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Abstract— We present LuVo, an initialization-free stereo
visual odometry (VO) method developed for the VIPER lu-
nar rover. We provide a novel stereo registration method
using LightGlue image feature matching in a warped, locally
planar space that improves matching robustness to larger
baseline stereo sequences and repetitive terrain that tradition-
ally challenge odometry approaches. We additionally introduce
methods that increase the usable image region for matching
by estimating a horizon cutoff in image space and enhance
robustness to stereo correspondence failures using a Manhattan
distance search for valid stereo points during cloud alignment.
We evaluate the performance of LuVo on a dataset of 155
simulated lunar stereo sequences and show that it significantly
improves registration accuracy and success rates for clouds
separated by both expected driving ranges below eight meters
and longer distance translations of up to 16 meters. While LuVo
is developed for VIPER, it can be used in other environments
featuring slip-prone and repetitive terrain that limit rover
travel.

I. INTRODUCTION

The VIPER lunar rover is designed to explore the south

pole of the Moon in search of water ice [1]. It navigates

using onboard wheel and inertial odometry, stereo cameras,

and front-facing lights, as shown in Fig. 2. VIPER performs

global pose estimation by matching panoramas to Digital

Elevation Models (DEMs) [2], but accuracy is limited to

meter-scale due to the low-resolution of the satellite images

used for DEM construction. Additionally, this is only done

every 50-100 meters to limit travel delay. To keep navigation

errors under three meters for every 224 meters of driving as

desired [1], reliable relative pose estimation is needed.

Lunar and Martian rovers use combinations of point cloud

alignment and feature tracking for relative localization [3].

Alignment methods, such as iterative closest point (ICP)

[4] and point-to-plane ICP [5], rely on low-noise pose

initialization. Similarly, feature tracking approaches require

either accurate pose initialization or large amounts of image

overlap [6], [7]. However, to conserve limited solar energy,

VIPER disables its cameras and lighting during drives and

only captures images every five to eight meters. These large

translations subject pose initialization using onboard wheel

odometry to accumulated drift due to wheel slip [8]. They

also limit image overlap for feature tracking, forcing VIPER

to seek alternative solutions for visual odometry.

Machine learning feature matchers, such as SuperGlue

[9] and LightGlue [10], increase matching robustness in
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redundant environments like the lunar surface. Since VIPER

and other recent rovers use ground-based servers [1], [11] or

landers [12], [13] for additional computation, these matchers

can be utilized for navigation. However, they still struggle

to handle significant scene changes rendered by long dis-

tance drives. Akin to Earth-based robots using geometric

assumptions such as the Manhattan World [14], VIPER and

other wheeled robots can address this by leveraging the

relatively flat terrain of the Moon and Mars, featuring few

non-planar obstacles. Navigation images can therefore be

projected to the ground plane, improving the visibility of

recurring features when faced with sizable image separations.

(a) LuVo registration. (b) Cloud overlap.

Fig. 1. LuVo successfully registers stereo pairs separated by 8.3 meters
on the lunar surface using homography-based LightGlue image matching
shown in Fig. 1a. Here, warped-perspective left stereo images are displayed
with estimated matches drawn using colored lines. ICP, however, fails to
register the stereo clouds for the same data, illustrated in Fig. 1b. Sparsity
in the far range of the reference cloud in blue limits overlap for alignment
during longer distance drives.

We therefore present LuVo, an initialization-free lunar

stereo visual odometry method robust to large relative trans-

lations in slip-prone and repetitive environments. Our con-

tributions include:

• Image feature matching using LightGlue in a surface-

aligned space to improve matching success for large

baseline and repetitive images.

• Horizon row detection using valid stereo points to

increase the usable projected image area and further

boost matching performance.



• A Manhattan distance search for valid stereo points

in sparse regions of clouds to enhance registration

reliability.

• An analysis of ICP performance using different noise

profiles for predicted drive distances.

We evaluate LuVo on a dataset of 155 simulated lunar stereo

sequences and show that it exhibits significant improvements

in accuracy and success rates, both for expected driving

ranges and drives of up to 16 meters, compared to image

space matching and ICP-based methods. LuVo is designed

for lunar rovers, but can be used in other environments where

long relative translations and slip-prone or repetitive terrain

challenge visual odometry approaches.

II. RELATED WORK

A. Moon

The Yutu-2 lunar rover [15], [11] for the Chang’e 4

mission fuses inertial measurements with both SURF and

manually selected features using a bundle adjustment-based

pipeline. It captures stereo images in a panorama at various

yaw and pitch angles between drives, and later selects stereo

sequences containing the most overlap for relative pose

estimation. While VIPER records panoramic images every

50-100 meters for DEM-based global localization, it uses

stereo sequences taken at single viewpoints, spaced five

to eight meters apart, for relative navigation. This enables

faster operation, but prevents overlap from occurring beyond

sequential images as needed for persistent feature tracking.

The CADRE rovers [13] perform keyframe-based Kalman

Filter navigation by combining image features with IMU

and sun sensor readings. Concurrently, their lander tracks

the rovers using Ultrawide-band (UWB) sensors. Similarly,

the Pragyan rover [12] for Chandrayaan-3 employs an un-

specified stereo alignment method for navigation and relies

on its lander for additional stereo calculations. Keyframe-

based methods and stereo alignment both rely on repeated

feature visibility or low-noise pose initialization, which are

not available to VIPER due to its long-distance driving.

Wagner et al. [16] add Kanade-Lucas-Tomasi (KLT) [17]

feature tracks in a Kalman filter for the CSA Artemis project,

while Li et al. [18] use Harris corners and an image intensity

cost for feature matching. Both of these approaches, however,

assume small-baseline travel or high-precision initialization.

LunarNav [19] and ShadowNav [20] use stereo cameras

and LiDAR to detect craters and align them to crater land-

marks in orbital maps, but accuracy is limited to several me-

ters due to low map resolution. Chelmins et al. [21] propose

using radiometric ranging from Lunar Relay Satellites for

localization, but this yields an accuracy of only ∼1 meter,

even after five minutes of processing.

B. Mars

Mars rovers, from Spirit and Opportunity [3] to Perse-

verance [22], perform visual odometry on a 20 MHz CPU

using Harris corner matches between stereo clouds. However,

they initialize stereo alignment with wheel odometry, which

limits driving distances in unconsolidated terrain to ensure

alignment begins near a local minimum.

The Ingenuity helicopter [23] uses a downward facing

camera to acquire KLT feature tracks. It fuses these with

IMU and LiDAR altimeter measurements using an Aug-

mented Kalman filter, but processes images at 30 Hz, pro-

viding much smaller relative translations than VIPER.

C. Earth

Similar to lunar and Martian approaches, other stereo and

RGB-D VO methods employ combinations of indirect feature

matching, direct feature matching, and cloud alignment.

1) Stereo: Indirect methods such as ORBSLAM-

ORBSLAM3 [24], [25], [7] use ORB feature matching

[26] along with the DBoW2 bag-of-words library [27] to

perform simultaneous localization and mapping (SLAM),

while OKVIS2 [28], [29] uses BRISK features [30] for

keyframe-based SLAM. These methods, however, require

repeated viewing of features for accurate tracking and loop

closures.

SVO [31], DSO [6], and Basalt [32] use direct costs for

image matching, and VINS-Mono and VINS-Fusion [33]

employ a combination of the two. Similarly, Kimera [34]

and Kimera2 [35] use KLT tracks paired with smart factors

[36] for relative pose estimation. Direct methods rely on

closely spaced images for reliable tracking and are therefore

not suitable for VIPER.

Guan et al. [37] and Saurer et al. [38] use ground plane

and weak Manhattan world assumptions to simplify relative

pose estimation, but detect and match features in image

space. LuVo matches images in projected space on the locally

planar lunar surface to improve reliability.

2) RGB-D: Kinectfusion [39] uses ICP to perform point

cloud alignment, while ElasticFusion [40] minimizes point-

to-plane errors with direct photometric costs and Zhang et

al. [41] uses KLT feature tracks [42]. However, each of these

methods rely on high-fidelity initialization or small-baseline

image sequences.

Fig. 2. Rendering of the VIPER lunar rover on the Moon.

III. SYSTEM OVERVIEW

LuVo estimates relative poses between sequential stereo

pairs separated by several meters in distance. An overview
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Fig. 3. LuVo uses sequential stereo pairs and applies an adaptive homography procedure to project left images to a locally planar surface for matching.
It then computes feature matches using LightGlue before aligning the stereo clouds using nearby valid stereo points for each set of correspondences.

(a) Left image. (b) Valid stereo image.

(c) Projected homography image.

Fig. 4. Estimated horizon cutoff row shown as a red dotted line in the
left stereo image in Fig. 4a. This is calculated using valid stereo points,
depicted as white pixels, in Fig. 4b. Removing the region above the horizon
increases the usable lunar surface region in the projected image, shown in
Fig. 4c, for subsequent image feature matching.

of the pipeline is illustrated in Fig. 3. LuVo’s adaptive

homography procedure first projects left stereo images onto

the planar lunar surface to improve feature matching, de-

scribed in more detail in §IV. It then detects feature matches

between sequential images in warped space using LightGlue,

as shown in Fig. 1 and explained in §V. Finally, it aligns

clouds using nearby valid stereo points, detailed further in

§VI.

IV. ADAPTIVE HOMOGRAPHY

The adaptive homography procedure displayed in Fig. 3

generates a surface-aligned image for feature matching. As

demonstrated in Fig. 5, matching in warped space improves

feature matching for images separated by large translations

compared to matching in image space. The adaptive nature

of the process stems from expanding the usable area of the

projected image by detecting the horizon cutoff, as described

in the following sections.

A. Initial Homography

The procedure first estimates the rotation from the camera

to ground plane G

CR per (1):

G

CR = B

CRγ
B

CRβ (1)

Here B

CR is the rotation from the camera frame to the body

frame, which is locally co-planar with the ground plane,

and B

CRγ and B

CRβ are the pitch and roll components of B

CR

respectively. It then computes the initial homography matrix

H using the camera intrinsics K per (2) [44]:

H = KG

CRK−1 (2)

B. Horizon Cutoff

The homography procedure estimates the horizon cutoff

row ρ in image space as illustrated in Fig. 4. It uses

the successfully matched stereo points shown in Fig. 4b

to find the first image row with a large enough ratio of

valid matches. Rows above the horizon estimate are either

empty space or distant landscape, unable to be correlated

during stereo matching, which are not useful for future image

feature matching in warped space.

If stereo matching struggles and no valid ρ is detected,

LuVo uses the pitch angle of the camera with respect to the

ground plane γ to estimate ρ per (3):

ρ = cy − fy tan γ − γmin (3)

Here cy and fy are the y components of the camera principal

point and focal length and γmin is a minimum pitch angle

threshold to ensure some amount of cutoff occurs.

C. Maximizing Projection Area

The procedure then creates a set of bounding coordinates

b⃗i using the image corners defined by the horizon cutoff row

and bottom of the image. To find the bounds of the projected

image, it projects each corner into warped space per (4):

w⃗i = α(Hζ (⃗bi)) (4)



(a) Homography matching (2 m). (b) Homography matching (4 m). (c) Homography matching (6 m).

(d) Image space matching (2 m). (e) Image space matching (4 m). (f) Image space matching (6 m).

Fig. 5. Homography-based matching succeeds in finding correspondences at the NASA Roverscape facility [43] for stereo pairs separated by two, four,
and six meters. Image space matching however gets fewer matches for the sequence with four meters of separation and fails to find matches at six meters.

where α applies homogeneous normalization and ζ converts

a two dimensional vector to homogeneous coordinates.

As a last step, it calculates an offset and scale matrix to

maximize the image coverage in warped space. The offset

matrix O is calculated per (5):




1 0 −xmin

0 1 −ymin

0 0 1



 (5)

where xmin and ymin are the minimum x and y values of the

projected coordinates w⃗i. The adaptive homography matrix

used for image warping is then calculated per (6):

Ha = SOH (6)

Here S is the diagonal scale matrix. The x and y components

are r
d

, where r is the desired warped image resolution and d

is the maximum of the x and y dimensions of the projected

corners w⃗i, while the z component is set to 1.

V. IMAGE FEATURE MATCHING

The LightGlue feature matcher in Fig. 3 uses LightGlue

[10] with DISK image features [45] to find correspondences

between images and follows this with an outlier rejection

policy to further refine matches.

A. Classical versus Machine Learning Matching

Whereas classical image feature matching methods typi-

cally use nearest neighbor estimation [46] to find the closest

descriptor match for each feature point individually, Light-

Glue finds matches as a set. As shown in Fig. 6, LightGlue

greatly outperforms classical matching in repetitive environ-

ments like the lunar surface, where many false matches exist

for nearest neighbor methods.

B. Outlier Rejection

The matcher removes outliers using MAGSAC++ [48]

based fundamental matrix estimation. To increase the like-

lihood of detecting a sufficient number of inlier matches,

(a) SIFT + FLANN, 0.85 Lowe’s ratio.

(b) SIFT + FLANN, 0.75 Lowe’s ratio.

(c) LightGlue, 0.9 confidence.

Fig. 6. SIFT [47] matching with FLANN nearest neighbor estimation
struggles on a pair of simulated lunar images separated by primarily
horizontal movement, shown side by side in the above figures with detected
matches drawn using colored lines. Using 2048 keypoints and Lowe’s ratio
test with a threshold of 0.85 results in more matches, but also more outliers
as evident by the many crossed match lines in Fig. 6a . Using a lower ratio
test threshold reduces the number of outlier matches as shown in Fig. 6b
but misses many valid matches detected using LightGlue in Fig. 6c.



it inversely scales the model fitter inlier threshold based on

the number of matches found by LightGlue. If fewer than

50 inlier matches are detected, all matches are discarded. It

keeps up to 200 inlier matches, filtered using their LightGlue

confidences.

VI. POINT CLOUD ALIGNMENT

The point cloud alignment procedure for LuVo, shown in

Fig. 3, uses the set of image feature match pairs mi computed

by the feature matcher to align successive point clouds. For

each image space point within a pair, it checks if a valid

3D point exists in the stereo cloud index corresponding to

the point. If this fails, it queries points in a bounded search

window around the feature point and chooses the closest

match using an image space Manhattan distance metric, or

discards the match pair if no valid points are found. It then

computes the relative pose A

BT between clouds by aligning the

3D point matches using the Umeyama algorithm [49]. The

alignment procedure optionally further refines the relative

pose using point-to-plane ICP initialized with A

BT.

VII. RESULTS

We evaluate LuVo using a dataset of 155 odometry pairs

containing stereo point clouds and images generated using

the VIPER lunar simulator [50] for driving ranges displayed

in Table I. Example images are shown in Figs. 1, 4 and 6.

The dataset spans both expected driving distances under eight

meters and further distances up to 16 meters. We use an Intel

i9-12900HK 3.2 GHz CPU and NVIDIA RTX A2000 GPU

for the evaluations.

TABLE I. DATASET DRIVING DISTANCES

Translation Range [m] 0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16

Count 16 30 27 24 21 17 13 7

A. Methods

We compare the performance of LuVo to point-to-plane

ICP using both groundtruth initialization (ICP Groundtruth

Init.) and initialization with Gaussian noise of 10% for

translations and 1% for rotations (ICP Noisy Init.). We use

a larger value for translation noise to emulate wheel slip

expected on the Lunar surface and a smaller rotation error

due to the availability of star tracker orientation fixes for the

rover.

Additionally, we compare to LuVo using image space

matching (LuVo Img. Space) and LuVo followed by point-

to-plane ICP (LuVo + ICP), where the estimated pose from

LuVo is subsequently used as an initial pose for the ICP

method.

We also provide an analysis of point-to-plane ICP per-

formance for expected driving distances from 4-8 m using

increasing noise profiles, again using 1% rotation error and

increased translation noise from 0-35% in 5% increments.

For LightGlue matching we use nine layers, 2048 key-

points, a confidence threshold of 0.9, and DISK image

features. For ICP we use the point-to-plane implementation

from libpointmatcher [51] with an iteration limit of 60 and

trimmed distance outlier filtering. We remove cloud points

beyond 25 meters and add statistical outlier filtering, along

with voxel and normal-based downsampling, to make nor-

mal computation and ICP correspondence estimation more

tractable.

B. Evaluation Metrics

We measure both the absolute trajectory error (ATE) [52]

and absolute rotation error (ARE) [53] for accuracy analysis,

along with the success rate (SR) consisting of the percentage

of successfully localized images within a defined threshold

(0.3 m, 5◦) [54]. We segment the evaluation based on the

driving distances in Table I to analyze performance for

different translation ranges.

C. ICP Accuracy vs. Noise

ICP accrues error and suffers a reduced success rate with

increasing initialization noise as displayed in Fig. 7. ICP is

able to accurately estimate poses when initialization noise

is low, below 10% translation. Increasing error above this

rate, however, begins to degrade pose estimation, and for

especially noisy sequences success rates reduce to below

25%. For difficult lunar terrain where wheel slip may result

in error above ∼15%, translation distances need to be limited

to ensure ICP is properly initialized and capable of providing

reliable estimates.
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Fig. 7. RMSE position errors and success rates for ICP with different
degrees of pose initialization noise using stereo pairs separated by 4-8 m.

D. Odometry Results

We show odometry accuracy results for the LuVo and

ICP methods in Fig 8 and success rates in Fig. 9. Results

are segmented based on each of the driving ranges depicted

in Table I. Additionally, we summarize the results across

all datasets in Table II. LuVo (Img. Space) accuracy in the

summary only includes drives below 10 meters as it suffered

failures for all driving distances above this.

1) Homography vs. Image Space Matching: LuVo using

image space matching failed for drives above 10 meters and

displayed an ATE 9.5× larger and a success rate 42% smaller

than LuVo for drives below six meters. As shown in Fig. 8

and Fig. 9, LuVo maintains a success rate above 80% for
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Fig. 8. RMSE position errors for LuVo and ICP methods categorized by
translation range.
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Fig. 9. Success rates for LuVo and ICP methods categorized by translation
range.

drives up to 10 meters and outperforms image spaced match-

ing for each driving range, demonstrating the performance

improvements of using homography-based matching.

2) LuVo vs. ICP: LuVo outperforms other LuVo variants

and ICP methods in ATE RMSE, ARE RMSE, and success

rate on the lunar dataset as depicted by Table II. LuVo,

LuVo + ICP, and ICP (Groundtruth Init.) perform comparably

well for driving ranges below six meters. Above six meters,

LuVo + ICP and ICP (Groundtruth Init.) begin to accrue

more error while LuVo maintains an ATE RMSE below 0.2,

even for driving distances beyond 14 meters. LuVo matching

provides either high accuracy correspondences or too few

correspondences for larger baseline images, making its suc-

cessful pose estimates more reliable than ICP methods. The

sparsity of stereo clouds at further distances, as illustrated

in Fig. 1b, prevents ICP from outperforming LuVo, and

even degrades LuVo’s performance as evident by LuVo + ICP

reducing accuracy and success rate for longer range drives

compared to simply using LuVo.

ICP using 10% translation noise and 1% rotation noise

demonstrates reduced success for drives below six meters

compared to LuVo and increased ATE RMSE for drives

above six meters. As discussed in §VII-C, initialization noise

reduces ICP’s accuracy whereas LuVo’s initialization-free

pose estimation enables it to more reliably perform VO in

difficult driving terrain.

TABLE II. ODOMETRY COMPARISON ON LUNAR DATASET

Method ATE RMSE [m] ARE RMSE [deg] Avg. SR Avg. Runtime [s]

LuVo 0.081 0.378 0.867 0.61

LuVo (Img. Space) 3.433* 1.819* 0.230 0.62

LuVo + ICP 0.247 1.136 0.834 2.17

ICP (Groundtruth Init.) 0.242 1.027 0.855 1.54

ICP (Noisy Init.) 0.714 3.362 0.683 1.61

3) Computation: LuVo runs ∼2.5 times faster than ICP-

based approaches by leveraging the GPU for LightGlue

matching. Unlike ICP, it does not require point cloud process-

ing, including normal estimation, that takes ∼1.34 seconds

per cloud.

VIII. CONCLUSION

We have presented LuVo, a lunar stereo visual odometry

method for robust, long-distance relative pose estimation.

By projecting navigation images onto the planar lunar sur-

face and estimating a horizon cutoff to increase the usable

matching area, LuVo is able to reliably find image feature

matches between stereo clouds separated by several meters.

It registers clouds using detected matches without relying on

initial pose estimation, which is prone to wheel slip on the

lunar surface.

We have demonstrated LuVo’s improved performance on a

dataset of simulated stereo sequences. While point-to-plane

ICP results degrade as initialization noise and translations

increase, LuVo steadily provides reliable and accurate poses

for driving ranges up to 14 meters. It reduces error for

drives above six meters even compared to ICP with perfect

initialization, which loses information for matching due to

increased sparsity in farther ranges of stereo clouds.

In future work, we wish to evaluate LuVo using Martian

data, which shares many of the same localization challenges

as the lunar surface. We would also like to incorporate

the detection of non-planar obstacles and test performance

for smaller baseline images using sustained feature tracks

to increase LuVo’s utility. We plan to use LuVo during

the VIPER mission and anticipate reliable visual odometry

performance for the rover’s long-distance drives.
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