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1. Abstract 
The recent arrival of the invasive Goldspotted Oak Borer (GSOB; Agrilus auroguttatus) into Newhall Pass, 
California threatens oak woodlands in the Santa Clarita Valley and risks spreading into the Santa Monica 
Mountains. Without early intervention, previous GSOB infestations have led to widespread oak mortality. 
Currently, the Mountains Recreation and Conservation Authority and the Resource Conservation District of 
the Santa Monica Mountains, our two partners, employ ground surveys for GSOB detection and decision-
making processes. Comprehensive surveys are constrained by rugged terrain and reliance of visible 
symptoms, which typically develop several years after the initial infestation, to identify infested trees. This 
study evaluated the feasibility of using Earth observations—specifically, the Airborne Visible InfraRed 
Imaging Spectrometer-3 (AVIRIS-3), Landsat 8 Operational Land Imager (OLI) & Thermal Infrared Sensor 
(TIRS), Landsat 9 OLI-2 & TIRS-2, and Sentinel-2 Multispectral Instrument (MSI) to assess the extent of 
GSOB infestations in the Santa Clarita Valley, identify regions susceptible to future spread, and examine 
historical landcover changes linked to GSOB activity. We demonstrated the capability of low altitude 2.9 m-
resolution AVIRIS-3 hyperspectral imagery to accurately identify infested oaks (74.7%) within the study area. 
We further identified areas in Los Angeles and Ventura Counties at high risk for future infestation and 
illustrated that the 10m-resolution Sentinel-2 NDVI time series did not show the historical spread of 
infestation. The tools and models developed in this project offer valuable insights for future decision-making 
aimed at early detection and mitigation of the GSOB spread to ultimately protect oak ecosystems. 
 
Key Terms: 
Woodboring beetle, early detection, hyperspectral imagery, AVIRIS-3, risk assessment, landcover change, 
NDVI, Southern California 
 

2. Introduction 
As a keystone genus, oak trees provide essential ecosystem services to Southern California. These trees not 
only provide a vital food source but also create the habitats, shelters, and microclimatic conditions across 
various forest layers necessary to sustain biodiversity (Sánchez-González et al., 2015). Over the past two 
decades, the introduction of the Goldspotted Oak Borer (GSOB; Agrilus auroguttatus), an invasive species 
native to Arizona, has presented a novel threat to oak woodlands. The GSOB is likely transported to new 
areas via firewood distribution (Coleman & Seybold, 2016), and their larvae tunnel into a tree’s cambium to 
directly feed off its nutrients and water supply, leading to crown thinning and eventual mortality (Haavik et 
al., 2015). Oak decline from this kind of insect infestation can be slow, with several years between initial 
infestation and visible symptoms (Corella et al., 2020).  
 
San Diego County first documented the GSOB in 2004 and observed dramatic oak mortality as a result 
(Coleman & Seybold, 2011). Since then, the GSOB has migrated north through Orange, Riverside, and San 
Bernadino counties, specifically preying on coast live oak (Quercus agrifolia), canyon live oak (Q. chrysolepis), and 
California black oak (Q. kelloggii; Coleman et al., 2011). In July 2023, the GSOB was identified on iNaturalist 
in Newhall Pass, the southern entrance to the Santa Clarita Valley. Because the GSOB infestations take 
several years to intensify and show clear symptoms (Corella et al., 2020), it is likely that the GSOB migrated 
to Newhall Pass in the years prior to 2023. In light of this and the risk of the GSOB spreading to the Santa 
Monica Mountains—home to approximately 600,000 coast live oaks (Mountains Recreation and 
Conservation Authority, 2024)—the Los Angeles County Board of Supervisors passed a motion in May 2024 
to investigate the impact of declaring this infestation a state of emergency, a designation that would allocate 
resources for detection and prevention efforts (Los Angeles County Board of Supervisors, 2024). 
 
To respond to the growing potential for widespread harm to Southern California’s oak woodlands, this 
project assembled a coalition of stakeholders with diverse expertise and ongoing research. Key collaborators 
included the Mountains Recreation and Conservation Authority (MRCA); the Resource Conservation District 
of the Santa Monica Mountains (RCDSMM); the University of California Division of Agriculture and Natural 
Resources; the California Department of Forestry and Fire Protection (CAL FIRE) Forest Entomology and 
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Pathology Program; California State University, Northridge; Lewis & Clark College; and the United States 
Forest Service, Southern California Shared Service Area. Our primary end users were the MRCA and the 
RCDSMM, both of which manage expansive oak woodlands where the GSOB detection, mitigation, and 
protection efforts are most urgent. 

The MRCA oversees parklands, including areas with known GSOB infestations at Newhall Pass (Figure 1). 
Meanwhile, the RCDSMM manages the Santa Monica Mountains, which, though in close proximity to 
Newhall Pass, has not yet detected the GSOB as of October 2024. Both organizations are committed to 
preserving and managing natural areas in the Los Angeles region through research, conservation action, and 
community education (MRCA, n.d.; RCDSMM, n.d.). 

 
Figure 1. Map of Santa Clarita Valley study area within the broader context of the Santa Monica Mountains National 

Recreation Area and Los Angeles and Ventura Counties in California. 

 

Currently, the MRCA relies on ground surveys to identify infested trees. However, these surveys are costly, 
time-consuming, and spatially limited to accessible areas near trails and roads. As a result, scaling these efforts 
across the rugged oak woodlands of the Santa Clarita Valley presents a significant challenge. Furthermore, the 
time lag between the initial infestation and the appearance of visible symptoms hinders early detection, as the 
surveys depend on visual indicators that only become apparent years after the infestation begins. 

Previous studies demonstrate the efficacy of utilizing remote sensing to survey forests infested with beetles at 
larger spatial scales (Senf et al., 2017). In particular, hyperspectral imagery, which captures hundreds of 
wavelengths, has made early detection more attainable when such data is available and eliminates the reliance 
on visual symptoms, such as canopy thinning or foliage color changes, as classification criteria. By leveraging 
the wide range of wavelengths, previous studies have demonstrated the ability to associate early non-visible 
physiological changes with distinct spectral signatures (Lawrence & Labus, 2003; Gao et al., 2022; Foster et 
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al., 2017). Hyperspectral data can be combined with machine learning models, like Random Forest (RF) or 
Support Vector Machines (SVM), to classify tree health based on these unique spectral signatures. Machine 
learning models are trained with field-collected ground-truth points of infested and non-infested trees 
(Fassnacht et al., 2014, Gao et al., 2022, Galvan et al., 2023). Ultimately, a good model accurately classifies the 
infestation status of each tree in the forest so that land managers can identify, prioritize, and address infested 
areas without the need for extensive ground surveys. The MRCA was interested in incorporating remote 
sensing methodologies as an alternative tool to complete comprehensive and efficient landscape-scale GSOB 
surveys and to detect infestations at early stages.  
 
Our project’s first goal was to explore the feasibility of tailoring hyperspectral remote sensing methods to 
observe foliage conditions of oaks in the Santa Clarita Valley to identify and monitor damage from the GSOB 
threat. In response, we developed a machine learning classification model that infers likely-infested oak trees 
using field survey data and hyperspectral aerial imagery collected in July 2024 from the Airborne Visible and 
InfraRed Imaging Spectrometer-3 (AVIRIS-3), the most recent hyperspectral, high-resolution data available. 
We trained and validated our model based on ground truth data collected by the MRCA and California State 
University, Northridge collaborators. Our second goal was to produce a risk assessment map that identifies 
areas within Los Angeles and Ventura Counties at high risk for GSOB infestation. In addition to ancillary 
datasets that modeled different risks and susceptibility factors, we utilized Landsat 8/9 Thermal Infrared 
Sensor (TIRS) land surface temperature data from July through October of 2024 to include the impact of 
heat stress on trees. Our third goal was to investigate the GSOB’s initial infestation of the Santa Clarita 
Valley, which could be associated with seasonal and cumulative changes in oak tree health. Therefore, we 
conducted a monthly NDVI landcover change analysis using Sentinel-2 datasets between May and September 
of each year over 2018 and 2024. With these end products and a greater understanding of hyperspectral 
remote sensing applications to oak woodlands, the MRCA will be able to find, treat, and mitigate the spread 
of the GSOB within the Santa Clarita Valley, while the RCDSMM will be able to easily detect early migration 
of the GSOB into the Santa Monica Mountains. 
 

3. Methodology 
3.1 Data Acquisition  
3.1.1 Infested Oak Classification Map 
We downloaded AVIRIS-3 hyperspectral, orthorectified, surface reflectance imagery (285 spectral bands, 380 
– 2500 nm with 7.4 nm sampling, Table A1) flown on a B200 Aircraft on July 19, 2024 through the AVIRIS-
3 Data Portal (Table C1). The data was originally obtained on a piggyback flight for a pre-planned AVIRIS 
mission and has a high spatial resolution (2.9 m) which enables tree-level analysis in this project. The flight 
also occurred recently, giving us up-to-date data so that we can make the best predictions for the current 
beetle infestation. Hyperspectral sensors return a much more detailed snapshot of their targets than typical 
multispectral sensors, and this higher data dimensionality is critical for detecting subtle variations in 
vegetation health. 
 
The MRCA coordinated ground data collection efforts of Newhall Pass oaks, which was shared with us in a 
comma-separated values (CSV) format. Over the months of July through September 2024, TreePeople 
conservation crews documented trees within 100 feet of roads and trails on MRCA lands. Using the ArcGIS 
Survey123 application on tablets, they reported point coordinates, tree species, crown ratings, infestation 
classifications, beetle hole counts, and other observations for 815 single- and multi-stemmed oak trees (1091 
stem tags in total). In addition to this more extensive survey, the MRCA resurveyed representative oak trees 
with a Trimble, allowing us to rely on data points with greater locational accuracy for our classification. The 
MRCA also partnered with California State University, Northridge to obtain 2.08 megapixel multispectral and 
Red Green Blue (RGB) imagery of the surveyed areas using a DJI P4 Multispectral Agricultural Drone. 
 

3.1.2 Risk Assessment Map 
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The risk assessment map required relevant geospatial data across Los Angeles (LA) and Ventura counties to 
model (1) known GSOB infestations, (2) the movement and storage of wood sources that could spread 
GSOB, and (3) the environmental factors that could increase oaks’ susceptibility to GSOB infestation. For 
the known GSOB infestations, we obtained locations of infested trees throughout Southern California 
recorded on the Calinvasives database, then we appended the MRCA ground survey’s infested tree points for 
a more complete record (Calinvasives, n.d.). 
 
For the second category of inputs, we selected firewood vendors to represent sources of firewood as well as 
campgrounds and residential building footprints as representations of firewood consumption locations. We 
gathered point locations of businesses likely to sell firewood from the Data Axle Reference Solutions United 
States Business Database with access provided through the LA County Library (Data Axle, n.d.). Within LA 
and Ventura Counties, we searched for North American Industry Classification System (NAICS) codes 
45721013 “firewood”, 45721016 “wood pellets fuel”, 45721015 “Wood (tree service and landscaping)”, 
3219909 “Firewood manufacturers”, 447110 “gas stations with convenience stores”, and 444110 “Home 
centers”. We also obtained LA and Ventura County campground point data, where infested firewood may be 
brought for campfires (Jacobi et al., 2011), from the LA County Data Portal, California State Geoportal, and 
geocoded addresses listed on the Ventura Parks website (Internal Services Department Enterprise GIS 
Section, County of Los Angeles, 2016; Seth Paine, 2018; Ventura County Parks, n.d.). We accessed potentially 
residential (i.e., non-commercial, non-industrial) building footprints, where infested firewood could be stored 
outside, for each county from the Los Angeles Region Imagery Acquisition Consortium and County of 
Ventura Data Portal (County of Los Angeles, 2014; Kaart, 2022).  
 
For the third category of inputs, environmental susceptibility factors, we assembled spatial data that for past 
wildfires and land surface temperature, two variables known to weaken oaks’ defenses against the GSOB (Ray 
et al., 2019; Kozhoridze et al., 2023). We found historical fire perimeters from CALFIRE’s Fire and Resource 
Assessment Program, updated as of 2023 (CALFIRE, 2024). Lastly, we obtained Landsat 8 TIRS and Landsat 
9 TIRS-2 Level 2 Collection 2 Tier 1 land surface temperature data (specifically, ST_B10) through the Google 
Earth Engine Application Programming Interface (API) over July – October 2024 to incorporate the impact 
of the previous year’s heat into our risk assessment map (Table C2). 
 
3.1.3 Landcover Change Analysis 
We acquired Sentinel-2 Multispectral Instrument (MSI) Level-1C data through the Google Earth Engine API. 
MSI data has proven valuable for long-term oak forest canopy monitoring due to its wide availability, high 
spatial resolution (10 m), and frequent revisit period (5 days at the equator) (Grabska-Szwagrzyk & Tymińska-
Czabańska, 2024). We selected the Level-1C product to fill gaps in the 2018 imagery that were missing in 
Google Earth Engine’s Level-2A product. To observe the peak phenological period when oak trees 
experience environmental and beetle-related stress (Grünzweig et al., 2008; Coleman et al., 2014) and to 
account for years prior to known infestation, we filtered imagery for the months of May through September 
for each year from 2018 to 2024. 
 
3.2 Data Processing 
3.2.1 Infested Oak Classification Map 
In ArcGIS Pro v3.3.0, we imported the CSV file and converted it to points. Using the study area UAV 
imagery, we manually adjusted iPad-collected GPS points to center over oak crowns, as GPS accuracy can 
range up to 5 meters. Points that could not be reliably located on an oak, as well as those on completely dead 
trees, were deleted. We also removed any points with comments indicating uncertainty about beetle holes. We 
aggregated crown ratings to account for subjectivity among observers, combining “healthy crown” with 
“minor dieback” and “moderate dieback” with “severe dieback”. Since the association between number of 
beetle holes and tree health was not statistically significant, we simplified ratings to a binary classification: 
with beetle holes and without. 
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We first mosaicked AVIRIS-3 imagery tiles and clipped them to our study area extent in ENVI v6.0. Upon 
export, ENVI v6.0 automatically removed the “bad bands” that introduce noise due to water vapor 
absorption (detailed in the data’s provided header file). We then applied a BRDF (Bidirectional Reflectance 
Distribution Function) correction to account for variations in illumination, sensor viewing geometry, and 
topography between flightlines.  
 
In ArcGIS Pro v3.3.0, we aligned the two-pixel offset between the AVIRIS-3 and UAV imagery by applying 
the Georeferencing tool to the AVIRIS-3 data. Then, we isolated oak pixels to reduce confusion between 
classes, optimizing feature relevance, and enabling the classifier to better recognize beetle infestation spectral 
signatures within a single vegetation type. To exclude built-up areas, such as roads and houses, we calculated a 
Normalized Difference Vegetation Index (NDVI) for the study area using narrowly defined spectral bands in 
the near-infrared (NIR, ‘Band_50’) and red (RED, ‘Band_27’) containing surface reflectance values (Equation 
1; Kriegler et al., 1969). We then extracted AVIRIS imagery pixels for vegetated areas where NDVI exceeded 
0.3, a threshold determined by manually examining cell values of developed areas.  
 

𝑁𝐷𝑉𝐼  =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
              (1) 

 

Visual inspection of aerial UAV imagery, along with guidance from MRCA oak point data, provided the basis 
for creating training samples. Initially, we classified the data into four classes: soil, dead vegetation, other 
vegetation, and oaks, and then reclassified into two groups, oak and non-oak. We tested multiple classifiers 
using an independent dataset in R Studio 2024.9.0, including K-Nearest Neighbors (KNN), Random Tree 
(RT), and SVM. All classifiers showed comparable accuracy across performance metrics, including K-Fold 
Cross-Validation, Area Under the Receiver Operating Characteristic Curve (AUC-ROC), and McNemar’s 
Test (Table 1). We selected the Random Tree classifier with 5 neighbors and a maximum of 1,000 samples 
per class based on visual alignment with UAV imagery to use for the oak/non-oak binary classification. 
 

Table 1 

Classifier Accuracy for Test Classifications of Healthy versus Unhealthy Oak Tree Canopies Compared to Reference Data 

where Accuracy describes the model’s ability to make predictions after being trained & tested on the entire dataset and K-Fold 

Cross Validation describes the model’s ability to make predictions after being trained & tested on iteratively smaller subsets of 

the entire set 

Classifier Accuracy Kappa AUC K-Fold Cross-
Validation  

KNN (1 neighbor) 96.3% 0.9 0.95 96% 

KNN (5 
neighbors) 

97.2% 0.9 0.97 96% 

RT 100% 1.0 1.0 100% 

SVM 100% 1.0 1.0 100% 

 

We then used ENVI 6.0’s Principal Component Analysis tool to reduce the dimensionality of the AVIRIS 
oak imagery to 20 principal components for the purposes of segmentation. We passed the output into 
ENVI’s image segmentation algorithm, which split the oak classification raster into multiple smaller groups 
with spectrally similar pixels, which we called “canopies”. The canopy delineations guided the extraction of 
the hyperspectral AVIRIS data to a CSV file, which contained averaged hyperspectral values for each canopy. 
We additionally independently aggregated ground-truth points to train the both the RT and SVM models (as 
they both had a high level of initial accuracy) for the Infested Oak Classification, associating them with the 
spectra of each pixel in the canopy under which they fell.  
 
3.2.2 Risk Assessment Map 
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We generated 30-m Euclidian distance raster layers in ArcGIS Pro v3.3.0 from firewood vendors, 
campgrounds, residential building footprints, and known infestation locations. For the historical fire 
perimeters, we created a raster containing the date of the most recent fire. For the land surface temperature 
data (‘ST_B10’), we independently cloud-masked and removed quality flags from the Landsat 8 and Landsat 9 
collections within Google Earth Engine, removing pixels coded as clouds in ‘QA_PIXEL’ and pixels coded 
as saturated or high reflectance with ‘QA_RADSAT’. Additionally, we masked pixels outside the valid surface 
temperature and surface reflectance ranges as stipulated by the United States Geological Survey. Lastly, we 
applied scaling factors using a pre-existing function (located on the GEE Data Catalog Code Editor section 
of both Landsat 8 and Landsat 9’s pages) to convert the raw data into physical quantities. We then fused the 
two datasets together to increase the temporal resolution and generated a median composite of land surface 
temperatures over July through October 2024, the four hottest months experienced by LA County that year. 
We removed built surfaces from this thermal layer with an NDVI mask generated using the same median 
composite method over the same four months. The red and NIR inputs came from Landsat 8 and 9’s  
‘SR_B4’ and ‘SR_B5’ bands respectively. Through visual inspection, we manually determined a threshold of 
0.15 or greater to consider thermal data for vegetation across oak woodlands, mixed chaparral habitats, and 
urban communities encompassing both counties. 
 
3.2.3 Landcover Change Analysis 
First, we first filtered the Level-1C scenes with a cloudy pixel percentage less than 10% and clipped them by 
the study area extent. We then used the Google Earth Engine “SIAC” module, developed as part of Yin et al. 
(2022)’s Sensor Invariant Approach to Atmospheric Correction, to convert the Level-1C Top-of-Atmosphere 
reflectance to surface (Bottom-of-Atmosphere) reflectance. From there, we utilized bands ‘B4’ and ‘B8’ as the 
RED and NIR inputs, respectively, to create monthly NDVI mean composites in Google Earth Engine and 
exported an NDVI raster for May through September for each year over 2018-2024. We selected NDVI as 
our landcover change metric as it both serves as an indicator of vegetation health and uses readily accessible 
multispectral bands (Grabska-Szwagrzyk & Tymińska-Czabańska, 2024) 
 
We further processed the NDVI raster layers using R v4.4.1 within RStudio v2024.09.0 Build 375. First, we 
stacked the NDVI rasters chronologically using the 'raster' R package v3.6-30. Next, we used the infested oak 
classification (resampled from 2.9 m to 10 m using the nearest neighbor method for resolution compatibility) 
as a mask to create separate raster stacks for non-infested and potentially infested pixels. 
 
3.3 Data Analysis 
3.3.1 Infested Oak Classification Map 
After tuning hyperparameters and testing both approaches against a sample dataset, we decided to move on 
with the SVM, which had slightly better overall accuracy of 76%. We validated the results with a confusion 
matrix, which detailed how accurately each individual class was categorized (Section 4.1.1). We used our 
ground-truth data to train our model to classify canopies into two classes: Healthy and Infested. We then 
wrote a script to export the canopy classification to a raster in order to visualize the predicted class 
distributions over the entire study area.  
 
3.3.2 Risk Assessment Map 
We used the six previously described layers (distance to firewood vendors, campgrounds, residential 
buildings, known GSOB infestations, historical fire perimeters and land surface temperature), in ArcGIS Pro 
v3.3.0 with the Suitability Modeler (available with a Spatial Analyst license). We used a criteria model weighted 
by multipliers. Each layer was normalized to a 0 – 10 scale with a continuous function linear transformation. 
The distance to firewood vendors, campgrounds, residential buildings, and known infestations were 
transformed so that points at 0 m distance received a score of 10, with the score then linearly decreasing with 
increasing distance. The transformations for distance to firewood vendors, campgrounds, and residential 
buildings decreased to a score of 0 at distances beyond 9.3 km. The 9.3 km cutoff was chosen because the 
GSOB can travel up to 9.3 km per generation, with a single generation per year (Venette et al., 2015). The 
transformation for distance to known infestations decreased linearly to a score of 0 at the furthest distance 
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within LA and Ventura Counties. The 9.3 km cutoff was not applied to known infestations because it would 
yield an undesirably low risk estimate by assuming there are no infested trees beyond those surveyed. The 
historical fire layer was transformed so that a 2023 fire received a score of 10, with the score then linearly 
decreasing into the past. Meanwhile, the land surface temperature layer was transformed so that the highest 
temperature received a score of 10, with the score linearly decreasing to a score of 1 at the lowest 
temperature. We ran multiple iterations of the Suitability Modeler, varying the weight of the GSOB 
infestation datapoints layer, as this is the only confirmed GSOB vector in our analysis. We also ran iterations 
leaving each component out to see the overall effect on the high-risk areas. The Suitability Modeler sums 
each layer after multiplying by any weights. The output raster was reclassified into 10 categories by quantile 
with a blue-to-red color-blind-friendly gradient.  
 

3.3.3 Landcover Change Analysis 
We applied a pixel-based linear regression approach to estimate the rate of change in NDVI per month for 
each 10-m pixel. First, we extracted the NDVI value pixel-by-pixel for each month’s layer within the raster 
stack and generated an array. We then ran a simple linear regression on every pixel’s array using time (in 
months) as the independent variable and NDVI as the dependent variable. Finally, we created a raster that 
only selected pixels whose slopes were statistically significant (p<0.05). We repeated this process for both the 
healthy and potentially infested raster stacks. After generating the rasters, we performed a two-sample, two-
sided Kolmogorov-Smirnov test to assess differences between the two distributions. This nonparametric test 
was appropriate given the non-normality of the distributions and the unequal sample sizes (Section 4.1.3). 
 

4. Results  
4.1 Analysis of Results 
4.1.1 Infested Oak Classification 
The areas of infestation within the study region cover approximately 820 acres (24.9% of oak cover), while 
non-infested areas make up around 2,469 acres (75.1% of oak cover; Figure 2). Using an independent dataset, 
we ran an accuracy assessment, our model was able to accurately identify infested trees 74.7% of time 
(producer accuracy), and non-infested trees 80.2% of the time (Table 2), with an overall accuracy 76.7% The 
model is slightly more likely to misclassify an infested tree as non-infested tree rather than other way around. 
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Figure 2. A map of the infested oak extent in the Santa Clarita Valley Study Area classified by the SVM model 

based on AVIRIS-3 imagery 

 

Table 2 

Confusion Matrix 

 Classified data 

Infested Non-Infested Total 

Reference data Infested 73 26 99 

Non-Infested 16 65 81 

Total 89 91 180 

 
Spectral Profiles (Figure 3) of the mean reflectance for infested and non-infested oaks show some key 
differences.  In the visible green wavelength range (523-568 nm), infested trees show a slight dip in 
reflectance. This can likely be explained by unhealthy leaves being less green due to stress. Additionally, in the 
NIR, from 790-1328nm, there is a pronounced difference in the spectral reflectance of infested and non-
infested trees. The infested trees only reflect about 20% to 27.5% of the NIR wavelengths, while non-infested 
trees reflect about 22.5-30%, which aligns with expected patterns of stressed vegetation. In contrast, the 
SWIR part of the spectrum only showed small differences for infested versus non-infested GSOB trees. 
 

 
Figure 3. Spectral Profiles of GSOB infested and not infested oaks   

* “Bad bands” 129-140 & 199-212 were removed from the analysis 
 
4.1.2 Risk Assessment Map 
There are multiple versions of the risk assessment map with slightly different criteria. End-users can choose 
which set of criteria meet their understanding of the risk factors for future GSOB infestation and find the 
map that most closely matches their understanding. All versions of the risk assessment map are available in 
our data-handoff materials. The risk map presented here (Figure 4) weights the GSOB infestation layer by 2 
because it is the most guaranteed source of GSOB risk. Past fires, 2024 land surface temperature, and 
firewood sources (including residential buildings, campsites, and firewood vendors) were weighted by 1. 
There is a high-risk corridor around the Santa Clarita Valley down to the north-central portion of the Santa 
Monica Mountains via the mountains between Simi Valley and the San Fernando Valley. The GSOB has been 
observed as far south as Chatsworth in the San Fernando Valley, presenting a clear threat to the north-central 
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portion of the Santa Monica Mountains. However, it is important to note that the other criteria also 
contribute to the high-risk status of the Santa Monica Mountains. In variations of the risk assessment run 
with slightly different parameters, this north-central portion of the Santa Monica Mountains is consistently 
high-risk. Also of note is the potential spread from the Santa Clarita Valley west into the Santa Susana 
Mountains north of Simi Valley and east into the Angeles National Forest. Finally, there is GSOB recorded in 
Green Valley north of the Santa Clarita Valley, near Lancaster; this has the potential to spread west into 
Ventura County. 

 
Figure 4. GSOB infestation risk assessment map of the Santa Monica Mountains and Santa Clarita Valley 

(black outline). Inset risk assessment map of Ventura and Los Angeles Counties. In this version of the risk 
assessment, the GSOB infestation points were weighted by 2, while past fires, 2024 land surface temperature, 

and firewood sources were weighted by 1. Red tones indicate a higher infestation risk level. 
 
4.1.3 Landcover Change Analysis 
Based on the Sentinel-2 MSI imagery, the pixel-based linear regression identified 21,728 pixels with 

statistically significant changes in NDVI (i.e., p<0.05, demonstrating a discernible trend in greenness) out of 

122,946 total non-infested pixels (17.7%) and 5,027 significant pixels out of 26,488 total potentially infested 

(19.0%) pixels. The significant non-infested change in NDVI values ranged from -0.01347 to 0.01189 with a 

mean of 0.003471 and a median of 0.003514, while the significant potentially infested change in NDVI values 

ranged from -0.009931 to 0.01367 with a mean of 0.003355 and a median of 0.003396 (Figure 5).  
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Figure 5. A histogram of statistically significant changes in NDVI separated by non-infested (green) and 
potentially infested (orange) classifications with vertical lines indicating respective median values. 

 

The Kolmogorov-Smirnov test yielded a p-value of 1.973x10⁻⁹ and a D-statistic of 0.050396. The p-value 
provides strong evidence against the null hypothesis, suggesting that the two distributions are statistically 
different. However, both the D-statistic, which measures the maximum absolute difference between the 
cumulative distribution functions of the two samples, and the true mean and median difference, i.e., 0.000116 
and 0.000118, are very small. In other words, although the two distributions of 10-m Sentinel-2 changes in 
NDVI do not share the same underlying distribution and are statistically distinct, the numerical difference 
between them is marginal suggesting these two distributions cannot be practically separated. 

4.2 Errors & Uncertainties  
4.2.1 Infested Oak Classification Map 
Although the RT oak tree canopy classification had 100% accuracy, there were still places that visually did not 
align with observed oaks. Additionally, the orthorectified AVIRIS imagery did not perfectly align with other 
imagery and needed to be manually georeferenced, which could introduce error. Most tree datapoints had a 
five-meter accuracy, which is larger than the cell size of AVIRIS. Even though the infestation classification 
was object based, it is still likely that points fell on segments they did not belong to. Furthermore, oak data 
points were collected from only a small portion of the study area rather than being distributed across the 
entire region. As a result, the collected points may not fully represent the variability of oak conditions 
throughout the broader study area. Finally, human error in collecting oak points meant that oaks with GSOB 
boreholes could have been missed, and that other beetle boreholes could have been misclassified as GSOB.  
 
Additionally, we faced some challenges with mosaicking the flightlines and the BRDF correction. Our beetle 
infestation map contains some areas with visible geometric boundaries, which were where the flightlines were 
mosaicked together. The spectral differences at the edges of the flightlines were significant enough that they 
affected our classification at those boundary areas. We attempted a BRDF correction to account for this, but 
while this significantly improved the oak classification map, the infestation map was not improved by this 
correction and had significant striping. Regardless, in the flightlines where we had training data, we are highly 
confident in our model.  
 
4.2.2 Risk Assessment Map 
The primary limitation of the risk assessment maps is that we could not quantitatively assess the importance 
of each criteria to inform our model weighting. If the GSOB infestation datapoints were more spatially 
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distributed across LA and Ventura Counties, we could have statistically tested the importance of each 
normalized criteria. Lacking this information, criteria normalization and weighting had to be selected 
according to available literature, and otherwise according to judgement. Thus, there are a variety of maps with 
different criteria that users can select based on their understanding of appropriate criteria weighting. 
 
There are additional limitations for each criteria. However, the risk maps that exclude each criteria help to 
reveal the effect of each criteria on the model, and thus how much each criteria’s limitations could affect the 
overall result. For the GSOB infestation, datapoints were drawn from the Calinvasives database and the 
MRCA’s ground survey. These databases only include recorded GSOB infestations, but the full extent of 
GSOB infestations is likely greater. For the campsites, data points were not filtered for presence of firepits, 
and we also may have missed picnic areas with fire rings where people could bring infested wood. For the 
potential firewood vendors, companies were searched for according to NAICS codes, then the list was 
manually reviewed. There are certainly companies in the list that do not actually sell firewood, and many of 
the actual firewood vendors kiln-dry wood, which kills any beetles. This information was not captured in the 
firewood vendors data. Finally, residential buildings were filtered using zoning information, but many 
buildings, such as multi-story apartments, were included that are unlikely to store firewood. For the past fire 
layer, fires range in date from 1878 to 2023. There is likely a time frame after which there is little or no effect 
of a previous fire on risk of GSOB infestation, but due to a lack of literature on the matter, we left the 
normalization as linear. For the land surface temperature data, it is unclear how the land surface temperature 
affects tree stress compared to air temperature. We assumed that land surface and air temperature would be 
correlated.  
 
4.2.3 Landcover Change Analysis 
Sentinel-2’s 10-m resolution both prevented analysis at the tree-scale and required resampling of the 2.9-m 
resolution potentially infested oak classification mask for comparisons with the Sentinel-2 imagery. We 
resampled the AVIRIS raster using the nearest neighbor method, which creates a 10-meter pixel grid and 
assigns each new pixel the value of the closest original pixel, preserving the original pixel's value without 
interpolation. Consequently, a single potentially infested 2.9-meter pixel could be resampled as a 10-meter 
pixel, inflating the infested pixel area by a maximum factor of 10.89, or it could be misclassified as non-
infested (Figure B1). We observed a weak negative correlation (Spearman’s correlation coefficient  -0.0486) 
between the number of potentially infested 2.9-meter pixels within a 10-meter pixel and the NDVI slope 
magnitude, suggesting that resampling may remove spatial clustering effects. This resampling process 
diminishes the spatial variability and texture present in the original potentially infested oak classification at the 
2.9-m resolution, masking subtle patterns in the data. 
 
Moreover, seasonal oak phenology, characterized by green-up in the spring and senescence in the summer, 
produced similar NDVI trends for both non-infested and potentially infested areas between May and 
September (Figure B2). This overlap, combined with an increase in NDVI from September to May, made it 
difficult to isolate GSOB infestation signals from the natural phenological cycle. In comparing the spectral 
profiles of non-infested and potentially infested trees, differences were negligible in the visible light region, 
and since NDVI relies on red band reflectance, it resulted in similar trends for both oak tree health groups.  
 

5. Conclusions 
5.1 Interpretation of Results 
5.1.1 Infested Oak Classification Map 
The AVIRIS-3 based infested oak classification map showed high accuracy in identifying both infested and 
non-infested oak (Table 2). Furthermore, Figure 3 showed a clear and observable difference in the spectral 
signature between infested and non-infested oak. Based on these results, it can be said that AVIRIS-3 data 
when available can be used as a tool for further identification of GSOB infested trees.  
  

5.1.2 Risk Assessment Map 
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Multiple versions of the risk assessment map show similar trends, with high-risk areas in the north-central 
area of the Santa Monica Mountains, around the Santa Clarita Valley, in the Green Valley area near Lancaster, 
and hot spots spread throughout the Angeles National Forest and the Santa Susana Mountains. Partners can 
view the map with the criteria and weighting that they believe to be most accurate to determine specific high-
risk zones to target. Additionally, the input data, campsites, potential firewood vendors, and residential 
buildings, can help targeted outreach to reduce the likelihood of infested firewood GSOB spread. The MRCA 
and RCDSMM can hopefully convey these risk assessment maps to potential funding entities to help convey 
the seriousness of the issue. 
 
5.1.3 Landcover Change Analysis  
Given the significant overlap in the NDVI change value ranges for both non-infested and potentially infested 
pixels, we conclude that the tested 10-meter Sentinel-2 MSI-based NDVI regression method did not appear 
to show changes in oak woodland health related to GSOB infestations, especially within the context of oak 
phenological cycles. While the 10-m NDVI changes can track vegetation greenness trends over time and 
potentially highlight weakened stands to the MRCA, they did not in this case apparently show the infestation 
status of individual oak woodland pixels. Future analyses could address these limitations by utilizing data 
products with more NIR bands, where spectral differences between classes were more pronounced, or by 
incorporating additional plant health metrics beyond those related to greenness. Use of other spectral indices 
may enable better discrimination between infested and non-infested GSOB trees. 

  
5.2 Feasibility & Partner Implementation  
Ultimately, we demonstrated that Earth observations, particularly high-resolution AVIRIS-3 hyperspectral 
imagery, can play a crucial role in detecting potentially infested oaks, reducing reliance on labor-intensive 
ground surveys, and informing strategies for mitigating the spread of GSOB. We also highlighted the value of 
integrating vector datasets and remotely sensed thermal data into a GIS-based risk assessment to identify 
areas at risk for further spread within the MRCA and RCDSMM jurisdictions. This approach allows the 
MRCA and RCDSMM to prioritize future surveys and community education outreach campaigns in high-risk 
regions, particularly along the corridor between the Santa Clarita Valley and the Santa Monica Mountains. 
Additionally, we showed the limitations of using Sentinel-2 10-meter resolution NDVI trends to monitor oak 
woodland health in response to GSOB infestations, as the analysis did not yield statistically significant 
differences between the two groups. While the methods used in this study are reproducible, they may require 
additional computing resources to handle large file sizes and access ENVI software. Furthermore, AVIRIS’s 
lack of regular revisiting campaigns limits the ability to update infestation extent classifications on a frequent 
basis. Overall, we view our project as a valuable first step in integrating Earth observations with GSOB-
related oak woodland management by informing targeted conservation efforts for the MRCA and the 
RCDSMM. 
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7. Glossary 
AVIRIS-3 – Airborne Visible and Infrared Imaging Spectrometer-3. 
Crown rating – A classification system used to assess the health and condition of a tree’s canopy. 
Earth observations – Data collected from satellites and sensors to monitor the Earth’s physical, chemical, 
and biological systems over time and space. 
Euclidean distance – A measure of the straight-line distance between two points in a multi-dimensional 
space, commonly used in spatial analysis. 
GSOB – Goldspotted Oak Borer (Agrilus auroguttatus). 
Hyperspectral imagery – Remote sensing imagery that captures data across many more wavelengths than 
multispectral imagery, allowing for detailed analysis of pixels based on their spectral signatures. 
Keystone species – A species essential to maintaining the structure and biodiversity of an ecosystem. 
Kolmogorov-Smirnov Test (Two-Sample) – A statistical test used to compare two samples to test if they 
come from the same distribution. 
Landsat 8 OLI & Landsat 9 OLI-2 – Operational Land Imager (Landsat 8) and OLI-2 (Landsat 9). 
Landsat 8 TIRS & Landsat 9 TIRS-2 – Thermal Infrared Sensor (Landsat 8) and TIRS-2 (Landsat 9). 
Linear regression – A statistical method used to model the relationship between a dependent variable and 
an independent variable by fitting a linear equation to observed data. 
Multispectral imagery – Remote sensing imagery that captures data across a limited number of spectral 
bands, typically including visible and infrared wavelengths. 
NIR – Near Infrared; a part of the electromagnetic spectrum just beyond the visible light range (780 nm – 
2500 nm) 
NDVI – Normalized Difference Vegetation Index; a remote sensing index that uses red and near-infrared 
bands to assess vegetation health and greenness. 
Phenology – The study of cyclical events in organisms (i.e., trees) and their timing in response to 
environmental factors like temperature and precipitation. 
Performance metrics – Statistical methods used to evaluate the performance of machine learning models. 
Common metrics include Area Under the Receiver Operating Characteristic Curve (AUC-ROC) (, K-Nearest 
Neighbors (KNN), K-Fold Cross-Validation, and McNemar’s Test. 
Principal Components Analysis (PCA) – A statistical technique that reduces data dimensionality by 
transforming it into components that retain the most significant variance. 
Random Forest (RF) – A machine learning algorithm that generates multiple decision trees from random 
subsets of the data and aggregates their predictions. Also known as Random Tree (RT). 
Segmentation – The process of dividing an image into multiple segments or regions, based on similar 
spectral characteristics. 
Sentinel-2 MSI – Sentinel-2 Multispectral Instrument 
Support Vector Machine (SVM) – A machine learning model used for classification by finding the 
hyperplane that best separates different classes in feature space, with the ability to tune hyperparameters for 
optimization. 
UAV – Unmanned Aerial Vehicle; a drone or aerial vehicle used for collecting data or imagery from the air, 
often employed in remote sensing and surveying. 
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9. Appendix 
Appendix A: AVIRIS-3 Spectral Information 

AVIRIS-3 
Band 

Wavelength 
(nm) 

AVIRIS-3 
Band 

Wavelength 
(nm) 

AVIRIS-3 
Band 

Wavelength 
(nm) 

AVIRIS-3 
Band 

Wavelength 
(nm) 

0 389.8 33 635 66 881 99 1127.1 

1 397.2 34 642.4 67 888.4 100 1134.6 

2 404.6 35 649.9 68 895.9 101 1142 

3 412 36 657.3 69 903.4 102 1149.5 

4 419.4 37 664.8 70 910.8 103 1157 

5 426.8 38 672.2 71 918.3 104 1164.4 

6 434.2 39 679.7 72 925.7 105 1171.9 

7 441.6 40 687.1 73 933.2 106 1179.3 

8 449 41 694.6 74 940.7 107 1186.8 

9 456.5 42 702 75 948.1 108 1194.2 

10 463.9 43 709.5 76 955.6 109 1201.7 

11 471.3 44 716.9 77 963 110 1209.1 

12 478.7 45 724.4 78 970.5 111 1216.6 

13 486.2 46 731.8 79 978 112 1224.1 

14 493.6 47 739.3 80 985.4 113 1231.5 

15 501 48 746.7 81 992.9 114 1239 

16 508.4 49 754.2 82 1000.3 115 1246.4 

17 515.9 50 761.7 83 1007.8 116 1253.9 

18 523.3 51 769.1 84 1015.3 117 1261.3 

19 530.8 52 776.6 85 1022.7 118 1268.8 

20 538.2 53 784 86 1030.2 119 1276.2 

21 545.6 54 791.5 87 1037.6 120 1283.7 

22 553.1 55 798.9 88 1045.1 121 1291.1 

23 560.5 56 806.4 89 1052.5 122 1298.6 

24 568 57 813.9 90 1060 123 1306.1 

25 575.4 58 821.3 91 1067.5 124 1313.5 

26 582.8 59 828.8 92 1074.9 125 1321 

27 590.3 60 836.2 93 1082.4 126 1328.4 

28 597.7 61 843.7 94 1089.8 127 1335.9 

29 605.2 62 851.2 95 1097.3 128 1343.3 

30 612.6 63 858.6 96 1104.8 141 1440.2 

31 620.1 64 866.1 97 1112.2 142 1447.6 

32 627.5 65 873.5 98 1119.7 143 1455.1 
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Table A1 cont. 

AVIRIS-
3 Band 

Wavelength 
(nm) 

AVIRIS-
3 Band 

Wavelength 
(nm) 

AVIRIS-
3 Band 

Wavelength 
(nm) 

AVIRIS-
3 Band 

Wavelength 
(nm) 

144 1462.5 177 1708.1 233 2123.8 266 2368 

145 1470 178 1715.5 234 2131.2 267 2375.3 

146 1477.4 179 1723 235 2138.6 268 2382.7 

147 1484.9 180 1730.4 236 2146 269 2390.1 

148 1492.3 181 1737.8 237 2153.4 270 2397.5 

149 1499.7 182 1745.3 238 2160.8 271 2404.9 

150 1507.2 183 1752.7 239 2168.2 272 2412.3 

151 1514.6 184 1760.1 240 2175.6 273 2419.7 

152 1522.1 185 1767.6 241 2183 274 2427 

153 1529.5 186 1775 242 2190.4 275 2434.4 

154 1537 187 1782.4 243 2197.8 276 2441.8 

155 1544.4 188 1789.8 244 2205.2 277 2449.2 

156 1551.9 189 1797.3 245 2212.6 278 2456.6 

157 1559.3 213 1975.5 246 2220 279 2464 

158 1566.7 214 1982.9 247 2227.4 280 2471.3 

159 1574.2 215 1990.3 248 2234.8 281 2478.7 

160 1581.6 216 1997.7 249 2242.2 282 2486.1 

161 1589.1 217 2005.2 250 2249.6 283 2493.5 

162 1596.5 218 2012.6 251 2257    
163 1604 219 2020 252 2264.4    
164 1611.4 220 2027.4 253 2271.8    
165 1618.8 221 2034.8 254 2279.2    
166 1626.3 222 2042.2 255 2286.6    
167 1633.7 223 2049.7 256 2294    
168 1641.1 224 2057.1 257 2301.4    
169 1648.6 225 2064.5 258 2308.8    
170 1656 226 2071.9 259 2316.2    
171 1663.5 227 2079.3 260 2323.6    
172 1670.9 228 2086.7 261 2331    
173 1678.3 229 2094.1 262 2338.4    
174 1685.8 230 2101.5 263 2345.8    
175 1693.2 231 2108.9 264 2353.2    
176 1700.6 232 2116.4 265 2360.6    

Table A1. A table denoting AVIRIS-3 bands and their associated wavelengths. 
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Appendix B: Landcover Change Analysis Results 

 
Figure B1. An illustration of two errors that may result due to nearest-neighbor resampling from 2.9-m to 10-

m resolution: an inflation of the infested pixel area (gray box) or a misclassification of pixel (blue box). 
 

Figure B2. A time series line plot of mean NDVI separated by oak class (non-infested: green; potentially 
infested: orange), where shaded regions represent values within one standard deviation of the mean value. 
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Appendix C: Datasets Used 
 

Table C1 

Earth observations utilized 

Earth 
Observation & 
Sensor 

Processing 
Level 

Acquisition 
Platform 

Resolution Parameter Timeframe 

AVIRIS-3 (B200 
Aircraft) 

Level 2 AVIRIS-3 
Data Portal 

2.9 m Surface 
Reflectance 

July 19, 2024 

Landsat 8 OLI 
TIRS 

Level 2, 
Collection 2, 
Tier 1 

Google 
Earth 
Engine 

30 m Land Surface 
Temperature 

July – October, 
2024 

Landsat 9 OLI-2 
TIRS-2 

Level 2, 
Collection 2, 
Tier 1 

Google 
Earth 
Engine 

30 m Land Surface 
Temperature 

July – October, 
2024 

Sentinel-2 MSI Level 1C, 
Collection 1 

Google 
Earth 
Engine 

10 m Surface 
Reflectance 

May – 
September, 
2018-2024 

 
 

 

 

Table C2 

Ancillary datasets utilized 

Title Spatial Data 
Format 

Acquisition 
Platform 

Extent End Product 

MRCA ground 
surveys 

Point Partner-collected East Santa Clarita 
Valley study area 

Infested Oak Tree 
Classification; Risk 
Assessment 

DJI P4 Multispectral 
Agricultural Drone 
UAV imagery 

Raster (RGB and 
multispectral 
imagery (2 MP)) 

Partner-collected Ground survey area Infested Oak Tree 
Classification 

Calinvasives GSOB 
detections 

Point Calinvasives California Risk Assessment 

Firewood vendors Point United States 
Business 
Database via Data 
Axle Reference 
Solutions 

LA & Ventura 
Counties 

Risk Assessment 

LA County 
campgrounds 

Point LA County Data 
Portals 

LA County Risk Assessment 

California State 
Parks campgrounds 

Point California State 
Geoportal 

LA & Ventura 
Counties 

Risk Assessment 
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Ventura County 
campgrounds 

Point Ventura Parks Ventura County Risk Assessment 

LA County building 
footprints 

Polygon Los Angeles 
Region Imagery 
Acquisition 
Consortium 

LA County Risk Assessment 

Ventura building 
footprints 

Polygon County of 
Ventura Data 
Portal 

Ventura County Risk Assessment 

Wildfire perimeters Polygon CALFIRE LA & Ventura 
Counties 

Risk Assessment 

 


