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Abstract—Global climate change is redefining our understand-
ing of how diseases spread. In Sri Lanka, vector-borne diseases
such as dengue fever, encephalitis, and leptospirosis historically
surged during the monsoon seasons when temperatures were high
enough for mosquito eggs to hatch. Unfortunately, due to rising
temperatures and more erratic rainfall patterns, mosquito eggs
can now hatch year-round and are increasingly unpredictable,
leading to an alarmingly increasing number of hospitalizations
and deaths. More data is needed to adapt our response to these
diseases in an increasingly warmer world. In the contemporary
landscape, a wealth of disease information is available, yet
accessibility remains limited due to unstructured data formats
such as PDFs. Therefore, converting unstructured disease reports
into structured formats is necessary for effectively leveraging
data. This paper introduces a comprehensive framework for
collecting unstructured disease reports and transforming them
into analyzable formats. By creating separate models tailored to
each data format, we can ensure accuracy compared to general
models. These straightforward models enhance accessibility and
empower other researchers to use our tools. The returned struc-
tured data can then be harnessed for analysis, statistical purposes,
and informing evidence-based public health interventions, thus
facilitating more informed decision-making in healthcare. We
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deploy this framework to produce geospatial data for Sri Lanka
and Brazil for many different conditions and align these data
with satellite environmental data, providing for the first time a
structured, aligned powerful dataset for disease modeling.
Index Terms—Natural Language Processing, Disease Data,
Satellite Data, Parsing PDF, Open Source Open Science

I. INTRODUCTION

Many countries publish weekly or monthly disease reports
to aid public health research. However, this data can be stored
in formats that are inconvenient for researchers to use. This can
create a bottleneck in research, where researchers spend time
extracting data when they could be analyzing the data. While
general methods to parse unstructured data exist, they are often
too broad and inflexible, while other methods to access the raw
data are inconvenient and difficult to manipulate. Additionally,
studying diseases requires a breadth of earth observational
data such as precipitation and surface temperature, which are
gathered by satellites. An average person cannot contact these
governments to acquire structured disease data, if it exists, or



access satellite data. To remedy this, we created a system to
extract such data and publish it in an open-source open-science
framework.

We used data from two countries, Sri Lanka and Brazil.
Sri Lanka’s data was in an unstructured format: PDF. Brazil’s
data was structured but was separated by each year and
accessible through a web interface, requiring data scraping to
create a cohesive dataset. Additionally, we added additional
data such as locational data and NASA’s Earth Observational
Satellite Data, specifically Giovanni, NOAH, and MODIS to
both datasets. We worked with a disease modeling team to
supply them with data for their model, and they supplied us
with earth observational data.

To parse the data we used existing techniques such as web
scraping using browser tools such as Selenium or browser con-
sole, PDF-to-text extraction, and similarity methods to account
for multiple spellings or typographical errors. Additionally,
we developed our own system using these techniques that
is modular and can deal with a variety of different ways of
structuring data. Lastly, in the case of inconsistent or erroneous
data, we implemented tools to fix any errors manually.

Using our system, we produced a dataset with weekly data
for 12 conditions in Sri Lanka from 2013 to the present and
weekly or monthly data for 44 conditions in Brazil from
2007 to the present (depending on the condition). The system
is modular and easily adapted for parsing data in different
countries or formats. We also have a method to update the
dataset with new data as it becomes available for future use.
All our data and data creation scripts are available online,
linked at the end of the paper.

II. RELATED WORK

General methods to process PDF table data usually consist
of determining where the table is (using machine learning
models, OCR lines, etc.), figuring out the structure (OCR
lines, spacing rules, etc.), and then converting it to a machine-
readable format. Methods include using an OCR such as
tesseract to extract lines with which to find tables [1], [2],
using neural networks to determine when tables occur [1],
and using positional element data to determine tables based
on structure [3], [4], [5].

LLMs such as Chat-GPT or LLaMa also can deliver decent
results [6], however in our testing it was too slow, and the
result often had incorrect data, which made it impossible to
process our dataset. There are a few papers that survey most
available methods of general table extraction [7], [8], but these
methods don’t have perfect success, and upon testing with
our data fail to extract content properly. Additionally, due to
various possible table sizes and combinations, it is difficult
to create a universal algorithm [9]. Since general methods
are not perfect yet, we opted for a more tailored approach
to processing data from the PDFs.

Work for handling abbreviations, such as using similarity
functions like longest common subsequence [10], [11], and
work for handling typographical errors exists [12], but they
are too general and can not directly accomplish the purpose of

this paper. Getting accurate location data such as latitude and
longitude from location names along with additional context
and the structure of the location name (i.e. city, state, country
format) and MST calculations [13] could help the data to be
more structured, but it was too costly and did not match with
the raw dataset we had.

Although processing PDF table data is well-studied, general
methods yield varying degrees of success [7], [8]. Addition-
ally, on our data they had many errors. Instead of aiming
to create a general method, we opted to use the consistent
formatting of disease report documents to our advantage. By
making a tailored model for each country, we were able to get
more accurate results in a shorter time than if we had pursued
a more general approach.

III. DATA SCRAPING
A. Sri Lanka

Data was sourced from Sri Lanka’s Weekly Epidemiological
Report website [14]. We extracted using a two-step method:
getting the URLs of each PDF, and then downloading each
URL. URLs of each PDF file were extracted using javascript
and the browser console. The link to each file was always in
the btn class. Thus, we were able to get a list of all the URLSs
using the command $(’.btn’) .each (function ()
{console.log ($ (this) .prop(’href’))}). To ex-
clude certain years, we deleted the year’s section in the source
code under the Elements tab, which would be in divs of
class accordions. After copying the list of URLSs from the
console, we used wget to download all the files, wget -i -
<<< "files", where “files” was the list of URLs separated
by newlines. This command downloads all files to the working
directory.

B. Brazil

Brazil’s data was on a more complex website, requiring

more sophisticated scraping tools. We used Python
and Selenium. We created brazil_scraper.py,
with arguments brazil_scraper.py <data-url>

<outfile—-name> <output-folder>. <data-url>
is the URL for accessing the data. <out file-name> is the
basename for the files (filenames are <outfile—name>
<year>.txt). <output-folder> is the folder for
storing the data.

The scraper starts by selecting the line and column val-
ues(row and column). For the line, it is optional to set it to ei-
ther "Municipio de notificagdo” (Municipality of notification),
or “Municipio de residéncia” (Municipality of residence).
Both descriptors are slightly different. We used Municipio de
residéncia. Municipio de notificacdo is the municipality where
the case was reported, while Municipio de residéncia is the
municipality where the patient resides. For the column, we
selected weekly cases, and if not possible, monthly cases. For
different datasets, weekly and monthly cases were marked with
slightly different spellings, so we had to check through a large
list of possible spellings for weekly or monthly cases. Finally,

we select the data format to be columns separated by ;”, as



it is easier to work with. Then, we iterate through each year,
click "Mostra” to show the data, and collect the data for each
year. This data is then saved to a file marked with the year. The
data was saved in a text document with the first line being the
year, the second line being the link to the data and the third
line onwards being the table.

IV. PARSING
A. How to use

We implemented a modular model for parsing. The
parser, dataParser.py, takes in the arguments:
dataParser.py <folder> <output.csv>
<parsing-model>. <folder> is the directory the
data is stored at, <output .csv> is the name and directory
of the output file, and <parsing-model> is the name of
the model that the user would like to use. Models are made
for different document types.

Running command dataParser.py Data data.csv

ParsingModels.srilLankaParser would take
all the files in the Data folder, parse them using
ParsingModels.srilankaParser, and output the

result in data.csv

One can continue to update the datasets with new data
as it is released. Data to <output-file.csv> will be
appended, rather than overwritten. By using our data scraping
method and running dataParser.py on the new data,
specifying the output file to be the current dataset, the data
will be appended to the dataset. Additionally, if one wants
to make the new data in a new file that is also possible by
choosing a new filename for <output—-file.csv>.

B. Program structure

The parser extracts the data from all the files in <folder>.
If the file is already encoded as a .txt, it simply takes the text
data. If it is a .pdf, it converts the data to a text format. For
this, we used two different parsers: pyPDF2 and pymuPDF.
pyPDF2 is good at identifying and formatting tables with new-
lines. However, sometimes it concatenates cells of the table
together, making the results sometimes unuseable. pymuPDF
simply extracts the text data from a PDF akin to a copy and
paste. All the data is preserved, but the structure of the table
is obscured. One can combine the structure from pyPDF2 and
the data from pymuPDF to assemble an accurate table.

C. Flags

To make development of current and future models more
accessible, we have implemented a number of flags in our
program. —q is quiet mode, and doesn’t output a stack trace.
—-d is a debug mode, which will print inputs to each func-
tion. -1 [Path/To/File] Logs all failed files to a file.
—errordir [Path/To/Directory] copies all failed
files to a directory, separated in folders by their error message.
This is very helpful for sorting out error types and significantly
speeds up development time. Also, we have —asc and —desc
for sorting the data chronically or inverse chronically, while
—-s <keyword> will help to detect specific keyword from
the dataset and extract the specified data.
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Fig. 1. Semantic meaning of data determined by the lead cell in rows and
columns. All cells in the red box relate to Dengue Fever. All cells in the green
box relate to Gampaha.

D. Models

Different models encode instructions for each document
type (i.e. country). While the reading of files is the same,
converting them to structured data is not. In our case, we made
a model for Sri Lanka and a model for Brazil. This way, we can
keep common elements from both models together. This also
sped up the development of models. While Sri Lanka’s model
took a long time to develop alongside the parser, Brazil’s
model was completed relatively swiftly as it borrowed a lot of
functionality from Sri Lanka.

Models generally use two steps: First, take the raw text
data and only return the necessary subsection where the table
resides. Second, parse the subsection into table data and return
that. In Brazil’s data, we were able to skip the first step due to
the data already consisting of only the necessary subsection.

1) Parsing tables: The first line of the table is the header,
which contains the semantic information for each analogous
cell in following rows. For example, for the column in the
header with “Dengue Fever”, all entries in different rows of
the same column have data regarding Dengue Fever. (Figure
1) Thus, the first step is to understand the semantic values
of the header. Next, you need to take each subsequent row.
The first element of each row is usually also semantic data
that pertains to the entire row. For example, "Gampaha” in
the first cell means all values in the row have the location
Gampaha. Then for each cell, you must assign the number in
the cell as the number of cases, and use the semantic data
from the header and the first cell to fill in other information.

2) Handling multiple spellings or typos: Ensuring consis-
tent data is ideal, yet it’s often challenging to achieve due
to factors such as typographical errors, unseen characters,
erroneous figures, or misplaced data. For instance, data from
Sri Lanka occasionally made changes in writing style, or
contained typographical errors. This led to confusion between
different names that refer to the same district, such as >Gam-
paha’ and ’paha’, resulting in fluctuations in the list of reported
districts.

Initially, our approach was straightforward: we compiled
a dictionary of incorrect or mistaken words and replaced
them with the correct ones whenever encountered. However,



this method proved insufficient for addressing new errors
or emerging types of typographical mistakes, requiring the
adoption of a more effective strategy. Next, we decided to input
the entire dataset, including text and individual words, into a
Large Language Model (LLM) to identify the words within
the text. While this method produced results, its execution
was slow, and its performance varied, occasionally resulting
in inaccuracies.

Therefore, for disease names, we devised a hybrid approach
combining a dictionary and a modified version of the similarity
method called longest subsequence. When encountering a new
error, the system attempts to match the erroneous word with
the correct disease name. If the similarity meets a certain
threshold, the word is classified as the specific disease, and the
erroneous word is stored in the dictionary, indicating its as-
sociation with that disease. This minimizes the computational
resources required for future identification. However, if the
similarity does not meet the threshold, the system conducts
a secondary search for the closest erroneous word in the
dictionary. The threshold for this secondary pass is slightly
lower, considering the possibility of dictionary corruption if
slightly altered words consistently occur, potentially ends up
matching a totally different word into another word.

We adopted a unique approach for handling district and
city names due to the frequent occurrence of identically
named locations across multiple countries, we cannot use
similarity method, since it was too faulty. Instead, to differ-
entiate between these locations, we appended the name of the
respective country to each location entry during data retrieval.
Furthermore, to ensure consistency and improve processing
efficiency, we preprocessed the location names by removing
non-alphabetic characters, as geographical names typically do
not contain numeric or special characters. This preprocessing
step was crucial before feeding the data into subsequent
models for further analysis.

3) Locational data: After preprocessing the location
names, we utilized an API to retrieve location data. This
included gathering information such as the type of location
(e.g., district, city, or street level), the location boundary, and
precise latitude and longitude coordinates, along with the as-
sociated country identification number. To optimize efficiency
and reduce redundant API requests, which could potentially
decrease computation time, we implemented a simple CSV-
based dictionary. This dictionary stored each unique location
value with corresponding data, allowing us to reuse the data
whenever it was needed.

E. Sri Lanka model

Sri Lanka had the more complex model of the two. The
model worked by first extracting the table from the text along
with the timestamp of the information. Then, it uses the table
and the timestamp to generate individual entries into our
dataset.

1) Extracting relevant information from text: To extract the
desired data accurately, we implemented a strategy to identify
the beginning and end of tables within the dataset. Through

observation, we recognized specific keywords such as 'RDHS’
or ’Division’ that typically marked the start of a table. By
setting these keywords as markers for table boundaries, we
achieved a high extraction accuracy of 97%. Despite this
success, occasional errors occurred due to misplaced keywords
within the data. We had difficulties with the mark of table starts
being too early. We dealt with this by using a function that
determines what disease a word is. We created this function
initially to overcome typos and abbreviations in words to map
them to a disease consistently, but it also proved to be a good
check to ensure the first row of our table were disease names.

Apart from the tabular disease data, the other info we needed
to extract from the pdfs were the dates that the data was
collected over. For this step of data processing, timestamps
played a crucial role. We employed regular expressions for
pattern matching; however, we encountered challenges such
as typos and formatting inconsistencies. For instance, some
timestamps lacked whitespace between numerical values and
letters, or between the month and year components. Moreover,
incorrect or distorted timestamp data further complicated the
extraction process. To mitigate these issues, we meticulously
crafted our regular expressions, prioritizing the detection of
common timestamp formats like ’17th - 23rd May 2020’
initially. Subsequently, we adjusted our detection approach to
accommodate alternative formats, such as 30th June - 6th July
2018’, upon failure to identify the common sequence and so
on. Another small hurdle were abbreviated and inconsistent
months names (e.g. “dece”, ”dec”, “december”) which was
solved by mapping possible names for a month to their
number(1-12) in a dictionary.

For consistent weekly data, it may be easier to use metadata
of the document or define a start date, and assume the
successive reports are for exactly the next week instead of
relying on NLP techniques for timestamps. This may work
with other datasets, but we strayed away from this because of
inconsistencies with the Sri Lankan disease reports with dates
collected vs the dates reported and because of outliers such as
the last week of year sometimes reporting yearly data.

2) Parsing table: The parsing of the table was done using
only the pymupdf library. In previous iterations, we used both
pyPDF2 and pymupdf in conjunction, but for Sri Lanka we
found a way to do it that only required one of the inputs. (If
you’ll recall, myPDF2 preserves the structure of the table but
corrupts data, while pymupdf preserves the data of the table
but does not preserve the structure)

We should also mention that Sri Lanka had A’ and 'B’
rows (see Figure 1). A’ rows represented the count for that
week, while "B’ rows represented the running total count for
the whole year. For our parser, we skipped each B’ row and
only collected data from ’A’ rows.

The initial challenge was how the program would properly
parse the header. First, we ran a function to concatenate header
elements so they work properly with our system to handle
multiple spellings or typos. Since many of the data contained a
mix of newline and space characters between words, a simple
function was written to organize and unify them according



to the module’s expected input. Then, the data was given to
another function that returns a list of all the diseases, which
will return proper, standard spelling.

Next, the challenge continued with having data that should
be separated by spaces instead being concatenated in a single
column due to the limitations of pymupdf. Since the expected
value for each table was a location name followed by the
number of cases, the program detected where the alphabetic
characters appear and where the numeric characters appear,
then constructed a new row each time an alphabetic character
was detected. Additionally, we put a warning when there is
an irregular number of diseases found since the table should
expect a constant amount of diseases.

3) Manually entered data: With all of the above steps, we
tried to account for all possible PDFs and tables, but the data
we worked with was not perfect and neither were all the
NLP techniques we used. Sometimes numbers were far off,
sometimes the PDF and table were inconsistently formatted,
sometimes the date would be missing from its usual spot,
and sometimes disease names were split into multiple words
or abbreviated in ways that are very difficult for code to
consistently parse. Because of the specificity and variety of
errors we were getting, when we had only 10 errors out of
500+ PDFs, we added a manual flag to our program. This
allowed us to look at the text extracted from the PDF and
input the date, and the area that the table is. In this step, we
could also fix one-off disease name errors, spacing errors, or
numbers that were off that week.

F. Brazil model

From the scraper, data was stored in a text file where the
first line was the year, the second was the data source, the
third was the disease name, and the fourth line onward was
the table itself. The year and data source were extracted from
each text file, and the table was fed into a parsing algorithm.

1) Parsing table: Since the table is already structured, there
is no need for complex methods to parse the data. The first
line of the table is the header, which contains the semantic
information for each analogous cell in the following rows.
For example, for the column in the header with ”Semana 03”
(Semana means week), all entries in different rows of the same
column refer to week 3. We generate data by rows. For every
row, we get the location name based on its first column and
get the locational data. For every cell in the row, we create
an entry with the number of cases in the cell, the locational
data, and the timestamps generated from the time column in
the header.

G. Make your own model

We provide starter code for new models that can be created.
These models will process the data in the form of strings. The
first requirement is that the data must be in a form which
could be converted into text, or must be in a form of strings,
converted prior to input.

Next, there are two models required to process the text. One
model is responsible for capturing the important and relevant

data from the full strings. The other model converts that raw
data into a structured format, for the examples given, into 2D
array.

Limitations. Due to the models being based on the structure
of the data, documents that don’t have consistent structure
cannot be parsed by the same model. For example, Sri Lanka’s
data before 2013 has a different format, requiring a different
model. Additionally, typographical errors or formatting errors
might result in models returning an error on certain papers.
Thankfully, papers that yield an error aren’t appended to the
dataset, and if such papers are few, they can be manually
transcribed.

V. EARTH OBSERVATIONAL SATELLITE DATA

Collected disease data can be combined with related Earth
Observational data to build prediction models on how the
disease outbreak could take place with respect to the weather
and climate data. Among many EO datasets that can used in
analysis work, we showcase how the precipitation (rainfall)
data can be obtained from NASA and utilized as a one of the
possible usecases.

The Global Precipitation Mission (GPM) data comes in
particular formats, such as network Common Data Form
(NetCDF) or Hierarchical Data Format 5 (HDFS) [15], as it
gets downloaded from the NASA data portal. NetCDF is a
self-describing file format designed to store multidimensional
scientific data such as temperature, humidity, pressure, wind
speed, etc, along with its metadata [16].

NASA’s Integrated Multi-satellite Retrievals for GPM
(IMERG) [17] using a GPM satellite constellation contains
the precipitation data. NASA GPM data downloaded is via
an API or a data tool such as NASA Giovanni [18], through
the NASA Earthdata portal. Once the precipitation data in the
chosen temporal and spatial resolution is downloaded in either
netCDF or HDFS, it can be converted to comma-separated
value (CSV) format. The converted CSV data can be used to
create data frames. The data frames are the most commonly
used method for data analytics and machine learning model
implementation using Python and R programming languages.
Also, the CSV data can be easily shared, and it supports the
interoperability aspect and is agnostic from any proprietary
data format.

Here, as an example, we showcase how we used NASA
Earth Observational data (i.e., Total surface precipitation)
downloaded using a data tool called NASA Giovanni. It
provided the precipitation data in nc4 (netCDF4) files format,
which includes rich metadata such as units, latitude, and
longitude resolution, any fill-missing value, etc, shown in the
figure 2.

Precipitation data is per region using the chosen temporal
resolution. It contains longitude, latitude, and precipitation
values, which we converted to machine-readable CSV format
to build our data frames, which were used in the analysis
shown in the sections below.



<class 'netCDF4._netCDF4.Variable'>

float32 M2TMNXFLX_5_12_4_PRECTOT(lat, lon)
_FillValue: 1000000000000000.0
fmissing_value: 1000000000000000.0
fullnamepath: /PRECTOT
long_name: Total surface precipitation
missing_value: 1000000000000000.0
origname: PRECTOT
vmax: 1000000000000000.0
vmin: -1000000000000000.0
standard_name: precipitation
quantity_type: Precipitation
product_short_name: M2TMNXFLX
product_version: 5.12.4
coordinates: lat lon
units: kg m-2 s-1
cell_methods: time: mean
latitude_resolution: 0.5
longitude_resolution: 0.625

unlimited dimensions:

current shape = (24, 23)

filling on

Fig. 2. Precipitation data in the netCDF4 format before converting to CSV
format.

VI. DATASET FEATURES
A. Disease data

Data is stored in a comma-separated format (.csv) and has
the following features: Disease Name, Cases, Location Name,
Country Code, Region Type, Latitude, Longitude, Region
Boundary, Timestamp Start, Timestamp End, and Source File
(for debugging and data integrity).

For Sri Lanka, we have data for 12 conditions: Dengue
Fever, Dysentery, Encephalitis, Enteric Fever, Food Poisoning,
Leptospirosis, Typhus Fever, Viral Hepatitis, Human Rabies,
Chickenpox, Meningitis, and Leishmaniasis. This data is from
2013 to 2024. It has a district-level spatial resolution and a
weekly temporal resolution.

For Brazil, we have data for 44 conditions: Work accident,
Accident due to venomous animals, Work Accident with Expo-
sure to Biological Material, Botulism, Work-Related Cancer,
Cholera, Whooping cough, Work-Related Dermatosis, Dengue
Fever, Diphtheria, Acute Chagas Disease, Exanthematous
Diseases, Schistosomiasis, Yellow fever, Chikungunya fever,
Rocky Mountain spotted fever, Typhoid fever, Hantavirus,
Hepatitis, Pandemic Influenza, Exogenous Poisoning, Vis-
ceral Leishmaniasis, American Tegumentary Leishmaniasis,
American cutaneous leishmaniasis, Leptospirosis, Read/Dort,
Malaria, Meningitis, Acute Flaccid Paralysis, Work-Related
NIHL, Plague, Work-Related Pneumoconiosis, Human Ra-
bies, Acquired Syphilis, Congenital Syphilis, Syphilis in
Pregnant Women, Congenital Rubella Syndrome, Accidental
tetanus, Neonatal tetanus, Congenital Toxoplasmosis, Gesta-
tional Toxoplasmosis, Work-Related Mental Disorder, Vari-

cella, Interpersonal/Self-Inflicted Violence, and Zika virus.
The earliest of these reports are from 2007, and the latest
are to the present, 2024. The data has a municipality-level
spatial resolution and depending on the condition, a weekly
or monthly temporal resolution.

B. Contextual data And data tools

The disease data was fused with geo-spatial satellite data
(see for example, figure 3). Each region has Precipita-
tion rate (Precipitationcal), Temperature (Tair_F_Inst), Sur-
face Air Pressure (Psurf_F_Inst), Plant Canopy Surface Wa-
ter (Canopint_Inst), Air Quality(Qair_F_Inst), Surface Soil
Moisture (Soilmoi0O_10cm_Inst), and Normalized Difference
Vegetation Index (NDVI). The satellite data was from NASA’s
Earth Observational Satellite Data, specifically Giovanni,
NOAH, and MODIS. The satellite data is daily, so to match our
datasets’ weekly resolution, we recorded the weekly minimum,
maximum, and mean of each week. The spatial resolution of
the data is by district for Sri Lanka. For Brazil, we have run
the NLP module to obtain the disease/condition data, however,
within the scope of this work and due to the size of the Brazil
earth-observational satellite data, we have not run the second
module to download and align the data. For disease/climate
modeling in Brazil, this last step would have to be done
following the same methodology we have presented for the
Sri Lanka data. (figure 4)

1) Data Visualization: We showed sample visualizations of
the data in figure 4, figures 4 and 5 to illustrate the richness
of the data by showing some of the insights simple data
exploration can give. We do provide such visualizations which
supports zooming in on specific regions, diseases, and time
scales.

2) Data Management: To enhance the accessibility and
usability of data, we developed an efficient model for the
extraction of information based on disease name, location,
or user-defined date parameters. Employing keywords such as
’Colombo’, the module will identify and retrieve relevant data
entries. Furthermore, the tool offers ability to sort the data
chronically.

VII. POTENTIAL USE CASES

This data provides a fertile ground for developing models
for all diseases in the data. New features can also be added.
For example, data for diseases such as Dengue, Chikungunya,
or Cholera can be fused with data such as healthcare fund-
ing, mobility data, and other socioeconomic and contextual
factors to determine effective safety measures, predict disease
outbreaks, and aid in advocating for meaningful reform. The
data also serves as a blueprint for synthetic data. This data
can be used in many ways, we give one concrete use case.

A. Spatio-Temporal Dengue Modeling

We used the data to model and predict outbreaks of Dengue
in Sri Lanka and Brazil [19]. The authors show that spatio-
temporal modeling combining disease dynamics with spatial
spread plus economic and demographic data (exactly the data
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that has been created and aligned in this paper) provides the
best predictive performance. We give a brief summary of the
model in [19] and demonstrate the predictive performance.

a) Summary of Spatio-Teporal GNN Model: The model
was designed to predict disease outbreaks in Sri Lanka and
potentially apply it to other countries [19]. The model was
based on Graph Neural Network, GNN, using Time Series

Cross Validation technique to improve accuracy. Comparative
analysis with traditional models, such as Random Forest,
demonstrated that the GNN-based model achieved lower error
rates in forecasting disease outbreaks [19].

VIII. CONCLUSION AND FUTURE WORK

We have created a modular system to convert unstructured
data into structured csv data, complemented by sophisticated
data scraping mechanisms for efficient data collection. Using
our system, we have extracted complete datasets for over 40
diseases and conditions in Brazil and Sri Lanka from 2007
to the 2024. This data has been fused with NASA satellite
data and European Union population density data to provide
a valuable dataset for researchers. Additionally, the tools are
available in an open-source, open-science framework, allowing
researchers to use our methods to expand our dataset with
new reports or new document types. With this dataset, we
hope researchers will make disease modeling, predictions, and
policy advancements that can save lives.

So far, we’ve gathered 12 diseases data in Sri Lanka and
44 diseases data in Brazil. Our code is designed to easily
adapt to different PDF formats, making it to be used for any
country or data type, such as Bangladesh, which publishes
data that would be compatible with our model, but would



require a translation module. With the increasing effects of
climate change on public health, the insights from this dataset
can be vital in understanding how environmental change might
influence disease patterns. Furthermore, additional features can
be added such as mobility data, income levels, and other
relevant factors in the future.
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