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The NASA Advanced Air Mobility mission will enable widespread low altitude passenger 

travel, cargo delivery, and a variety of public services through the development of Uncrewed 
Aerial Systems (UAS) operations. Ensuring safe, autonomous operations in densely populated 
environments requires careful consideration towards hazards including other aircraft, 
infrastructure, and evolving weather. Small Uncrewed Aerial Systems (SUAS) present a 
unique hazard to UAS operations as they share airspace and may be readily operated in a 
non-cooperative fashion. This work investigates distributed sensing of SUAS traversing an air 
traffic corridor in an urban setting. This work develops a distributed vision detect and track 
strategy at NASA Langley Research Center. Three nodes, each with at least one global shutter 
camera, are distributed around a traffic corridor to surveil flight operations for two SUAS 
performing low altitude flight operations. Each node is equipped with a GPS and cellular 
modem to enable timestamping and remote control of acquisition. Node one faces a traffic 
roundabout with buildings in the background and achieves 99% surveillance coverage for two 
SUAS against building and tree backgrounds at ranges 50 to 130m. The second node points 
down Langley Boulevard with trees and buildings in the background and achieves 99% 
coverage at separation distances between 70 and 180m. The analysis for the second node is 
limited to ranges below 180m due to low contrast against dark, tree backgrounds. Finally, the 
third node points down Langley Boulevard from another perspective and achieves 99% 
coverage at ranges 60m to 200m against mostly building with a few sections of trees in the 
background.  

I. Introduction 

NASA’s Advanced Air Mobility (AAM) mission will transform airspace through the movement of people and 
cargo in UAS in urban, rural, and suburban environments [1]. Applications for autonomous AAM aircraft include 
emergency response after natural disasters as search and rescue vehicles, transport medical supplies and serve as an 
ambulance, move cargo efficiently, carry people between destinations to reduce travel time, and improve commutes 
using vertiports [2].  AAM’s High Density Vertiport (HDV) flight campaign [3] [4] advanced autonomous flight 
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operations through the development of complex SUAS missions with remote control. NASA’s Transformational Tools 
and Technology (TTT) project supports the AAM mission through the Revolutionary Aviation Mobility subproject 
[5] in these areas: 
  

1. Developing and field-testing Remote Operations for Autonomous Missions (ROAM), a NASA developed 
traffic management system, for Multi-Vehicle (m:N) Operations where m operators, ground control 
operators, control N operations [6].   

2. Conducting Human-in-the-Loop (HITL) experiments to develop safe human-autonomy traffic management 
systems [7] 

3. Developing Intelligent Contingency Management (ICM) strategies for safely handling unforeseen off-
nominal aircraft operations [8] 

4. Developing electric Vertical Take Off and Land (eVTOL) SUAS [9] 
5. Developing distributed sensing architectures to surveil AAM airspace [10] [11] [12]. 

 
Sensing strategies for AAM aim to enable safe, widespread autonomous operations through surveillance using 

distributed sensors.  Recent TTT and partner contributions in distributed sensing areas include: sensor fusion strategies 
[13], surveillance strategies [14] [15] [16] [17] [18] [19] [20], and simulation of AAM/UAM environment towards 
developing a Concept of Operations [21] [22]. 

This work develops a distributed sensing vision architecture in the context of air traffic corridors. This manuscript 
is organized as follows: contributions, related works, sensing techniques, experimental methodology, results, 
discussion, and conclusion.   

II. Related Works  

Various approaches for SUAS detection exist in the literature using varying modalities, sensors, and experimental 
environments. The current work has explored the usage of standard computer vision algorithms, neural networks, 
radar-based detections, and audio detection. Vision strategies tend to be highly accurate at close and distant ranges, 
however they are limited in adverse visibility conditions (night, rain, fog, etc.). Thermal vision has been used to bolster 
vision performance in adverse conditions [23]. Radar-based detection is more robust in degraded visual conditions; 
however, the angular resolution of radar-based methods is substantially lower than vision systems [24]. Audio 
detection has limitations regarding range and generalizability due to background noise sources and suffers from signal 
attenuation as distance increases [25]. 

The approaches to tracking vehicles are largely based on the Kalman filter with an association strategy. While 
algorithms may differ, the overall approach is to initialize tracks, use a Kalman Filter to predict the future location of 
each track, and verify in the next frames whether there is a detection at the predicted location [26]. Convolutional 
neural networks and deep siamese networks may be used for detection, however work regarding object tracking with 
neural networks in the UAM field is not fully explored [27]. 

Current datasets used for SUAS detection are limited. While many datasets have been collected and compiled, 
most are limited in at least one aspect. These datasets either contain low resolution images, limited annotating, or non-
existent ground truths to validate against, or do not cover scenarios expected in the urban usage of SUAS vehicles 
found in the UAM vision [28]. One common issue with publicly available datasets is that the recordings are 
compilations of videos from the internet, and not standalone aviation datasets collected in controlled environments 
[27]. This is a major limitation for the development of SUAS detection and tracking methodologies, as without robust, 
labeled, high fidelity datasets, any proposed solutions are unable to be verified. This paper utilizes a dataset that aims 
to advance SUAS surveillance work within the UAM context.  

III. Contributions 

 This work advances autonomous SUAS and AAM through the development of distributed vision strategies.  The 
key contribution of this research is field-testing distributed sensing visual surveillance strategies in an urban 
environment. The architecture of the detection and tracking strategy is an extension of an airborne version developed 
in [14] and adapted to the urban environment through the augmentation of pipeline by adding a new subtraction 
methodology.  
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IV. Vision Sensing Techniques and Evaluation Metrics 

This section details the visual sensing architecture used to detect and track SUAS vehicles. This detect and track 
processing pipeline, as shown in Figure 1, is built in Python and C++. The pipeline is fed a frame from one of the 
sensing nodes and detects any SUAS vehicles using various combinations of a differential, morphological, and 
background subtraction detector. The detections are then fed into the tracker, which utilizes a Kalman filter to model 
the same object’s path across sequential frames. The detections, tracks, and annotated images are then outputted for 
analysis. The detector is written in python to facilitate simple testing and implementation of novel detection strategies, 
and the tracker is written in C++ to optimize runtime. Runtime of the python detector is not impacted significantly as 
OpenCV’s backend is written in C++ [29]. The tracker is built into a python library using PyBind11 for simple 
integration. 

 
Figure 1: Detect and Track Pipeline. 

 
A. Detection Methods 

Three unique detection methodologies are evaluated: a Features from Accelerated Segment Test (FAST) [30] 
based image differencing detector, a morphological detector, and an image differencing detector. The morphological 
and contour differencing were developed and detailed in [14] for airborne detection of general aviation aircraft, fixed-
wing SUAS, and multirotor SUAS from both multirotor and fixed-wing SUAS. A summary of these detectors is 
presented below.  
 The FAST image differencing technique includes converting to grayscale and an initial gaussian blur step to 
suppress detections from high texture backgrounds. This is followed by FAST keypoint [31] detection for both current 
and previous frame as shown in Error! Reference source not found.. The Lucas Kanade Optical Flow algorithm [32] 
projects the FAST features from the previous frame into current frame in order to associate current and previous 
features to compute homography. The resulting homography matrix is used to transform the previous frame into the 
current frame, thus minimizing interframe change in the case of moving a camera.  The absolute difference between 
the previous transform frame and the current frame is computed.  A feature detection threshold, which is varied in the 
analysis of this work, is used to extract moving objects using the FAST feature threshold.  The FAST feature threshold 
is increased until the number of detections is below the maximum allowed feature detection threshold.  Too many 
detections may saturate a tracking system with unnecessary detections; however, detecting SUAS against cluttered 
tree background with low contrast may require a higher detection threshold. This tradeoff must be balanced to optimize 
tracking results. 

 

Grayscale 
Conversion

FAST Feature 
Detection for 

Frame Alignment 
based on Optical 

Flow

FAST Feature 
Detection for 

Extracting 
Objects

Contour Dection

Figure 2: Differential Detection Process. 
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 The morphological filtering technique uses a standard close-minus-open filter to extract SUAS after converting to 
grayscale.  A 5 by 5 cross hair kernel is used in the filtering and is based on work in [33] developed for detecting 
general aviation aircraft at great ranges. Once the image is filtered, the same FAST feature detection methodology 
from the difference detector is used. 

A second image differencing technique, referred to as subtraction in this work, was implemented to increase 
coverage with the dark, mostly black, SUAS against low contrast black tree backgrounds. This methodology, 
demonstrated in Figure 3, is based off [34] where low contrast SUAS were detected from static cameras. The image 
is first converted to grayscale, and then a MOG2 background subtraction algorithm is used to remove most non-
moving artifacts. After the background is subtracted, the image is converted to binarized with a thresholding step, and 
then the image is eroded to remove any small artifacts. Afterwards, the image is dilated to eliminate multiple detections 
on the same object. Finally, contour detection and centroiding is run on the image to determine the location of each 
object. 

   

B. Tracking Algorithm 

The tracking method shown in Figure 4 was initially developed in [35] and [36]. The detector input to the tracker 
is first clustered using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [37] to 
minimize duplicate tracks. Unlike the detection process, tracking occurs in a corrected coordinate space to minimize 
the effect of radial and tangential distortion. Camera calibration is performed using the Bouguet camera calibration 
toolbox [38]. The tracker is structured in three main tracking blocks: the One-Plot tracker, the Tentative tracker, and 
the Firm tracker. The first block, the One-Plot tracker, generates initial track estimates starting from visual 
measurements. Once generated, a One-Plot track can become Tentative if its association with new measurements is 
verified. The Tentative tracker block is thus an intermediate phase which will yield a firm track upon further 
association verification. The Firm tracker is the last stage of the tracking chain and represents the highest reliability 
level. During firm tracking, linear Kalman filters are used to estimate the relative location of targets in terms of their 
azimuth and elevation angles with respect to the camera. At this stage, tracks are predicted using a Nearly Constant 
Velocity (NCV) dynamic model and corrected using Kalman filtering. Firm tracks are maintained for a pre-defined 
time after which, if no measurement has associated, tracks are deleted. At all stages, association is verified by 
comparing the Euclidean distance between the measurement and the track prediction with a pre-defined threshold. At 
One-Plot and Tentative levels, which do not foresee any track prediction, the Euclidean distance is measured using 
previous and current measurements.  
 

Figure 3:Background Subtraction Detection Process. 
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C. Vision Algorithm Tuning and Performance Metric 

A primary objective of this work was to evaluate how varying vision algorithms perform at extracting SUAS in 
urban environments. Maximum detection keypoint thresholds of 15, 30, 45, 90, and 180 are evaluated to understand 
the impact of SUAS coverage. Outputs from the tracker are computed on each individual detection output, the 
combined detection outputs, and the combined morphological and differential detector outputs. 

The tracking algorithms were evaluated using tracker coverage when the SUAS is present. Tracker coverage is 
calculated by dividing the number of tracker hits divided by the number of frames where the SUAS is present.  A 
tracker hit occurs when the L2 norm between the tracker output and the ground truth (extracted from GPS log from 
each SUAS) is below the association threshold. The GPS coordinates for the SUAS are transformed into a local North 
East Down reference frame using the QUaternion ESTimator (QUEST) algorithm [39] as detailed in the following 
experimental methodology section.   
 

V. Experimental Methodology 

This section provides a description of the SUAS experiment including aircraft performance characteristics. The 
urban flight simulation used in this study was a portion of a flight test campaign within NASA Langley Research 
Center's campus. Data acquisition occurred on the 7th of September 2024 on a cloudy, overcast day.  The collected 
dataset from this flight test consists of approximately 30000 frames spread across three sensing nodes. Of these frames, 
approximately 6000 frames contain SUAS within the FOV of a ground node. As discussed in the experimental 
methods section, the sky was cloudy, yielding lower contrast between the vehicles and clear sky.  

A. Test Procedures 
The flight test for this experiment took place along the main street, Langley Boulevard, within NASA Langley's 

campus as shown in Figure 5 with altitude and speed in Table 1. As this campaign aimed to simulate SUAS flight 
through an urban environment, the test took place in a location containing buildings, roads, traffic signs, trees, and 
many other objects creating partial occlusion and low contrast scenarios. The sky was cloudy, creating a gray 
background which reduced contrast between the vehicles and the sky. 

The aircraft used in this flight campaign consisted of one Alta-8 and one Alta-X SUAS. Both vehicles contained 
GPS units to provide ground truth data to validate the detect and track pipeline results. The flightpath of the vehicles, 
as seen in Figure 5, consisted of a single loop around the northwest/southeast segment of Langley Bvld. The vehicles 

Figure 4: Tracker Process 
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took off, traveled northwest until reaching the turnaround coordinates, traveled southeast until reaching the 
roundabout, and then returned to the route's starting location. 
 

  

Table 1: Aircraft Altitude and Speed. 

SUAS Altitude (ft) Average Speed 
(kilometers per hour) 

Alta X 20 7.1 
Alta 8 25 8.4 

 

 
B. Sensor Nodes 

The nodes are configured with the sensors as shown in Table 2 with companion computers and GPS as described 
in detail in Table 3. All NASA node cameras have a Sony IMX253 or Sony IMX304 sensors as well as an Echodyne 
Echoflight radar. C1 is shown in Figure 6 and includes 3 cameras and 1 radar mounted to a tripod on top of NASA 
Langley’s Building 1232 facing the Langley Boulevard roundabout. The three cameras have a 1 degree overlap in 
Field Of View (FOV) yielding a combined horizontal FOV of 139.9 with a vertical FOV of 36.1. C2, the single camera 
Xavier node shown in Figure 7, is mounted on a tripod on 1232 facing the takeoff area pointing in the Northwestern 
direction.  C3, the single camera Nuc node on NASA Langley Building 1268, is shown in Figure 8, and faces the 
southeastern direction on Langley Boulevard towards building 1232. C4 is shown in Figure 9 with integrated batteries 
to supply power, however, is not included in the analysis for this work due requiring a separate data labeling procedure. 
The analysis presented in this report is constrained to 1 camera per node without radar utilization.  

 

Figure 5: Flight Path of Alta 8 and Alta X Vehicles. 
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Table 2: Node Sensor Configuration. 

Node 
Camera Model Camera Resolution 

(pixels) 
Horizontal and vertical 
Lens FOV (degrees) 
 

C1 BFS-U3-123S6C-C 4096 x 3000 47.3 x 36.1 
C2 BFS-U3-123S6C-C 4096 x 3000 62.5 x 47.8 
C3 BFS-U3-122S6C-C 4096 × 3000 62.5 x 47.8 
C4 BFS-U3-123S6C-C 4096 x 3000 62.5 x 47.8 

 

Table 3: Node GPS and Computer Configuration. 

Node Differential GPS Computer Cellular 
Modem 

C1 Sparkfun GPS-RTK-SMA 
ZED-F9P (Ublox) 

3 Xaviers with Contech Rogue 
breakout Board 

RUTX11 

C2 Sparkfun GPS-RTK-SMA 
ZED-F9P (Ublox) 

Xaviers with Contech Rogue 
breakout Board 

RUTX11 

C3 Sparkfun GPS-RTK-SMA 
ZED-F9P (Ublox) 

NUC 11 Performance Mini 
Desktop Computer, 

RUTX11 

C4 BFS- Sparkfun GPS-RTK-
SMA ZED-F9P (Ublox) 

Xaviers with Contech Rogue 
breakout Board 

RUTX11 

 

 

  

Figure 6: C1 on 1232 facing traffic Langley 
Boulevard circle. 

Figure 7: C2 on 1232 building facing down Langley 
Boulevard towards Building 1268. 
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Figure 8: C3 on 1268 rooftop facing down Langley Boulevard towards Building 1232. 

 
 

 
(a)  

(b) 

Figure 9: Onboard Payload as seen from port (a) and starboard (b) sides with research payload annotated. 

RADAR

CAMERA

BATTERIES

COMPUTER
Cellular 
Modem
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Figure 10: Node Locations and Orientations. 

C. Description of Target Aircraft 

The aircraft are shown in proximity to takeoff in Figure 11.  The technical specifications of the HDV Alta 8 
SUAS are detailed in Table 4. 

 

 

Figure 11: Alta 8, smaller SUAS on left, and taller and larger Alta X on right.  Also included are flight test 
team (left to right: Dave North, Brian Duvall, Todd Ferrante, Chester Dolph, Dasarath Katragadda, Elanor 
Finlayson, Jacob Schaefer, Imran Khasawneh, Jody Miller, Skyler Hudson, Brayden Chamberlain, Officer 

Alfred (Al) Knight, Officer Nicollo (Nico) Petrosino). 
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Table 4:Alta 8 specifications. 

SUAS Type Multi-Rotor, 8 Motor (Brushless) 
Diagonal Length 52 in (1.3 m) *Does not include Props 

Maximum Weight 40 lbs. (18.14 kg) 
Empty Weight 13.6 lbs. (6.2 kg) 

Propulsion Battery 6-cell Li-Poly (Nominal 22.2V) 
Speed 0 –30 kts (0-15.4m/s) 

Max Flight Time 34 mins 

Operating Frequency 
2.4 GHz RCTX C2 (~2 Miles) 

900 MHz C2 & Flight Data (~3 Miles) 
700MHz/1700MHz C2 & Flight Data 

Command and Control RC TX & Laptop 
 

D. Description of Aircraft with Payload 

The technical specifications of the HDV SUAS are detailed in Table 5. 

Table 5: Alta X specifications. 

SUAS Type Multi-Rotor, 4 Motor (Brushless) 
Diagonal Length 89.5 in (2.27 m) 

Maximum Weight 76.9 lbs. (34.9 kg) 
Empty Weight 22.9 lbs. (10.4 kg) 

Propulsion Battery 12-cell Li-Ion (Nominal 44.4V) 
Speed 0 – 38.8 kts (0-20.0m/s) 

Max Flight Time 50 mins 

Operating Frequency 2.4 GHz RC TX C2 (~2 Miles) 
FRX 900 MHz Telemetry radio (~1 Mile) 

Command and Control RC TX & Laptop 
 

E. Data Labeling Procedure 

The attitude of the camera in the North East Down (NED) reference frame, shown in Figure 12, is computed using 
QUEST with manual labeling of the Alta 8 in 20 frames and GPS logs of SUAS and sensor nodes. Frame selection 
captured a variety of positions within the Alta 8 path, however, variation in elevation angles were limited as the SUAS 
did not generally translate in the vertical direction in image space. After selecting frames, the centroid pixels were 
manually identified. Finally, the attitude is computed with the QUEST algorithm using the time synchronized pixel 
coordinate labels, the GPS coordinates of the Alta 8, and the GPS coordinates of the sensor nodes.  
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Figure 12: Sensor Reference Frame. 

VI. Results 

This section discusses the results of the track outputs from the processing pipeline. It covers the performance of 
the tracker and detectors, the track deviation from the ground truths, and the percentage coverage of the SUAS. 

A. Tracker Output on Ground Truth NED 

The output of each tracker was visualized on angular plots such as the one shown in Figure 13 to confirm vision 
trackers were achieving accurate azimuth and elevation results when superimposed upon the ground truth.  Initial 
parameters for ground truth hit threshold for the L2 norm between the ground truth and the SUAS were 1 and 2 degrees 
respectively. However, the results show a vertical offset as highlighted in the red box in Figure 13. Likely reasons for 
this offset include limited elevation angles used when labeling the data in the Alta 8 in vision space or that the Alta X 
includes an increase in altitude for approximately 1 minute between ~320 and 380 seconds. Another possible 
explanation is that altitude computed from GPS is typically accurate to 2-3m horizontally and 10 m vertically; thus, 
performing QUEST on Alta 8 and not Alta X may enable accurate association with the Alta 8 but not Alta X. Operating 
below building heights results in multipathing of GPS signal along with variations in satellite numbers due to 
occlusions from structures. Strategies to mitigate this include using a SUAS to cover the sensor FOV at greater ranges 
- when possible - to enable more accurate transformations through coverage or using additional known references 
within the frame (i.e. GPS coordinates of building, stop sign, etc.).  To verify alignment between QUEST 
transformations and tracker outputs, a manual track verification procedure was used on a sample of the dataset, along 
with a mitigation strategy that increased the degree threshold for a hit to 4 degrees. 

  
(a) (b) 

Figure 13: Background Subtraction Tracker Output on Angular Plots for C1 for azimuth elevation angles (a) 
and elevation angles (b) in degrees with offset highlighted in red box. The bolded lines represent the output 
from the Background Tracker.  
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B. Tracker Coverage 
 

Tracker coverage plots are shown in Figure 14 through Figure 18, where the horizontal axis corresponds to tracker 
coverage of the Alta 8 and the vertical axis Alta X respectively.  In each figure, “D” corresponds to the contour image 
difference detector, “M” corresponds to the morphological detector, “S” corresponds to the background subtraction 
difference detector, “DMS” is all three detectors combined as inputs into the Kalman filter, and “DM” is the difference 
and morphological detectors combined.  Trends across cameras generally show that higher maximum feature 
thresholds improve tracker coverage for both SUAS and combining all three detectors will yield 99% tracker coverage 
in each scenario.  

C1 faces a mixture of trees and buildings in the background with the SUAS closer in distance relative to C2 and 
C3. This allows for the use of lower detection thresholds, with a threshold of 15 achieving over 95% coverage for both 
SUAS. C1 also captures two additional transition cases not captured in C2 and C3: the case where the Alta X increases 
its altitude, and where the Alta 8 is momentarily stationary during the transition from departure to arrival on Langley 
Boulevard. Neither of these transition cases present significant challenges to the detect-track methodology, as high 
tracking performance is achieved across both. Generally, the morphological detection methodology performed poorly 
across thresholds. This may be attributed to the high texture background generating many detections unrelated to 
SUAS as it is essentially a corner detector and there are many corners in the imagery.  However, the detector which 
achieved the highest tracking performance at a threshold of 15 on C1 includes the morphological detector input.   

C2’s FOV captures the greatest distance down Langley Boulevard, with dense foliage presenting challenges for 
detecting black SUAS against low contrast tree-backgrounds.  SUAS detections for C2 node were low for both SUAS 
at great distances on textured backgrounds due to the low-contrast and relatively small vehicle size in pixel space. 
However, in the scenarios where C2 did not track the SUAS due to range, the C3 node was able to compensate and 
track the vehicles successfully. In C2, several objects including cars and people generated tracks within 1 degree of 
the SUAS at distances beyond 180m. Thus, discerning between non-SUAS and SUAS became difficult due to the 
proximity of objects to the SUAS and the inaccuracy of the transform from QUEST. Therefore, frames where SUAS 
were out of the detection range of C2 were excluded from this analysis. In C2, tracker performance for the Alta X is 
generally higher at lower detection thresholds than the Alta 8 for both SUAS arrivals, likely due to the white aperture 
of the radar generating a higher contrast relative to the radar-less Alta 8.   

C3 captures buildings, wind tunnels spheres, and has a greater visual range relative to C1 without as many trees 
as C2 although trees are present in the background at greater separation distances between C3 and SUAS. Inspection 
of the annotated frames with tracking output show that performance suffers the greatest at range against low contrast 
backgrounds against trees and that increasing the detection feature threshold improves performance.  

 

 
Figure 14: C1, traffic circle with a few buildings and trees. 
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Figure 15: C2 Departure, SUAS on low contrast background for long approach. 

 
Figure 16: C2 Arrival, SUAS on low contrast background for departure. 
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Figure 17: C3 Departure, SUAS on wind tunnel spheres and buildings. 

 

 
Figure 18: C3 Arrival, SUAS on wind tunnel spheres and buildings. 

 
C. Runtime Performance 

The pipeline was run on a local server containing an Intel Xeon Gold 6230 CPU, two Nvidia RTX A4000 GPUs, 
512 GB of RAM, 2 TB of NVME SSD storage for saving results, and 64 terabytes of SSD for dataset storage. The 
runtime performance of the detection pipeline varied depending on image content. As seen in Table 6, the differential 
and morphological detector processed a single frame in approximately two seconds. Meanwhile, the background-
subtraction based detector executed under a tenth of a second. This disparity is primarily due to the multiple instances 
of FAST Feature Detection utilized in both the differential and morphological detectors. The background subtractor 
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utilizes whole-image operations exclusively without the contour detection step for the morphological and difference 
detectors, which allows for a significantly faster runtime. The tracker executes over a tenth of a second for a single 
frame. Future enhancement will reduce runtime by limiting the amount of track information stored in system memory. 

Table 6: Computation Performance of Varying Trackers. 

Differential Detector ~1.80 seconds / frame 

Morphological Detector ~2.20 seconds / frame 

Background Subtraction Detector ~0.08 seconds / frame 

Tracker ~0.15 seconds / frame 

 

VII. Discussion 

 The highest detection threshold when combined with the subtraction technique achieved 99% or more tracking 
coverage of both SUAS within the selected frames for this work. Below the horizon and against textured backgrounds 
is of the most difficult tasks for small object detection. Admittedly, this analysis does not assess trackers for precision-
recall analysis where unnecessary tracks at higher feature detection thresholds are quantified; however, assessing 
additional tracks proved to be time-consuming for this preliminary work given the number of moving objects within 
this dataset (cars, people, birds, etc.) and the lack of a highly accurate transform between the SUAS and the sensor 
reference frame. Furthermore, the morphological and difference detector pipeline were extensively evaluated in [14] 
from a moving multirotor SUAS for detecting General Aviation and fixed-wing SUAS. This evaluation included a 
precision-recall analysis to assess the number of unnecessary tracks. That work included an assessment of aircraft 
detections at ranges from 1 to nearly 4 kilometers across multiple days and backgrounds. A challenge for sensor-based 
detection strategies is generalizing a single technique to varying sensing conditions, backgrounds, and types of aircraft. 
In the present work, high tracking coverage was achieved at the highest thresholds while lower thresholds were 
successful to varying degrees.   
 Future work includes refining the QUEST transform strategy to yield higher data labeling performance with a Root 
Mean Square Error analysis between ground truth and tracker output. This will enable the visual detection and tracking 
pipeline to be optimized across multiple datasets, such as those presented in [4], and assessed using localization 
performance.  Furthermore, the output of the tracks may be fed into a machine learning algorithm to provide object 
classification of SUAS, people, cars, and other objects of interest for AAM. Additional areas of future work include 
the development and analysis of the distributed sensing topology to ensure adequate coverage is provided for an UAM 
airspace.  

VIII. Conclusion 

This paper evaluates a distributed vision sensor system performance within the context of AAM traffic corridors 
using three remotely operated cameras deployed on rooftops in an urban-like environment. An analysis of optical 
based detection and tracking strategy is presented and demonstrates strong tracking performance of SUAS within the 
AAM context. Specific challenges include detecting black SUAS against trees and other low contrast backgrounds. 
Future objectives include scaling the process to additional datasets collected, integrating additional modalities, and 
applying machine learning to perform aerial object classification.  
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