— fytany — Ymin 3)

Here c, and f, are the y components of the camera principal
point and focal length and 7, is a minimum pitch angle
threshold to ensure some amount of cutoff occurs.

C. Maximizing Projection Area

The procedure then creates a set of bounding coordinates
b; using the image corners defined by the horizon cutoff row
and bottom of the image. To find the bounds of the projected
image, it projects each corner into warped space per (4):

@ = a(H((h:) “)



(d) Image space matching (2 m).

Fig. 5.

(e) Image space matching (4 m).

(f) Image space matching (6 m).

Homography-based matching succeeds in finding correspondences at the NASA Roverscape facility [43] for stereo pairs separated by two, four,

and six meters. Image space matching however gets fewer matches for the sequence with four meters of separation and fails to find matches at six meters.

where « applies homogeneous normalization and ¢ converts
a two dimensional vector to homogeneous coordinates.

As a last step, it calculates an offset and scale matrix to
maximize the image coverage in warped space. The offset
matrix O is calculated per (3)):

10 —Zmin
0 1 —Ymin (5)
0 0 1

where T, and ymi, are the minimum x and y values of the
projected coordinates w;. The adaptive homography matrix
used for image warping is then calculated per (6):

H, = SOH (6)

Here S is the diagonal scale matrix. The x and y components
are 7, where r is the desired warped image resolution and d
is the maximum of the x and y dimensions of the projected
corners w;, while the z component is set to 1.

V. IMAGE FEATURE MATCHING

The LightGlue feature matcher in Fig. [3] uses LightGlue
[10] with DISK image features [45] to find correspondences
between images and follows this with an outlier rejection
policy to further refine matches.

A. Classical versus Machine Learning Matching

Whereas classical image feature matching methods typi-
cally use nearest neighbor estimation [46] to find the closest
descriptor match for each feature point individually, Light-
Glue finds matches as a set. As shown in Fig. [6 LightGlue
greatly outperforms classical matching in repetitive environ-
ments like the lunar surface, where many false matches exist
for nearest neighbor methods.

B. Outlier Rejection

The matcher removes outliers using MAGSAC++ [48]
based fundamental matrix estimation. To increase the like-
lihood of detecting a sufficient number of inlier matches,

(c) LightGlue, 0.9 confidence.

Fig. 6.  SIFT [47] matching with FLANN nearest neighbor estimation
struggles on a pair of simulated lunar images separated by primarily
horizontal movement, shown side by side in the above figures with detected
matches drawn using colored lines. Using 2048 keypoints and Lowe’s ratio
test with a threshold of 0.85 results in more matches, but also more outliers
as evident by the many crossed match lines in Fig. @ Using a lower ratio
test threshold reduces the number of outlier matches as shown in Fig. @
but misses many valid matches detected using LightGlue in Fig.



it inversely scales the model fitter inlier threshold based on
the number of matches found by LightGlue. If fewer than
50 inlier matches are detected, all matches are discarded. It
keeps up to 200 inlier matches, filtered using their LightGlue
confidences.

VI. POINT CLOUD ALIGNMENT

The point cloud alignment procedure for LuVo, shown in
Fig.[3] uses the set of image feature match pairs m; computed
by the feature matcher to align successive point clouds. For
each image space point within a pair, it checks if a valid
3D point exists in the stereo cloud index corresponding to
the point. If this fails, it queries points in a bounded search
window around the feature point and chooses the closest
match using an image space Manhattan distance metric, or
discards the match pair if no valid points are found. It then
computes the relative pose ;T between clouds by aligning the
3D point matches using the Umeyama algorithm [49]. The
alignment procedure optionally further refines the relative
pose using point-to-plane ICP initialized with 4T.

VII. RESULTS

We evaluate LuVo using a dataset of 155 odometry pairs
containing stereo point clouds and images generated using
the VIPER lunar simulator [50] for driving ranges displayed
in Table [ Example images are shown in Figs. [I] f] and [§]
The dataset spans both expected driving distances under eight
meters and further distances up to 16 meters. We use an Intel
i9-12900HK 3.2 GHz CPU and NVIDIA RTX A2000 GPU
for the evaluations.

TABLE I. DATASET DRIVING DISTANCES

Translation Range [m] | 02 24 46 68 810 10-12 12-14 14-16
Count | 16 30 27 24 21 17 13 7
A. Methods

We compare the performance of LuVo to point-to-plane
ICP using both groundtruth initialization (ICP Groundtruth
Init.) and initialization with Gaussian noise of 10% for
translations and 1% for rotations (ICP Noisy Init.). We use
a larger value for translation noise to emulate wheel slip
expected on the Lunar surface and a smaller rotation error
due to the availability of star tracker orientation fixes for the
rover.

Additionally, we compare to LuVo using image space
matching (LuVo Img. Space) and LuVo followed by point-
to-plane ICP (LuVo+ICP), where the estimated pose from
LuVo is subsequently used as an initial pose for the ICP
method.

We also provide an analysis of point-to-plane ICP per-
formance for expected driving distances from 4-8 m using
increasing noise profiles, again using 1% rotation error and
increased translation noise from 0-35% in 5% increments.

For LightGlue matching we use nine layers, 2048 key-
points, a confidence threshold of 0.9, and DISK image
features. For ICP we use the point-to-plane implementation

from libpointmatcher [51] with an iteration limit of 60 and
trimmed distance outlier filtering. We remove cloud points
beyond 25 meters and add statistical outlier filtering, along
with voxel and normal-based downsampling, to make nor-
mal computation and ICP correspondence estimation more
tractable.

B. Evaluation Metrics

We measure both the absolute trajectory error (ATE) [52]
and absolute rotation error (ARE) [53] for accuracy analysis,
along with the success rate (SR) consisting of the percentage
of successfully localized images within a defined threshold
(0.3m, 5°) [54]. We segment the evaluation based on the
driving distances in Table [I| to analyze performance for
different translation ranges.

C. ICP Accuracy vs. Noise

ICP accrues error and suffers a reduced success rate with
increasing initialization noise as displayed in Fig. [/| ICP is
able to accurately estimate poses when initialization noise
is low, below 10% translation. Increasing error above this
rate, however, begins to degrade pose estimation, and for
especially noisy sequences success rates reduce to below
25%. For difficult lunar terrain where wheel slip may result
in error above ~15%, translation distances need to be limited
to ensure ICP is properly initialized and capable of providing
reliable estimates.

ICP Accuracy and Success Rate for 4-8m Drives
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Fig. 7. RMSE position errors and success rates for ICP with different

degrees of pose initialization noise using stereo pairs separated by 4-8 m.

D. Odometry Results

We show odometry accuracy results for the LuVo and
ICP methods in Fig [§] and success rates in Fig. 0] Results
are segmented based on each of the driving ranges depicted
in Table m Additionally, we summarize the results across
all datasets in Table [lIl LuVo (Img. Space) accuracy in the
summary only includes drives below 10 meters as it suffered
failures for all driving distances above this.

1) Homography vs. Image Space Matching: LuVo using
image space matching failed for drives above 10 meters and
displayed an ATE 9.5 larger and a success rate 42% smaller
than LuVo for drives below six meters. As shown in Fig.
and Fig. O] LuVo maintains a success rate above 80% for
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Fig. 8. RMSE position errors for LuVo and ICP methods categorized by
translation range.

Success Rate Comparison for Translation Ranges
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Fig. 9. Success rates for LuVo and ICP methods categorized by translation
range.

drives up to 10 meters and outperforms image spaced match-
ing for each driving range, demonstrating the performance
improvements of using homography-based matching.

2) LuVo vs. ICP: LuVo outperforms other LuVo variants
and ICP methods in ATE RMSE, ARE RMSE, and success
rate on the lunar dataset as depicted by Table LuVo,
LuVo + ICP, and ICP (Groundtruth Init.) perform comparably
well for driving ranges below six meters. Above six meters,
LuVo+ICP and ICP (Groundtruth Init.) begin to accrue
more error while LuVo maintains an ATE RMSE below 0.2,
even for driving distances beyond 14 meters. LuVo matching
provides either high accuracy correspondences or too few
correspondences for larger baseline images, making its suc-
cessful pose estimates more reliable than ICP methods. The
sparsity of stereo clouds at further distances, as illustrated
in Fig. [Ib] prevents ICP from outperforming LuVo, and
even degrades LuVo’s performance as evident by LuVo + ICP
reducing accuracy and success rate for longer range drives
compared to simply using LuVo.

ICP using 10% translation noise and 1% rotation noise
demonstrates reduced success for drives below six meters
compared to LuVo and increased ATE RMSE for drives
above six meters. As discussed in initialization noise
reduces ICP’s accuracy whereas LuVo’s initialization-free
pose estimation enables it to more reliably perform VO in
difficult driving terrain.

TABLE II. ODOMETRY COMPARISON ON LUNAR DATASET

Method ‘ ATE RMSE [m] ARE RMSE [deg] Avg. SR Avg. Runtime [s]
LuVo 0.081 0.378 0.867 0.61
LuVo (Img. Space) 3.433% 1.819* 0.230 0.62
LuVo +ICP 0.247 1.136 0.834 2.17
ICP (Groundtruth Init.) 0.242 1.027 0.855 1.54
ICP (Noisy Init.) 0.714 3.362 0.683 1.61

3) Computation: LuVo runs ~2.5 times faster than ICP-
based approaches by leveraging the GPU for LightGlue
matching. Unlike ICP, it does not require point cloud process-
ing, including normal estimation, that takes ~1.34 seconds
per cloud.

VIII. CONCLUSION

We have presented LuVo, a lunar stereo visual odometry
method for robust, long-distance relative pose estimation.
By projecting navigation images onto the planar lunar sur-
face and estimating a horizon cutoff to increase the usable
matching area, LuVo is able to reliably find image feature
matches between stereo clouds separated by several meters.
It registers clouds using detected matches without relying on
initial pose estimation, which is prone to wheel slip on the
lunar surface.

We have demonstrated LuVo’s improved performance on a
dataset of simulated stereo sequences. While point-to-plane
ICP results degrade as initialization noise and translations
increase, LuVo steadily provides reliable and accurate poses
for driving ranges up to 14 meters. It reduces error for
drives above six meters even compared to ICP with perfect
initialization, which loses information for matching due to
increased sparsity in farther ranges of stereo clouds.

In future work, we wish to evaluate LuVo using Martian
data, which shares many of the same localization challenges
as the lunar surface. We would also like to incorporate
the detection of non-planar obstacles and test performance
for smaller baseline images using sustained feature tracks
to increase LuVo’s utility. We plan to use LuVo during
the VIPER mission and anticipate reliable visual odometry
performance for the rover’s long-distance drives.

IX. ACKNOWLEDGEMENTS

We would like to thank the rest of the VIPER rover ground
software, flight software, and simulation teams for supporting
this work. This work was authored by employees of KBR
Wyle Services, LLC under Contract No. 80ARC020D0010
with the National Aeronautics and Space Administration.
The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-
up, irrevocable, worldwide license to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, or allow others to do so, for
United States Government purposes. All other rights are
reserved by the copyright owner.



[1]
[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

A. Colaprete, “Volatiles investigating polar exploration rover (viper),”
2021.

A. V. Nefian, X. Bouyssounouse, L. Edwards, T. Kim, E. Hand, J. Rhi-
zor, M. Deans, G. Bebis, and T. Fong, “Planetary rover localization
within orbital maps,” in 2014 IEEE International Conference on Image
Processing (ICIP). 1EEE, 2014, pp. 1628-1632.

M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual
odometry on the mars exploration rovers,” Journal of Field Robotics,
vol. 24, no. 3, pp. 169-186, 2007.

P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,”
in Sensor fusion 1V: control paradigms and data structures, vol. 1611.
Spie, 1992, pp. 586-606.

K.-L. Low, “Linear least-squares optimization for point-to-plane icp
surface registration,” Chapel Hill, University of North Carolina, vol. 4,
no. 10, pp. 1-3, 2004.

J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” [EEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611-625, 2017.

C. Campos, R. Elvira, J. J. G. Rodriguez, J. M. Montiel, and
J. D. Tardés, “Orb-slam3: An accurate open-source library for visual,
visual—inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874-1890, 2021.

J. Kruger, A. Rogg, and R. Gonzalez, “Estimating wheel slip of a
planetary exploration rover via unsupervised machine learning,” in
2019 IEEE Aerospace Conference. 1EEE, 2019, pp. 1-8.

P-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Su-
perglue: Learning feature matching with graph neural networks,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 4938-4947.

P. Lindenberger, P.-E. Sarlin, and M. Pollefeys, “Lightglue: Local
feature matching at light speed,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 17627-
17 638.

Y. Ma, S. Liu, B. Sima, B. Wen, S. Peng, and Y. Jia, “A precise
visual localisation method for the chinese chang’e-4 yutu-2 rover,”
The Photogrammetric Record, vol. 35, no. 169, pp. 10-39, 2020.

S. Mane, “Chandrayaan-2: India’s lunar exploration mission to the
moon,” International Journal of All Research Education and Scientific
Methods, vol. 11, no. 7, pp. 1116-1123, 2023.

J.-P. de la Croix, F. Rossi, R. Brockers, D. Aguilar, K. Albee,
E. Boroson, A. Cauligi, J. Delaune, R. Hewitt, D. Kogan, et al., “Multi-
agent autonomy for space exploration on the cadre lunar technology
demonstration,” in 2024 IEEE Aerospace Conference. 1EEE, 2024,
pp. 1-14.

J. M. Coughlan and A. L. Yuille, “Manhattan world: Compass direc-
tion from a single image by bayesian inference,” in Proceedings of
the seventh IEEE international conference on computer vision, vol. 2.
IEEE, 1999, pp. 941-947.

J. Wang, J. Li, S. Wang, T. Yu, Z. Rong, X. He, Y. You, Q. Zou,
W. Wan, Y. Wang, et al., “Computer vision in the teleoperation of the
yutu-2 rover,” ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. 3, pp. 595-602, 2020.

M. Wagner, D. Wettergreen, and P. Iles, “Visual odometry for the lunar
analogue rover “artemis”,” in ISAIRAS, 2012.

C. Tomasi and T. Kanade, “Detection and tracking of point,” Int J
Comput Vis, vol. 9, no. 137-154, p. 3, 1991.

L. Li, J. Lian, L. Guo, and R. Wang, “Visual odometry for plan-
etary exploration rovers in sandy terrains,” International Journal of
Advanced Robotic Systems, vol. 10, no. 5, p. 234, 2013.

S. Daftry, Z. Chen, Y. Cheng, S. Tepsuporn, S. Khattak, L. Matthies,
B. Coltin, U. Naal, L. M. Ma, and M. Deans, “Lunarnav: Crater-
based localization for long-range autonomous lunar rover navigation,”
in 2023 IEEE Aerospace Conference. IEEE, 2023, pp. 1-15.

A. Cauligi, R. M. Swan, H. Ono, S. Daftry, J. Elliott, L. Matthies,
and D. Atha, “Shadownav: Crater-based localization for nighttime
and permanently shadowed region lunar navigation,” in 2023 IEEE
Aerospace Conference. 1EEE, 2023, pp. 1-12.

D. T. Chelmins, B. W. Welch, O. S. Sands, and B. V. Nguyen, “A
kalman approach to lunar surface navigation using radiometric and
inertial measurements,” Tech. Rep., 2009.

V. Verma, M. W. Maimone, D. M. Gaines, R. Francis, T. A. Estlin,
S. R. Kuhn, G. R. Rabideau, S. A. Chien, M. M. McHenry, E. J.
Graser, et al., “Autonomous robotics is driving perseverance rover’s
progress on mars,” Science Robotics, vol. 8, no. 80, p. eadi3099, 2023.

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

D. S. Bayard, D. T. Conway, R. Brockers, J. H. Delaune, L. H.
Matthies, H. F. Grip, G. B. Merewether, T. L. Brown, and A. M.
San Martin, “Vision-based navigation for the nasa mars helicopter,” in
AIAA Scitech 2019 Forum, 2019, p. 1411.

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE transactions
on robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

R. Mur-Artal and J. D. Tardés, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An
efficient alternative to sift or surf,” in 2011 International conference
on computer vision. leee, 2011, pp. 2564-2571.

D. Galvez-Lépez and J. D. Tardos, “Bags of binary words for fast place
recognition in image sequences,” IEEE Transactions on Robotics,
vol. 28, no. 5, pp. 1188-1197, 2012.

S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314-334, 2015.

S. Leutenegger, “Okvis2: Realtime scalable visual-inertial slam with
loop closure,” arXiv preprint arXiv:2202.09199, 2022.

S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International conference on
computer vision. leee, 2011, pp. 2548-2555.

C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in 2014 IEEE international conference
on robotics and automation (ICRA). 1EEE, 2014, pp. 15-22.

V. Usenko, N. Demmel, D. Schubert, J. Stiickler, and D. Cre-
mers, “Visual-inertial mapping with non-linear factor recovery,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 422-429, 2019.
T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004-1020, 2018.

A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2020, pp. 1689-1696.

M. Abate, Y. Chang, N. Hughes, and L. Carlone, “Kimera2: Robust
and accurate metric-semantic slam in the real world,” arXiv preprint
arXiv:2401.06323, 2024.

L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Elim-
inating conditionally independent sets in factor graphs: A unifying
perspective based on smart factors,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2014, pp.
4290-4297.

B. Guan, P. Vasseur, C. Demonceaux, and F. Fraundorfer, “Visual
odometry using a homography formulation with decoupled rotation
and translation estimation using minimal solutions,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2018, pp. 2320-2327.

O. Saurer, F. Fraundorfer, and M. Pollefeys, “Homography based
visual odometry with known vertical direction and weak manhattan
world assumption,” in Vicomor Workshop at IROS, vol. 2012, 2012.
S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, et al., “Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth
camera,” in Proceedings of the 24th annual ACM symposium on User
interface software and technology, 2011, pp. 559-568.

T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and
A. J. Davison, “Elasticfusion: Dense slam without a pose graph.” in
Robotics: science and systems, vol. 11. Rome, Italy, 2015, p. 3.

J. Zhang, M. Kaess, and S. Singh, “Real-time depth enhanced
monocular odometry,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2014, pp. 4973-4980.

J.-Y. Bouguet et al., “Pyramidal implementation of the affine Lucas
Kanade feature tracker description of the algorithm,” Intel corporation,
vol. 5, no. 1-10, p. 4, 2001.

M. Bualat, W. Carey, T. Fong, K. Nergaard, C. Provencher, A. Schiele,
P. Schoonejans, and E. Smith, “Preparing for crew-control of surface
robots from orbit,” in Space Exploration Conference, no. ARC-E-
DAA-TN12354, 2014.

R. Szeliski, Computer vision: algorithms and applications.
Nature, 2022.

Springer



[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

M. Tyszkiewicz, P. Fua, and E. Trulls, “Disk: Learning local features
with policy gradient,” Advances in Neural Information Processing
Systems, vol. 33, pp. 14254-14 265, 2020.

M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, no. 331-340,
p. 2, 2009.

D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, pp. 91-110,
2004.

D. Barath, J. Noskova, M. Ivashechkin, and J. Matas, “Magsac++,
a fast, reliable and accurate robust estimator,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 1304-1312.

S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
& Machine Intelligence, vol. 13, no. 04, pp. 376-380, 1991.

M. Allan, U. Wong, P. M. Furlong, A. Rogg, S. McMichael, T. Welsh,
I. Chen, S. Peters, B. Gerkey, M. Quigley, et al., “Planetary rover
simulation for lunar exploration missions,” in 2019 IEEE Aerospace
Conference. 1EEE, 2019, pp. 1-19.

F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing
ICP Variants on Real-World Data Sets,” Autonomous Robots, vol. 34,
no. 3, pp. 133-148, Feb. 2013.

J. Sturm, N. Engelhard, W. Burgard, and D. Cremers, “A benchmark
for the evaluation of rgb-d slam systems,” in Proc. of IROS, 2012.

P. Kim, B. Coltin, O. Alexandrov, and H. J. Kim, “Robust visual
localization in changing lighting conditions,” in JEEE ICRA, 2017.
W. Wang, D. Zhu, X. Wang, Y. Hu, Y. Qiu, C. Wang, Y. Hu, A. Kapoor,
and S. Scherer, “Tartanair: A dataset to push the limits of visual slam,”
in IEEE IROS, 2020.



	INTRODUCTION
	Related Work
	Moon
	Mars
	Earth
	Stereo
	RGB-D


	System Overview
	Adaptive Homography
	Initial Homography
	Horizon Cutoff
	Maximizing Projection Area

	Image Feature Matching
	Classical versus Machine Learning Matching
	Outlier Rejection

	Point Cloud Alignment
	Results
	Methods
	Evaluation Metrics
	ICP Accuracy vs. Noise
	Odometry Results
	Homography vs. Image Space Matching
	LuVo vs. ICP
	Computation


	Conclusion
	Acknowledgements
	References

