
Ethan Schweinsberg, José Lombay-González, Shaun McKeehan, and Nadia Kortas
Glenn Research Center, Cleveland, Ohio

Eric Brace
HX5, LLC, Brook Park, Ohio

Rachel Dudukovich, Stephanie Booth, Brian Tomko, Timothy Recker, John Nowakowski, and Amber Waid
Glenn Research Center, Cleveland, Ohio

Wade A. Smith
Bastion Technologies Inc., Houston, Texas

HDTN Test Framework Software Requirements
Specifi cation and Design Description

NASA/TM-20240014467

November 2024

NASA STI Program Report Series

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientifi c and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices of
the Agency Chief Information Offi cer. It collects, orga-
nizes, provides for archiving, and disseminates NASA’s
STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report types:

• TECHNICAL PUBLICATION.
Reports of completed research or a major
signifi cant phase of research that present the
results of NASA programs and include extensive
data or theoretical analysis. Includes compilations
of signifi cant scientifi c and technical data and
information deemed to be of continuing reference
value. NASA counterpart of peer-reviewed formal
professional papers but has less stringent limitations
on manuscript length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientifi c and technical fi ndings that are preliminary
or of specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain

 minimal annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT.
Scientifi c and technical fi ndings by NASA-
sponsored contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientifi c and technical
conferences, symposia, seminars, or other meetings
sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION.
Scientifi c, technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial public
interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign scientifi c
and technical material pertinent to NASA’s
mission.

Specialized services also include organizing and
publishing research results, distributing specialized
research announcements and feeds, providing informa-
tion desk and personal search support, and
enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
 http://www.sti.nasa.gov

Ethan Schweinsberg, José Lombay-González, Shaun McKeehan, and Nadia Kortas
Glenn Research Center, Cleveland, Ohio

Eric Brace
HX5, LLC, Brook Park, Ohio

Rachel Dudukovich, Stephanie Booth, Brian Tomko, Timothy Recker, John Nowakowski, and Amber Waid
Glenn Research Center, Cleveland, Ohio

Wade A. Smith
Bastion Technologies Inc., Houston, Texas

HDTN Test Framework Software Requirements
Specifi cation and Design Description

NASA/TM-20240014467

November 2024

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

NASA STI Program/Mail Stop 050
NASA Langley Research Center

Hampton, VA 23681-2199

NASA/TM-20240014467 iii

Contents
Preface .. v
1.0 Introduction .. 1

1.1 Purpose .. 1
1.2 Scope .. 1
1.3 Overview .. 1

2.0 Documents .. 2
2.1 Applicable Documents ... 2
2.2 Reference Documents .. 2

3.0 Requirements .. 3
4.0 Design Decisions .. 9

4.1 Programming Language: Python ... 9
4.2 Operating System Support ... 9
4.3 Packaging ... 9
4.4 Scapy .. 9
4.5 Pytest .. 9

5.0 Architectural Design ... 10
5.1 Description ... 10
5.2 Concept of Execution ... 10
5.3 Interface Design ... 12

6.0 CSC Detailed Design .. 13
6.1 DTN Test Module .. 13

6.1.1 Protocols Module .. 15
6.1.2 Test Executor .. 16

7.0 Requirements Traceability .. 16
8.0 CSCI Implementation Plan ... 16
Appendix—Acronyms .. 17

NASA/TM-20240014467 v

Preface
Space Communications and Navigation (SCaN) is developing new communications technologies to

increase the amount of science data returned on future space missions. The High-Rate Delay Tolerant
Networking (HDTN) project at NASA Glenn Research Center (GRC) will provide reliable
internetworking as a high-speed path for moving data between spacecraft payloads, and across
communication systems that operate on a range of different rates.

This document specifies the software requirements and describes the software design of the HDTN
Test Framework.

HDTN Test Framework Software Requirements Specification and
Design Description

Ethan Schweinsberg, José Lombay-González, Shaun McKeehan, and Nadia Kortas
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Eric Brace
HX5, LLC

Brook Park, Ohio 44142

Rachel Dudukovich, Stephanie Booth, Brian Tomko, Timothy Recker,
John Nowakowski, and Amber Waid

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Wade A. Smith
Bastion Technologies Inc.

Houston, Texas 77058

1.0 Introduction
1.1 Purpose

This document specifies the software requirements and outlines the software design for the HDTN
Test Framework. It provides a guide for developing and verifying the framework, explaining the major
design decisions, and specifying the requirements the framework will be developed to.

1.2 Scope

This document covers the architecture of the HDTN Test Framework, the major decisions associated
with its design, a description of how the framework is executed, an overview of how the framework
interfaces with external components, and the Test Framework requirements.

1.3 Overview

The HDTN Test Framework is a Python library that provides functionality to streamline the testing
process for the HDTN software suite. It is designed to be used by scripts that execute test cases to directly
verify software requirements. The framework leverages the Pytest Python library to facilitate test case
execution and the Scapy Python library for network protocol support. Additionally, it is built with
extensibility in mind, making it adaptable for other Delay Tolerant Networking (DTN) implementations.

The Test Framework consists of a single Computer Software Configuration Item (CSCI).

NASA/TM-20240014467 1

2.0 Documents
Documents listed in this section are the standards, specifications, handbooks, and other publications

that guide this document.

2.1 Applicable Documents

Applicable documents are either cited in the body of this document or contain provisions directly
related to, and necessary for, the performance of the activities described herein. Applicable documents are
listed in Table 2-1.

TABLE 2-1.—APPLICABLE DOCUMENTS
Document number Revision Document title Effective date

NPR 7150.2 D NASA Software Engineering Requirements 03/08/2022

2.2 Reference Documents

Reference documents are those that may assist in understanding the intent of this document but are
not required to execute the processes contained in this document. Reference documents are listed in
Table 2-2.

TABLE 2-2.—REFERENCE DOCUMENTS
Document number Revision Document title Effective date

HDTN-PLAN-022 A HDTN Software Verification and Validation Plan 01/19/2024
HDTN-PLAN-003 A HDTN Software Development and Management Plan 01/19/2024

NASA/TM-20240014467 2

3.0 Requirements
This section specifies the requirements for the Test Framework CSCI. The intent of this section is to document the expected behavior and

functionality that meets the needs of stakeholders. The requirements along with the corresponding rationale and verification method are listed in
Table 3-1.

TABLE 3-1.—TEST FRAMEWORK REQUIREMENTS
SW Req ID Title Requirement Rationale Verification method Verification statement

HDTNTEST-001 Send Transport
Layer Packet

The Test
Framework shall
provide a method
to send a transport
layer packet
containing a user-
defined payload.

Sending packets is a fundamental
operation for testing convergence
layer and bundle protocol
requirements.

Test This requirement is verified when a test shows
the Test Framework delivers a properly
structured user-defined payload.

HDTNTEST-002 Configure
Destination

The Test
Framework shall
allow the user to
specify the
destination
Internet Protocol
(IP) address and
port number for
the transport layer
packet.

The ability to control the
destination of a packet is
essential for simulating
communication with various
endpoints.

Test This requirement is verified when a test shows a
received packet contains the desired destination
IP address and destination port number for the
transport layer packet.

HDTNTEST-003 Receive
Transport Layer
Packet

The Test
Framework shall
provide a method
to receive a
transport layer
packet.

Receiving packets is a
fundamental operation for testing
convergence layer and bundle
protocol requirements.

Test This requirement is verified when a test shows
the Test Framework can receive a transport layer
packet.

HDTNTEST-004 Configure
Receiver

The Test
Framework shall
support specifying
a timeout, port
number, and
maximum buffer
size for receive
operations.

These options provide flexibility
to the test scripts, which is
necessary for testing various
scenarios.

Demonstration This requirement is verified when a
demonstration shows the Test Framework can
accepts a timeout, port number, and buffer size
for receive operations.

N
A

SA
/TM

-20240014467
3

SW Req ID Title Requirement Rationale Verification method Verification statement
HDTNTEST-005 Transport Layer

Protocols
The Test
Framework shall
send and receive
packets over all
supported
transport
protocols.

The list of supported protocols is
in Table 5-4: Transport Protocols
Supported by the Test
Framework. These are the
protocols needed to exercise all
DTN convergence layers.

Analysis This requirement is verified when HDTNTEST-
001 and HDTNTEST-003 are verified using all
supported transport protocols.

HDTNTEST-006 Configure Unit
Under Test
(UUT)

Upon starting the
UUT, the Test
Framework shall
provide a method
to apply any
supported
configuration
option available
for the UUT.

Configuring the UUT is essential
for testing different scenarios. A
list of supported configuration
options is in the following tables:

Table 6-1: Egress Configuration
Options

Table 6-2: Ingress Configuration
Options

Table 6-3: Bundle Relay
Configuration Options

Table 6-4: Bundle Originator
Configuration Options

Table 6-5: Contact Configuration
Options

Demonstration This requirement is verified by demonstrating
that the application of each supported
configuration option results in a valid
configuration for a UUT.

HDTNTEST-007 Start UUT The Test
Framework shall
provide a method
to start an instance
of a UUT.

This automates the testing step of
bringing up the UUT, a frequent
operation.

Demonstration This requirement is verified when a
demonstration shows the Test Framework can
start an instance of a UUT.

HDTNTEST-008 UUT Start Status The Test
Framework shall
indicate whether
the UUT started
successfully.

This provides immediate
feedback on the state of the UUT.
A test case or test conductor may
need to take action if the UUT is
not able to be successfully
started.

Demonstration This requirement is verified when a
demonstration shows the Test Framework reports
a) the success of a UUT that initializes without
failure and b) the failure of a UUT that fails to
initialize.

N
A

SA
/TM

-20240014467
4

SW Req ID Title Requirement Rationale Verification method Verification statement
HDTNTEST-009 Identify and

Report UUT
Errors

The Test
Framework shall
identify and report
errors related to
the UUT process
being terminated
unexpectedly.

A UUT is considered terminated
unexpectedly if its execution
stops before being deliberately
shut down by the user or before
the process reaches its intended
conclusion. This allows a test
script or test conductor to
respond to unforeseen issues.

Demonstration This requirement is verified when a
demonstration shows the Test Framework
surfacing an error related to the UUT process
being terminated unexpectedly.

HDTNTEST-010 Stop UUT The Test
Framework shall
provide a method
to stop a
previously started
UUT.

Stopping the UUT is necessary to
reset the test environment or to
gracefully shut down processes
after testing.

Demonstration This requirement is verified when a
demonstration shows the Test Framework can
stop a previously started UUT.

HDTNTEST-011 Get UUT
Attribute

The Test
Framework shall
provide a method
for getting
supported
attributes from the
UUT.

Attributes from the UUT are
necessary for verifying certain
requirements. A list of supported
attributes is listed in Table 5-2:
Attributes Supported by the Test
Framework

Test This requirement is verified when a test shows
the Test Framework can retrieve all supported
attributes.

HDTNTEST-012 Poll UUT Event The Test
Framework shall
provide a method
for polling
supported events
from the UUT.

Events from the UUT are
necessary for verifying certain
requirements. A list of supported
events is listed in Table 5-3:
Events Supported by the Test
Framework.

Demonstration This requirement is verified when a
demonstration shows the Test Framework can
poll all supported events.

HDTNTEST-013 Execute Test
Case Suite

The Test
Framework shall
provide a method
for executing a
suite of test cases,
without user
intervention.

Automating the execution of a
suite of test cases efficiently
facilitates the verification process
for the test conductor.

Demonstration This requirement is verified when a
demonstration shows a suite of test cases being
automatically executed.

N
A

SA
/TM

-20240014467
5

SW Req ID Title Requirement Rationale Verification method Verification statement
HDTNTEST-014 Execute Test

Case Subset
The test
framework shall
provide a method
for executing a
subset of test
cases.

Automating the execution of a
subset of test cases provides
quick feedback to test case
developers. It is also necessary to
properly scope regression testing.
A subset of test cases could be a
single test case or all the test
cases in a requirement group,
e.g., Bundle Protocol Version 6
(BPv6).

Demonstration This requirement is verified when a
demonstration shows: 1) A single test case being
automatically executed and 2) A group of test
cases being automatically executed.

HDTNTEST-015 Convert to
Human Readable
Representation

The Test
Framework shall
provide a method
to convert raw
data into a list of
packet/bundle
fields and their
corresponding
values.

Converting packet/bundle data to
a human-readable format is
essential for debugging and
analyzing the results of a test
case.

Test This requirement is verified when a
demonstration shows the Test Framework can
convert raw data to a list of packet/bundle fields
and their corresponding values.

HDTNTEST-016 Generate Test
Data

The Test
Framework shall
provide a method
for generating test
data, in raw byte
format, from a list
of packet/bundle
fields and values.

This includes malformed and
nominal packets/bundles.
Generating packet/bundle data
automates the tedious and
repetitive task of creating test
data.

Test This requirement is verified when a test shows
the Test Framework can generate malformed and
nominal packet/bundle data from a list of fields
and their corresponding values.

HDTNTEST-017 Generation
Support

The Test
Framework shall
support generation
of test data for all
supported
packet/bundle
formats.

A list of supported packet/bundle
formats is listed in Table 5-1:
Packet/Bundle Formats
Supported by the Test
Framework. These formats were
chosen because they are the most
complex and provide the most
benefit to test script developers.

Analysis This requirement is verified when HDTNTEST-
016 is verified with all supported packet/bundle
formats.

N
A

SA
/TM

-20240014467
6

SW Req ID Title Requirement Rationale Verification method Verification statement
HDTNTEST-018 Log Test Status The Test

Framework shall
log the pass/fail
status of each test
case to a file.

A record of the pass/fail status of
each test case is needed for
verification evidence. It also
provides the test conductor with
insight into the testing status.

Demonstration This requirement is verified when a
demonstration shows the Test Framework logs
the pass/fail status of a test case to a file.

HDTNTEST-019 Log Assertion
Results

The Test
Framework shall
log the
"Associated
requirement ID",
"Expected result",
and "Actual
result" for
assertions.

A record of each assertion
associated with a test case is
needed for verification evidence.

Demonstration This requirement is verified when a
demonstration shows the Test Framework logs
the associated requirement ID, expected result,
and actual result for every assertion in a test
case.

HDTNTEST-020 Save UUT Logs The Test
Framework shall
store logs from the
UUT in a way that
ensures
traceability to the
corresponding test
case(s).

A record of the UUT log file(s) is
needed for verification evidence.

Demonstration This requirement is verified when a
demonstration shows the Test Framework stores
logs from the UUT in a way that ensures
traceability to the corresponding test case.

HDTNTEST-021 Log
Communication

The Test
Framework shall
be capable of
logging all
information
exchanged
between itself and
the UUT.

The Test Framework
communicates with the UUT via
sockets to trigger scenarios
necessary for verification. A
record of this communication is
needed for verification evidence.

Demonstration This requirement is verified when a
demonstration shows the Test Framework stored
all communication between itself and the UUT
during a test case execution.

HDTNTEST-022 Conversion
Support

The Test
Framework shall
support
conversion of
binary
packet/bundle data
to human-readable
text for all
supported formats.

A list of supported packet/bundle
formats is listed in Table 5-1:
Packet/Bundle Formats
Supported by the Test
Framework. These formats were
chosen because they are the most
complex and provide the most
benefit to test script developers.

Analysis This requirement is verified when HDTNTEST-
015 is verified with all supported packet/bundle
formats.

N
A

SA
/TM

-20240014467
7

SW Req ID Title Requirement Rationale Verification method Verification statement
HDTNTEST-023 Receive Timeout The Test

Framework shall
abort receive
operations when
the specified
timeout is reached.

Setting a timeout ensures a test
script can verify data reception
within a defined interval.

Test This requirement is verified when a test shows
the Test Framework a) successfully receives a
packet that arrives within the specified timeout
period and b) fails to receive a packet that arrives
after the specified timeout period.

HDTNTEST-024 Receive Buffer
Size

The Test
Framework shall
return all available
data that fits
within the
specified buffer
size for each
receive operation.

Defining a buffer size allows a
test script to receive only the
desired amount of data,
supporting data formatting needs.

Test This requirement is verified when a test shows
the Test Framework a) receives a complete
packet when the packet size is within the
specified buffer size and b) receives only the
portion of a packet that fits within the specified
buffer size when the packet size exceeds the
specified buffer size.

N
A

SA
/TM

-20240014467
8

4.0 Design Decisions
The primary goal of the HDTN Test Framework is to provide a simple library for test script

developers, automating the most common and time-consuming tasks associated with testing the HDTN
software suite. To achieve this goal, the framework must be adaptable and capable of integrating with a
wide range of test cases. Additionally, the Test Framework itself must be easily verifiable, so that project
resources can be concentrated on verifying the HDTN software suite, the actual software under test. A
secondary goal is to make the Test Framework extensible for testing other DTN implementations besides
HDTN.

The sections below describe the specific decisions associated with the design of the Test Framework.

4.1 Programming Language: Python

Python was chosen as the programming language for the HDTN Test Framework due to its extensive
library support and ease of use.

4.2 Operating System Support

The Test Framework is designed to run on the Ubuntu 20.04 operating system (OS), which is the
platform for HDTN verification. Support for other operating systems can be incorporated as needed to
meet developer needs.

4.3 Packaging

The Test Framework is packaged as Python modules to allow for easy integration with individual test
scripts via function calls. This design decision was made to simplify the process of writing test scripts.

4.4 Scapy

The Scapy library was chosen to provide network protocol support for the Test Framework. Scapy is
a powerful packet manipulation tool, written in Python, that allows for the creation, manipulation, and
decoding of network packets. Scapy's extensible interface was used to implement BPv6, Bundle Protocol
Version 7 (BPv7), and Transmission Control Protocol Convergence Layer (TCPCL) support. Although
Scapy provides some built-in support for BPv6, it is incomplete. Scapy does provide complete support for
Licklider Transmission Protocol (LTP). All of these protocols are important in any DTN implementation.
Scapy is released under the GNU General Public License 2.0 (GPL-2.0) license.

4.5 Pytest

Pytest was chosen to facilitate test case execution. Pytest is a mature testing framework that provides
a wide range of features. Pytest is widely used in the Python community and is well documented. Pytest is
released under the MIT license.

NASA/TM-20240014467 9

5.0 Architectural Design
5.1 Description

The HDTN Test Framework is a single CSCI whose main purpose is to provide test script
automation, assisting both the test conductor and the developers writing scripts for requirements
verification. It consists of the following Computer Software Components (CSC’s):

1. DTN Test Module—the DTN Test Module provides an interface to the UUT, managing tasks such as
launching DTN applications as subprocesses, configuring them, and stopping them after the relevant
test cases are complete. It also establishes socket connections to the DTN applications, enabling test
scripts to exercise the DTN application’s functionality.

2. Protocols Module—the Protocols Module, built using the Scapy library, offers functionality for
creating, manipulating, and decoding Bundle Protocol and Convergence Layer packet formats. Test
scripts use these protocols to generate test data and verify the DTN application outputs.

3. Test Executor—the Test Executor is used by the Test Conductor to initiate, manage, and record the
testing process, utilizing Pytest to accomplish these functions.

A detailed description of each CSC is available in section 6.0 CSC Detailed Design. Figure 5-1
illustrates the Test Framework architecture.

5.2 Concept of Execution

The execution of the Test Framework varies based on the needs of each test case, but generally
follows a common pattern. Initially, a test script is prepared that contains function calls to the Test
Framework. Then, the process begins when the test conductor commands the Test Framework to execute
the tests. Figure 5-2 illustrates the concept of execution, which is then explained step by step.

Figure 5-1.—Test Framework Architecture.

NASA/TM-20240014467 10

Figure 5-2.—Concept of Execution: Sending and Receiving Data with the UUT.

1. The Test Framework is responsible for collecting and executing all test scripts. The test conductor
initiates this process either through a command-line interface or by launching a GitLab Continuous
Integration (CI) pipeline.

2. The test script imports components of the Test Framework as Python modules, which provide the
necessary functionality for the subsequent steps.

3. The test script calls a function to instruct the framework to start the UUT. The Test Framework
initiates the UUT as a subprocess and captures a reference to monitor and eventually terminate it. As
part of this step, the Test Framework also configures the UUT for the test scenario.

4. The test script calls a function to establish a socket connection with the UUT. This connection enables
the transmission of application data to the UUT for exercising and verifying the UUT’s functionality.
The framework creates a “DTN Socket” instance, responsible for establishing and managing a
Berkeley Software Distribution (BSD) or Winsock socket connection to the UUT.

NASA/TM-20240014467 11

5. The test script calls a function to generate test data. The framework’s Protocol library converts a
field/value representation of a bundle into a byte stream that can be transmitted over the socket.

6. The test script sends the test data to the UUT through a function call. The framework manages the
network operations to deliver the data to the UUT.

7. The test script receives data from the UUT via a function call. The framework handles the network
operations for reading the data from the socket connection and then returns the data to the test script.

8. The test script performs an assertion to verify that the received data matches the expected result. The
Test Framework tracks this assertion for reporting.

9. Once the test script completes execution, the Test Framework stops the UUT, closes the socket
connection, and saves the test results.

5.3 Interface Design

Figure 5-3 shows how the Test Framework interfaces with test scripts and test environment.
The Test Scripts interact with the Test Framework through Python functions calls. Specifically, they

call functions within the Protocols module to generate test data and use the DTN Test Module for actions
that engage with the UUT and the Test Framework, as well as for collecting results from those
interactions. The data formats supported by the Protocols module are in Table 5-1.

The Test Conductor uses a command-line interface (CLI) to interact with the Test Executor, running
tests and monitoring their status. The Test Executor interfaces with the file system via OS calls, gathering
test scripts to execute and storing test artifacts during execution.

The DTN Test Module communicates with the UUT through OS calls, which includes sending and
receiving transport layer packets, configuring, starting, stopping, and monitoring the UUT, as well as
capturing logs, events, and attributes from the UUT. A list of supported events, attributes, and transport
protocols are in Table 5-2, Table 5-3, and Table 5-4.

Figure 5-3.—Test Framework Interfaces.

NASA/TM-20240014467 12

TABLE 5-1.—PACKET/BUNDLE FORMATS SUPPORTED BY THE TEST FRAMEWORK
Packet/Bundle format name

BPv6
BPv7
LTP
TCPCL

TABLE 5-2.—ATTRIBUTES SUPPORTED BY THE TEST FRAMEWORK
Attribute name Attribute description

Bundle in Storage Gets whether a sequence of bundle bytes is in storage on the
UUT. Only applicable to UUTs that are full DTN
implementations.

TABLE 5-3.—EVENTS SUPPORTED BY THE TEST FRAMEWORK
Event name Event description

Discarded LTP Segment Triggered when the UUT receives an LTP segment that
cannot be processed and discards it

TABLE 5-4.—TRANSPORT PROTOCOLS SUPPORTED BY THE TEST FRAMEWORK
Transport protocol name

Transmission Control Protocol (TCP)
User Datagram Protocol (UDP)

6.0 CSC Detailed Design
6.1 DTN Test Module

The DTN Test Module consists of two sub-modules, the DTN Socket Module and the DTN Test
Client Module.

The DTN Socket module is a Python class that interfaces with the UUT to enable the sending and
receiving of application data using BSD/Winsock sockets over the UDP and TCP transport protocols. It
provides a function for a test script to create a socket connection to a specified port, and once the
connection is established, offers functions for sending and receiving data. The DTN Socket module is
responsible for maintaining the socket connection throughout the testing.

The DTN Test Client module is a Python class that provides a standardized interface to the UUT,
abstracting the details of the underlying DTN implementation. The Test Framework defines a standard set
of configuration options and methods for initializing and interacting with the UUT, enabling easy
swapping between different implementations. To integrate a new DTN implementation into the
framework, developers can extend the DTN Test Client class and implement support for all necessary
configuration options, events, and attributes. Figure 6-1 illustrates the DTN Test Client Interface.

The list of the configuration options supported by the DTN Test Client Interface is in Table 6-1,
Table 6-2, Table 6-3, and Table 6-4.

NASA/TM-20240014467 13

Figure 6-1.—Usage of the DTN Test Client Interface.

TABLE 6-1.—EGRESS CONFIGURATION OPTIONS
Option name Data type Scope

Convergence Layer Adapter (CLA) String ------------------------
Destination Port Integer ------------------------
Next Hop ID Integer ------------------------
Data Segment Maximum Transmission Unit Integer LTP only
Bound Port Integer LTP only
This Engine ID Integer LTP only
Remote Engine ID Integer LTP only
Retry Limit Integer LTP only
Checkpoint Interval Integer LTP only
Retransmit Time Integer LTP only
Transmit Rate Integer LTP or UDPCL only

TABLE 6-2.—INGRESS CONFIGURATION OPTIONS
Option name Data type Scope

Convergence Layer Adapter (CLA) String -----------
Bound Port Integer -----------
Next Hop ID Integer -----------
Report Maximum Transmission Unit Integer LTP only
Destination Port Integer LTP only
This Engine ID Integer LTP only
Remote Engine ID Integer LTP only
Retransmit Time Integer LTP only

TABLE 6-3.—BUNDLE RELAY CONFIGURATION OPTIONS
Option name Data type

Node ID Integer
Fragmentation Size Integer
Custody Retransmit Time Integer
Aggregate Custody Signal Aware Boolean
Storage Capacity Integer

NASA/TM-20240014467 14

TABLE 6-4.—BUNDLE ORIGINATOR CONFIGURATION OPTIONS
Option name Data type

Bundle Protocol Version Integer
Application Data Port Integer
Source Node ID Integer
Destination Node ID Integer
Bundle Lifetime Integer

TABLE 6-5.—CONTACT CONFIGURATION OPTIONS
Option name Data type

Source Node ID Integer
Destination Node ID Integer
Start Time Integer
End Time Integer

Figure 6-2.—Scapy Packet and Field Relationships.

6.1.1 Protocols Module
The Protocols Module includes a set of Python classes that implement Scapy packet definitions for

Bundle Protocol Version 6, Bundle Protocol Version 7, and LTP. In Scapy, a packet is a data structure
that defines the content of a network packet in a human-readable format, which can then be converted to
its binary form for transmission or analysis. A packet in Scapy can consist of multiple layers, with each
layer representing a different network protocol (e.g. Ethernet/Internet Protocol/TCP). These layers are
made up of Scapy Fields, which specify the data elements of a protocol and how they are converted to and
from binary format. Scapy’s design is extensible, allowing users to define custom packet and field types
using class inheritance. To define packets, the “fields_desc” member variable is overridden to list the
fields in the packet. For fields, the “addfield” and “getfield” methods are overridden to handle the
conversion between human-readable and binary formats.

The Scapy library already includes an LTP packet type and a Self-Delimiting Numeric Value
(SDNV) field type. However, Bundle Protocol Version 6, Bundle Protocol Version 7, TCPCL, and
Concise Binary Object Representation (CBOR) are custom implementations in the Test Framework.
Figure 6-2 shows the relationship between Scapy packet and field types.

NASA/TM-20240014467 15

6.1.2 Test Executor
The Test Executor is Pytest, an open-source testing framework for Python. Pytest consists of two

main components: an executable and a Python library. The executable is invoked by the Test Conductor
from the command line to start the testing process. It handles test case discovery, execution, and
reporting. The Python library is utilized by test case developers to structure and organize test cases. Pytest
offers various testing features, such as fixtures, which provide a reliable and consistent context for setting
up test environments. Fixtures are particularly useful for preparing a shared setup that can be accessed by
multiple test cases.

7.0 Requirements Traceability
The verification methods are documented in the HDTN-PLAN-022 Software Verification and

Validation Plan. The Requirements Traceability Matrix is currently maintained in the HDTN MagicDraw
project.

8.0 CSCI Implementation Plan
The Test Framework CSCI has been implemented as part of the development of the HDTN project. It

will undergo its own formal verification and once verified, be used in the verification of the HDTN
software suite.

NASA/TM-20240014467 16

Appendix—Acronyms
The following list contains definitions for all abbreviations and acronyms used in this document.

BSD Berkley Software Distribution
BPv6 Bundle Protocol Version 6
BPv7 Bundle Protocol Version 7
CAGE Contract and Government Entity
CBOR Concise Binary Object Representation
CI Continuous Integration
CLA Convergence Layer Adapter
CLI Command Line Interface
CM Configuration Management
CSC Computer Software Component
CSCI Computer Software Configuration Item
DTN Delay Tolerant Networking
GRC NASA John H. Glenn Research Center
HDTN High-Rate Delay Tolerant Networking
IP Internet Protocol
LTP Licklider Transmission Protocol
MTU Maximum Transmission Unit
NASA National Aeronautics and Space Administration
NPR NASA Procedural Requirements
OS Operating System
SCaN Space Communications and Navigation
SDD Software Design Document
SDNV Self-Delimiting Numeric Value
SOMD Space Operations Mission Directorate
TCP Transmission Control Protocol
TCPCL Transmission Control Protocol Convergence Layer
UDP User Datagram Protocol
UUT Unit Under Test

NASA/TM-20240014467 17

	TM-20240014467.pdf
	Contents
	Preface
	1.0 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Overview

	2.0 Documents
	2.1 Applicable Documents
	2.2 Reference Documents

	3.0 Requirements
	4.0 Design Decisions
	4.1 Programming Language: Python
	4.2 Operating System Support
	4.3 Packaging
	4.4 Scapy
	4.5 Pytest

	5.0 Architectural Design
	5.1 Description
	5.2 Concept of Execution
	5.3 Interface Design

	6.0 CSC Detailed Design
	6.1 DTN Test Module
	6.1.1 Protocols Module
	6.1.2 Test Executor

	7.0 Requirements Traceability
	8.0 CSCI Implementation Plan
	Appendix—Acronyms

