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Abstract

This document is motivated by likely needs of the Quesst mission community response tests,
which will culminate in data collection and estimation of dose-response regression relationships
for consideration by domestic and international aviation regulators. Furthermore, basic research
questions evaluating interactions between rates of community annoyance, dose levels, and indi-
cators of the presence of rattle, vibration, and startle hinge on hypothesis testing in the context
of regression models. For a variety of reasons, noise doses may be known only imprecisely and
may not reflect the actual level experienced by responding subjects. These differences between
true dose and estimated dose, be they systematic or random, constitute covariate measurement
error. Available statistics literature speaks to the impacts of measurement error on regression
models, both in terms of bias in estimated coefficients and predicted values, and in terms of the
loss of statistical power for hypothesis testing. Given the particulars of a categorical annoyance
response variable and a continuous noise dose predictor variable subject to measurement error
during testing, the emphasis of this report is on findings and methods pertinent to generalized
linear (and mixed) models likely to be employed during the Quesst mission community tests.
We reach the following conclusions:

1. Of four reviewed methods, structural Bayesian measurement error models and simulation
extrapolation (SIMEX) may be the most readily applicable to Quesst mission community
noise study objectives.

2. If warranted, a linear measurement model can help model systematic sources of measure-
ment error that the classical measurement error does not.

3. For its ready implementation and small additional input requirements, simulation ex-
trapolation may be ideally suited for addressing secondary research questions involving
interactions between annoyance, noise dose, and other factors through hypothesis testing.

4. For their flexibility and ability to propagate uncertainty, structural Bayesian hierarchical
models have great appeal for mission purposes; some care may be needed in developing
appropriate probability models describing actual noise exposure during testing.

An annotated bibliography logs additional papers and resources that may be of value to analysts
in other projects and disciplines.
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1 Summary

The NASA Quesst mission will culminate in a collection of human response data to low-noise
supersonic overflights generated with multiple passes of the X-59 demonstrator aircraft. A variety
of regression analyses performed using models of categorical response data regressed on a continuous
noise ‘dose’ predictor, with levels measured in decibels, will form a foundation for regulatory decision
making discussions and address related research questions.

For a variety of reasons, noise doses may only be known imprecisely. For one, recruited subjects
may frequently be indoors, whereas measurements and estimates of dose are to be taken outdoors.
Thus, the levels experienced by the subject may differ from best outdoor estimates due to the
effects of outdoor-to-indoor transmission. Additionally, the noise doses during Quesst mission will
be a synthesis of precise measurements taken from a sparse network of noise monitors fused with
a physics-based model describing sonic boom propagation in order to provide estimates of outdoor
dose with the greatest area coverage possible. Model uncertainty in the physics-based model and
sparsity and uncertainty in the measurements at monitors themselves will result in some degree of
prediction error or uncertainty at any given latitude and longitude coordinate in the test region.

Any difference between the best estimate of dose and the actual dose experienced by the re-
cruited subject constitutes measurement error. The first part of this document summarizes several
implications of measurement error in Section 1.1 and describes prospective analyses to be per-
formed given data collected during the Quesst mission in Section 1.2. We identify and discuss
several mitigations for covariate measurement error in Section 1.3, and we demonstrate application
of two methods on past risk reduction study data in Section 1.4 with some final observations and
conclusions in Section 1.5. Section 2 comprises an annotated bibliography of a variety of references
that may offer some utility for addressing measurement error in the analysis of Quesst mission
community test data. Furthermore, these collected references should be of broader interest to any
analyst recognizing that collected predictor variables may be subject to imprecision.

1.1 Why Covariate Measurement Error Matters in Regression Models

The following reproduced example is discussed in Carroll et al. (2006), and it illustrates what
the authors referred to as the ‘triple whammy’ of measurement error. The top panel of Figure 1
depicts a relationship between a continuous response variable Y and a continuous predictor variable
X that varies about the mean function E [Y |X] = sin(2X). Now assume that in lieu of the true
predictor, an error-prone version W is observed, where W = X + U and the left-or-right additive
perturbations, U , are independent random deviates from a normal distribution with mean zero,
and standard deviation σu = 2

3 . The resulting scatter is shown in the lower panel of Figure 1.
Contrasting the two panels of Figure 1, measurement error poses the following issues:

1. Features of graphical and exploratory analysis may be hidden. In the plots below, the most
obvious feature, the sinusoidal relationship, is effectively washed out in the bottom panel.

2. Bias. Since the sinusoidal pattern is obscured, estimates of period, amplitude, and other fea-
tures may be systematically affected, or an entirely different functional relationship between
response and predictor may be posited as a result.

3. Loss of statistical power in hypothesis tests. One might ask if the average response at a
particular level of predictor (e.g., -2) is non-zero. In the top panel with pristine measurements,
the answer is apparent; the average response is non-zero. In the lower panel, the error prone
measurements concentrated at -2 span a much greater range along the vertical axis and cover
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zero. This depicts a loss of statistical power, a decrease in the probability detecting an effect
given that one is actually present.

The latter two points are of immediate concern as they relate directly to analyses following the
Quesst mission community test campaigns.

Figure 1: Demonstration of the effects of covariate measurement error
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1.2 Presumptive Analyses to be Performed Following the Quesst Community
Noise Studies

Following procedures used in past NASA risk reduction studies, a recruited sample will be selected
from communities to respond to a NASA-generated noise stimulus. In the future Quesst mission
studies, the noise stimulus will be the low-noise supersonic overflight of the X-59 demonstrator.
The recruited subjects will complete repeated surveys promptly after each supersonic overflight,
and they will complete multiple end-of-day surveys in which their reflections on each flight day
will be captured. These survey instruments will contain questions about the degree of annoyance
a subject may experience, as indicated on a five-category ordinal scale.

As NASA seeks to quantify population-average behavior, rates of annoyance as a function of
noise dose level, two common approaches arise for regressing the non-normal response variable
on repeated exposures to continuous noise dose: generalized estimating equations (GEE), and
generalized linear (and mixed) models (GLMM). At this time, the prevailing thinking is to obtain
population average through some form of GLMM, therefore, the remainder of this review looks
at measurement error in that context, using the random intercept logistic regression as a concrete
example.
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1.2.1 Notation and Terminology

Equation 1 represents the class of GLMM in matrix form:

g (E [y|c]) = Xβ +Zc. (1)

For a given link function g(·), the mean value of a response y, conditioned on one or more random
effects c, is linearly related to a set of fixed effects β and the subject-specific random effects.

Defining the conditional mean response E (yij |xij , ci) ≡ p (xij , ci) and choosing the logit link
function, the random intercept logistic regression is specified as

logit (p (xij , ci)) = β0 + β1xij + ci with ci ∼ N
(
0, σ2

c

)
(2)

where i ∈ {1, 2, . . . , I} is an index over the number of unique participants, j ∈ {1, 2, . . . , Ji} indexes
the (possibly different) number of responses provided by the ith participant and xij denotes the noise
exposure (dose) administered to the ith participant during the jth boom event. The scalar random
effect ci denotes a subject-specific intercept, assumed to be drawn from a normal distribution with
mean zero and finite variance, σ2

c . The categorical response, yij , is a binary indicator variable,
taking value 1 if the participant is highly annoyed and 0 otherwise.

The expected value of a binary random variable is a well-defined probability or proportion.
Whereas an unconstrained linear probability model may produce predicted probabilities outside
the interval (0, 1), the inverse logit maps all real values that may arise in the linear predictor space
into this interval. For a specific participant, the probability that he or she is highly annoyed given
dose and individual intercept is stated in Equation 3:

p (xij , ci) = logit−1 (β0 + β1xij + ci) =
1

1 + exp (− [β0 + β1xij + ci])
. (3)

Let wij denote an error-prone, observed measurement that corresponds to the true but un-
observed xij . The measurement error problem arises in a naive analysis, i.e., modeling p(wij , ci)
instead when p(xij , ci) was intended. Understanding the impact of measurement error necessi-
tates understanding the relationship between actual xij and the observed wij . Keogh et al. (2020)
provides overview of several statistical measurement models that describe plausible relationships
between the observed and underlying latent doses.

1. The Berkson error model: The Berkson error model is often associated with rounding, binning,
or assigning identical measurements, e.g., an available average value, to all members of the
same subgroup. It is represented as

X = W + U (4)

where the true value X can be thought of as arising from measured values W and an indepen-
dent, mean-zero error U . During a community noise test, a hypothetical example of Berkson
error might entail assigning a reading from the nearest noise monitor to all individuals in the
same apartment complex or neighboring houses.

2. Classical measurement error model: In contrast with the Berkson error above, the classical
measurement error model treats manifest measurements W as arising from an underlying true
level X which is independent of the mean-zero error term U :

W = X + U (5)
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This is a commonly assumed measurement model for continuous covariates. In the Quesst
community noise studies, estimates of outdoor noise levels may be obtained with some ge-
ographic specificity. That is, estimates may be had at indicated latitude and longitude co-
ordinates. The fact that the estimates are predictions based on a fusion of a network of
noise monitors and a physics-based model may mean the that best estimate W is subject to
prediction error.

3. The linear measurement error model: The linear measurement error model allows the flexi-
bility of addressing both systematic discrepancy and random errors.

W = α0 + α1X + U (6)

Keogh et al. (2020) note that the coefficient α0 speaks to location bias, that is, biases that
don’t depend on the magnitudes of X, and that α1 addresses scale biases which do. Note that
the classical measurement error model can be viewed as a special case of Equation 6 in which
α0 = 0 and α1 = 1. Hypothetical examples in community noise testing could include changes
in levels due to outdoor-to-indoor transmission, which could be modeled appropriately with
the α0 coefficient. Additionally, if measurement error changes with the magnitude of the noise
dose, these could be modeled with suitable values of α1.

1.2.2 Predicting Levels of Community Annoyance Given Dose: Obtaining a Popula-
tion Average Dose-Response Curve

The means of obtaining marginal (population average) predictions from conditional (subject-specific)
models involves numerical integration as discussed in Pavlou et al. (2015), Hedeker et al. (2018), or
relevant closed-form approximation as in Wakefield (2013) for Bayesian models. In the context of
the random-intercept logistic regression model, marginalization is an integral with respect to the
distribution of random intercepts:

p̂ (x) =

∫ ∞

−∞

1

1 + exp
(
−
[
β̂0 + β̂1x+ c

])ϕ (
c|σ̂2

c

)
dc (7)

where ϕ
(
c|σ̂2

c

)
denotes a mean zero normal distribution with estimated variance σ̂2

c . The result is a
function describing the probability of high annoyance as a function of dose, and it is not dependent
on the intercept of any specific subject. However, in the naive analysis, estimates β̂0 and β̂1 are
attenuated, or biased toward zero. Consequently, when there is appreciable measurement error in
dose, marginal predictions of annoyance as a function of dose are also biased. Stefanski & Carroll
(1985) note that there is potential to overstate annoyance at low ends of the dose range and un-
derestimate annoyance at high ends of the noise dose range. As one of the critical objects to be
delivered to regulators at the conclusion of the Quesst community noise studies, predictions of an-
noyance as a function of dose can potentially be improved by adopting some choice of measurement
error model.

1.2.3 Assessing Interactions Between Annoyance, Dose, and Other Effects Through
Hypothesis Testing

In addition to assessing its relationship with noise dose, additional research objectives call for
investigating whether annoyance is related to other factors including the presence of rattle (denoted
rij), vibration (vij), or startle (sij). These variables will be binary indicators determined by subject
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response to survey questions about detecting rattle and vibration, or experiencing startle. Following
(Fidell et al., 2020, Sec. 6.4) and (Opsomer et al., 2024, Ch. 11), the logistic model in Equation 8
and any submodel thereof can be fit to the collected data:

logit (p (xij , rij , sij , vij)) = β0 + β1xij + β2rij + β3sij + β4vij . (8)

Estimated coefficients for each predictor variable can be interpreted as the effect (on the log odds
ratio scale) on the probability of annoyance. Traditional hypothesis tests can be used to assess
whether the effect is significantly different from zero.

When a naive analysis is performed, i.e., when as-measured doses wij are used in lieu of the
true dose level xij in Equation 8 above, the hypothesis tests may lack sufficient power, and the
effects may be deemed statistically insignificant, when in fact, they are. Gustafson (2004) notes
that in regression models with multiple predictor variables, the issues of bias in coefficients and
statistical power are not limited to the variable measured with error, i.e., dose. Thus, mitigations for
anticipated measurement error in dose can be used to improve complementary research objectives,
even if the survey respondent knows unambiguously that they were startled, or detected rattle or
vibration during an overflight.

1.3 Approaches to Modeling Covariate Measurement Error

The literature speaks to two broad classes of measurement error approaches. In functional measure-
ment error modeling, the distribution of the true predictor variable is not modeled parametrically.
That is, no explicit assumptions about the distribution of true dose needs to be made. In contrast,
structural measurement error modeling entails specific parametric assumptions about the distribu-
tion to the true predictor. We sketch a few popular methods of each type, with an emphasis on the
utility of simulation extrapolation and Bayesian hierarchical models for the purposes of mitigating
measurement error in the Quesst mission community noise studies.

1.3.1 Functional Approaches–Regression Calibration and Simulation Extrapolation

Regression Calibration: Regression calibration is discussed by Carroll & Stefanski (1990) and even
earlier in the case of the Cox proportional hazards model in Prentice (1982). Regression calibration
is a popular method for its relative simplicity and broad applicability. It can be broken into a
three step process. Letting Z denote additional explanatory variables, X denote the true value of
a covariate, and W its error-prone surrogate, fit the calibration model E [X|W,Z]. Second, use the
fitted model to predict X̂ for all cases, and substitute these into the analysis model in lieu of the
unobservable X. The third step is to adjust standard errors or confidence intervals to reflect the
combined uncertainties of the calibration step and the outcome model.

Note that the description above posited that some data on the true covariate X exists to begin
with, at least for a subset of the data. This could be had if the study is designed to collect
some internal validation data, or if some other unbiased instrument for X exists. For the study
of a first-of-kind noise source, the shaped sonic boom of the X-59, there will be little available
‘gold standard’ data on which to build a calibration model. In addition, Carroll et al. (2006)
caution on the naive use of regression calibration for the class of GLMM subject to measurement
error, as it correctly specifies fixed-effects structure, but does not correctly specify the random
effects structure. Consequently, biases in the variance component of the naive models may not
be corrected by regression calibration. Given that the minimum requirements to fit a calibration
model may not be available or equally applicable across distinct test sites and that the variance
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components may not be sufficiently adjusted by regression calibration, it is not considered a viable
method for correcting measurement error in the Quesst community noise studies.

Simulation Extrapolation (SIMEX): Simulation extrapolation was initially developed by Cook
& Stefanski (1994). The intuition of the method is that subjecting naive models to further error
induces a pattern that can be learned experimentally. After a suitable pattern is learned, it can be
used to project back to the case where there is no measurement error and model point estimates
are ostensibly free of bias.

The algorithm begins by fitting the naive model and noting the resulting point estimates for

all model parameters; for the random intercept logistic model these are Θ̂naive ≡
(
β̂0, β̂1, σ̂

2
c

)
.

Provided a suitable estimate of the measurement error variance σ̂2
u, measurement error is inflated

by a factor λ along a discrete set of values determined by the practitioner, often {0.5, 1.0, 1.5, 2.0}
in practice. For each value λ, increasing amounts of measurement error (1 + λ) σ̂2

u are injected
into the error-prone covariate and the naive analysis is repeated a large number of times, denoted
B. An estimate of center for each model parameter, typically a mean or a median, is computed
across the B data sets for each model parameter. These simulated means are matched to the
corresponding λ coordinate as illustrated in Figure 2. Finally, the SIMEX estimator, Θ̂SIMEX

is obtained by choosing a functional form for an extrapolant function related to the observed
trend, and extrapolating to the case of λ = −1, thus ‘canceling out’ the measurement error. In
principle, many functional forms could be chosen, but generally a small number of data points will
be available. Statistical software often focuses on three extrapolant functions: linear, quadratic,
and rational linear functions. The quadratic extrapolant function has been observed to perform
well in a variety of settings, and Carroll et al. (2006) note that it typically results in conservative
corrections for attenuation bias.
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Figure 2: A notional SIMEX plot
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1.3.2 Structural Approaches–Structural Bayesian Measurement Error Models and
Data Cloning

Bayesian measurement error models: Richardson & Gilks (1993) and Gustafson (2004) describe a
‘formula’ for constructing Bayesian hierarchical models for measurement error adjustment in terms
of a product of three probability models: a response model, a measurement model, and an exposure
model. For the random-intercept logistic model, these are represented by Equation 9, Equation 10,
Equation 11, respectively:

f (x, β0, β1, σc|w,y) ∝
I∏

i=1

Ji∏
j=1

p (xij , ci)
yij [1− p (xij , ci)]

1−yij ϕ (ci|σc) (9)

× f (wij |xij) (10)

× f (xij) (11)

× f (β0) f (β1) f (σc) . (12)

Noting the use of the true but unobserved dose variable xij in the response model (Equation 9),
the relationship between the as-measured surrogate doses wij and actual doses xij is described by a
measurement model (or combination of measurement models) like those discussed in Section 1.2.1.
As written, Equation 10 is consistent with a classical measurement error assumption, that each
wij arises from a corresponding unobservable xij . The part that makes the model a structural
model is Equation 11, an assumed parametric form for the distribution of underlying true doses;
some authors refer to this as a prior distribution. In Section 1.4.3, we identify assumptions about
this distribution as a significant source of sensitivity when modeling past NASA risk reduction
study data. The complete model specification requires a joint prior distribution on unknown model
parameters, often taken as the product a priori independent probability distributions for each
model parameter. These are denoted by the generic distributions for the intercept β0, slope β1,
and standard deviation describing the spread of random intercepts σc in Equation 12. A variety of
computing paradigms, often based on Monte Carlo simulations, enable access to samples from the
full posterior distribution from which point estimates and corresponding estimates of uncertainty
can be obtained.

Data cloning: The method of data cloning was developed by Lele et al. (2007, 2010) as a means
to obtain maximum likelihood estimates using the machinery of Bayesian computation. The theory
uses asymptotic results relating the Bayesian model obtained by replicating the data many times,
say k. In essence, the data are modeled as though they come from k independent repetitions of the
experiment, and each of those k experiments just happen to have identical results. As the number of
clones k goes to infinity, the means of the posterior distributions converge to the maximum likelihood
estimator, and a simple matrix estimator converges to the asymptotic variance-covariance matrix
for these estimators. One appealing feature is that the obtained maximum likelihood estimates
do not actually depend on the choice of assumed prior distributions on model parameters, which
is sometimes held out as a source of subjectivity in the construction of Bayesian models. Torabi
(2013) went on to apply this method for GLMM measurement error models.

While this is an interesting methodological accomplishment, some practical matters are worth
considering as they relate to utility for future Quesst community noise studies. First, while data
cloning is said to be invariant to the choice of prior distributions on model parameters, the method
is firmly a structural measurement error approach. Like the structural Bayesian measurement error
model it is built on, there remains some possible sensitivity due to (mis)specification of the exposure
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model. Second, the matter of practical computing remains. Where the larger of two NASA risk
reduction studies was on the order of 5,000 data rows, those coming from each community test under
Quesst mission could be on the order of 80,000 data rows, assuming current targeted values of 80
supersonic passes over a test duration and assuming working targets of 1,000 recruited subjects
at each test site. In order for the posterior means from the Bayesian model to converge to the
maximum likelihood estimators, a large number of clones may be necessary, and the task becomes
a more intensive task of computing a Bayesian model on data sets of size k× 80, 000. Data cloning
will not remove the need for a choice of exposure model, and it comes with greater computing cost,
so that it may not be a practical method for application in the Quesst mission. However, since
it uses the framework of Bayesian computation, some of the references dedicated to reducing the
computational burden of data cloning as noted in the annotated bibliography in Section 2.5 may
still expedite fitting structural Bayesian measurement error models on data of the size anticipated
during the Quesst community noise studies.

1.4 Modeling Measurement Error in Past NASA Risk Reduction Study Data

NASA conducted two past risk reduction studies, generating data with some shared or anticipated
features of the upcoming X-59 community studies. The first, called Waveforms and Sonic Boom
Perception and Response (WSPR), was conducted in the vicinity of Edwards Air Force Base in
southern California in 2011. A second, larger study called Quiet Supersonic Flights 2018 (QSF18)
was conducted near Galveston, Texas. For procedural details on these studies, see Page et al.
(2014), Page et al. (2020a), Page et al. (2020b).

In brief, both studies used research F-18 aircraft to generate a series of low-amplitude sonic
booms delivered across multiple flight days and approximating some features and levels of the
anticipated X-59 acoustic profile. Recruited subjects promptly completed single-event surveys
after each supersonic dive maneuver, as well as daily summary surveys capturing attitudes toward
cumulative noise exposures after each day of testing. The single-event data sets with as-measured
doses form the basis for the measurement error analysis in this report. Histograms of as-measured
doses for both studies are depicted in the left-hand panels of Figure 3 and Figure 4, respectively.
Note that the WSPR data set has a larger dose range and maximum level than the QSF18 data,
given deliberate testing of traditional sonic booms, and even the capture of adventitious sonic booms
happening near the Edwards Air Force Base area at the time. In short, the WSPR dose data were
generated by a mixture of 84 planned low-noise supersonic dive maneuvers, 5 planned traditional
sonic booms, and 21 unplanned traditional sonic sonic booms, for a total of 110 single noise events.
During QSF18, NASA completed 52 low-noise supersonic dive maneuvers. In addition, estimates
of noise dose uncertainty, assumed constant across the test areas and expressed as a standard
deviation, were obtained by procedures adopted in Page et al. (2014) and Page et al. (2020a).

The bar charts in the right hand panels of Figure 3 and Figure 4 capture the multiple ordinal
responses provided by recruited subjects in the WSPR and QSF18 studies, respectively. Between
WSPR and QSF18, NASA experimented with two different recognized socio-acoustic response
scales, an ll-point ordinal scale, and a 5 category verbal scale. Total numbers of responses collected
in each bin are annotated in the figures. A commonly adopted convention dichotomizes responses
into ‘highly annoyed’ (responses of 8 or greater on the 11-point scale, and ‘very’ or ‘extremely
annoyed’ on the verbal scale) and ‘not highly annoyed’ (otherwise). Despite the different choices
of response scale, the collected data both point to the rarity of the ‘highly annoyed’ outcome,
happening in less than 7% of observed cases in WSPR, and in less than 1% of observed cases
in QSF18. Important summary data including sample size, total responses, total highly annoyed
responses, and summary statistics for doses as measured are gathered in Table 1.
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Table 1: Summary of NASA study data
Study WSPR QSF18

Number of subjects, I 49 371
Number of supersonic events 110 52
Total responses 1,981 4,998
Total highly annoyed,

∑
i

∑
j yij 133 47

Range of as-measured doses, wij , in PL dB 63 to 106 56 to 90
Deviation, σ̂u, in PL dB 3.7 4.9

1.4.1 Naive Models

Following the discussion in Section 1.2.2, bias is a key issue with naive regression analysis when one
or more predictor variables are subject to measurement error. In the context of the presumptive
dose-response analysis, noise doses may be subject to error as described by one (or more) of the
measurement models described in Section 1.3. In the case of non-differential, classical measure-
ment error, the effect on coefficients of the subject specific model is that of attenuation, or a bias
toward zero. Biases in estimated coefficients of the subject-specific model then propagate into the
population-average dose response model, which depends on integration with respect to the distri-
bution of random effects, taking estimated coefficients as given in the integration. The effect on
the predicted mean response is overprediction of annoyance at the low end of the dose range and
underprediction of annoyance at the high end of the dose range Stefanski & Carroll (1985); this
effect is illustrated in the notional plot in Figure 5.
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In the naive analysis, the observed covariate, as-measured dose in decibels, wij , is included in
the subject-specific model. The naive, subject-specific model can be fit in a Frequentist paradigm
using maximum likelihood estimation, or in a Bayesian paradigm, specifying a choice of prior
distributions on unknown model quantities, e.g., parameters β0, β1,σ

2
c , in the random intercept

logistic model.
Maximum likelihood via Adaptive Gauss-Hermite Quadrature: The maximum likelihood ap-

proach proceeds on the basis of optimization, finding values of parameters that simultaneously
maximize the marginal likelihood function, that is, obtain argmax

β0,β1,σ2
c

L
(
β0, β1, σ

2
u|w,y

)
where

L
(
β0, β1, σ

2
u|w,y

)
=

I∏
i=1

Li

(
β0, β1, σ

2
c |wi,yi

)
=

I∏
i=1

∫ ∞

−∞

Ji∏
j=1

p (wij , ci)
yij [1− p (wij , ci)]

1−yij ϕ
(
ci|σ2

c

)
dci. (13)

In the context of naive analysis of QSF18 data, Cruze et al. (2022) discussed the availability of a
variety of computational maximum likelihood estimators, each designed to approximate the integral
or the integrand in Equation 13. Based on the findings in that report, a 25-node Adaptive Gauss-
Hermite Quadrature (AGHQ) estimator is used in the present analysis. This is important for two
reasons. First, the estimator is believed to offer sufficient accuracy, so that any biases in estimated
coefficients of a naive model can be attributed wholly to measurement error and not to numerical
instability of the estimator. Second, the application of Simulation Extrapolation in latter sections
depends on repeated application of a choice of naive estimator, which we make explicit.

Bayesian analysis with assumed Cauchy family priors: In contrast to maximum likelihood esti-
mation, which is based on optimization involving a difficult integral, Bayesian computation relies
on sampling. In the Bayesian paradigm, additional probability distributions known as prior distri-
butions are assigned to the unknown model parameters β0, β1,σ

2
c . A fully joint relationship between

parameters and data can be expressed as a product of the full likelihood function (Equation 14)
and priors (Equation 15), and the joint posterior distribution is proportional to this product, up
to a constant determined by the marginal distribution of the data:

f (β0, β1, σc|w,y) ∝
I∏

i=1

Ji∏
j=1

p (wij , ci)
yij [1− p (wij , ci)]

1−yij ϕ (ci|σc) (14)

× f (β0) f (β1) f (σc) . (15)

Any of a wide variety of prior distributions may be assumed. Commonly, noninformative prior dis-
tributions are assumed. For the naive analysis we assume popular choices of a priori independent,
noninformative Cauchy family priors discussed in Gelman et al. (2008), Polson & Scott (2012).
Namely, the assumed prior distributions on regression coefficients and the standard deviation of
random intercepts are, respectively, β0 ∼ t(0, 10, 1), β1 ∼ t(0, 2.5, 1), and σc ∼ t+(0, 1, 1), where
the triplet of arguments refer to location, scale, and degrees of freedom parameters of these distri-
butions. This assumption is important in as much as it produces naive estimates comparable to the
AGHQ estimator. Further, by retaining these choices in the latter application of Bayesian measure-
ment error models, we can attribute the observed changes in estimated coefficients to differences
in structural assumptions on the distribution of true dose.
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The estimated coefficients of the naive, subject-specific models are presented in Table 2, and it
represents a template for results presented in subsequent sections. First, within each data set, the
maximum likelihood estimates and standard errors obtained from the AGHQ estimator and the
posterior means and posterior standard deviations from the Bayesian models are approximately
equal. Thus, any change or improvement, whether obtained from SIMEX or Bayesian approaches,
will be measured from the same starting values. The coefficients presented in Table 2 are features
of the subject-specific model. For each subject, i, dose that elicits high annoyance with probability
p is given by

dp =
[
log (p/ (1− p))−

(
β̂0 + ĉi

)]
/β̂1. (16)

By symmetry arguments, when ĉi = 0, d̂50 = −β̂0

β̂1
is also a point on the population average dose

response curve. Thus, a point estimate of the noise dose level that would annoy 50% of the
population can be obtained by simple arithmetic given estimated coefficients from the subject-
specific model. The naive estimates imply that the two populations at Edwards Air Force Base
(WSPR) and Galveston (QSF18) respond similarly, and that doses of approximately 124 to 125 dB
would cause half of each population to respond as highly annoyed.

Table 2: Naive AGHQ estimates and standard errors compared to naive Bayesian posterior means
and standard deviations

Data Estimator β̂0 (SE) β̂1 (SE) σ̂c (SE) d̂50 (dB)

WSPR AGHQ -19.29 (1.70) 0.154 (0.015) 3.34 (—) 125.3
WSPR Bayes -19.22 (1.69) 0.154 (0.015) 3.43 (0.72) 125.0

QSF18 AGHQ -18.67 (2.40) 0.151 (0.028) 2.49 (—) 123.6
QSF18 Bayes -18.62 (2.40) 0.150 (0.029) 2.50 (0.50) 124.1

1.4.2 Simulation Extrapolation (SIMEX)

The SIMEX procedure, a functional measurement error approach, was described in Section 1.3.1.
Among decisions to be made by the practitioner, SIMEX relies on a sequence of measurement
error variance inflation factors (λm), a number of pseudoreplicates (B), and a choice of extrapolant
functions used to ‘remove’ the effects of measurement error. As applied to the WSPR and QSF18
single-event data sets, we assume λm ∈ {0.5, 1.0, 1.5, 2.0}, B = 250, and experiment with two
choices of extrapolant fuction: linear and quadratic functions.

Figure 6 contains SIMEX plots for the parameters of the subject-specific models applied to both
the WSPR data (top row) and the QSF18 data (bottom row). The naive AGHQ point estimates
shown earlier in Table 2 appear at the λ = 0 coordinates in each panel. The simulation phase
of the SIMEX procedure uses a large number of pseudoreplicates subject to increasing levels of
measurement error. The points in each panel with positive λ coordinates represent the arithmetic
averages of naive point estimates obtained from each of the 250 pseudoreplicate datasets.

A pattern is learned experimentally, and through a choice of extrapolant function, the pattern
is projected back to the case of ‘no measurement error’ at the λ = −1 coordinate. The act of
plotting should help guide the choice of extrapolant function. For each data set, the linear trend
(SIMEX-L, black line) and quadratic trend (SIMEX-Q, red line) are fit to the same collection of
five points. Given the assumptions surrounding the measurement error (nondifferential, classical,
constant variance), both choices would seem to adjust estimates in the expected direction. That
is, where the effect of measurement error on a naive analysis is one of attenuation bias (estimates
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of β̂0 and β̂1 pulled closer to zero) the SIMEX-adjusted estimates are moved further away from
zero. In the WSPR data set, the linear and quadratic extrapolant relationships shows only mod-
est departures from one another, with the quadratic extrapolant producing larger adjustments in
intercept and slope coefficients. By contrast, the QSF18 data shows a much stronger quadratic fit,
and the resulting SIMEX-L and SIMEX-Q estimates of intercept and slope are further apart from
one another.

Table 3 contains SIMEX point estimates and standard errors of coefficients in the subject-
specific models, as well as estimates of d̂50 for both single-event data sets. Again, the intercept
and slope estimates are adjusted away from zero. The standard errors were computed by jackknife
variance routine described in (Carroll et al., 2006, Appendix B.4.1); note that the standard errors
also increase relative to the standard errors of the naive models. Where naive analysis suggests
that 50% of both populations would become highly annoyed around 124-125 dB, the SIMEX-Q
estimates suggest that the two communities differ in their respective tolerances, with the Galveston
community approaching 50% annoyance at 105 dB. Population average dose response curves, pro-
duced using integration a la Pavlou et al., are shown in Figure 7. Both panels point to the likely
downward bias of the naive population average curves at the highest end of the dose range. After
accounting for measurement error at both test sites, what seemed to be a similar response across
both populations is shown to differ. Even within the range of doses observed at Galveston (≤90
dB), the probability of annoyance becomes greater than that of the Edwards Air Force Base com-
munity. Comparing the SIMEX-Q curves across both panels, the difference in predicted response
becomes even more apparent, perhaps highlighting habituation of a community at an Air Force
base versus a population seldom exposed to sonic boom noise of any kind.

Table 3: Naive and SIMEX estimates from WSPR and QSF18 studies

Data Estimator β̂0 (SE) β̂1 (SE) σ̂c d̂50 (dB)

WSPR Naive (AGHQ) -19.29 (1.70) 0.154 (0.015) 3.34 125.3
WSPR SIMEX-L -20.95 (1.80) 0.172 (0.016) 3.42 121.8
WSPR SIMEX-Q -21.75 (1.86) 0.181 (0.017) 3.45 120.2

QSF18 Naive (AGHQ) -18.67 (2.40) 0.151 (0.028) 2.49 123.6
QSF18 SIMEX-L -21.07 (2.63) 0.183 (0.031) 2.48 115.1
QSF18 SIMEX-Q -25.29 (3.02) 0.239 (0.037) 2.48 105.8
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Figure 7: Comparison of population average curves at WSPR and QSF18 test sites under naive
analysis and SIMEX adjusted analysis

1.4.3 Structural Bayesian Measurement Error Models

Structural Bayesian measurement error models were discussed in Section 1.3.2. In particular, the
structural measurement error model requires an explicit assumption about the so-called exposure
model, in this context, a probability distribution describing the nature of ‘true dose’ in the com-
munity noise studies. Retaining assumptions of classical measurement error (wij |xij ∼ N(xij , σ̂u))
and the same assumed Cauchy family priors from Section 1.4.1 (β0 ∼ t(0, 10, 1), β1 ∼ t(0, 2.5, 1),
σc ∼ t+(0, 1, 1)), we focus on varying the exposure model, keeping other model features fixed. A
variety of assumptions and insights may be used to develop an exposure model, and we note this
as an apparent source of sensitivity as applied to past risk reduction study data.

From Figure 3, a feature of the WSPR dose data, and indeed, the intended test design, was
bimodality, or combination of low-amplitude sonic booms captured with planned and unplanned
traditional sonic booms. Four choices of exposure model are considered, each completing a different
Bayesian model.

1. Uniform(−100, 200): As assumed in Doebler et al. (2021), this choice of distribution spans
a large, finite support with equal probability density for intervals of the same size within the
support. It imparts little information about actual levels that may have been more frequently
tested, and it assigns positive probability density to negative dose values.

2. 84
110 t1 + 26

110 t2 where t1 = t(µ1 = 83, σ1 = 7, ν = 4) and t2 = t(µ2 = 105, σ2 = 6, ν = 4):
This mixture of t distributions uses some knowledge of test protocols, specifically the known
ratios of low-amplitude sonic booms and traditional sonic booms as captured during testing.
The component t1 is centered near the empirical mean of planned noise doses during testing.
A literature value of 105 PL dB is assumed for the mean of the component t2 Doebler &
Rathsam (2019), with assumed values for the scale parameter and degrees of freedom that
govern the spread and tail-area behavior of the distribution.

3. 84
110N1 +

26
110N2 where N1 = N(µ1 = 83, σ1 = 8) and N2 = N(µ2 = 97, σ2 = 9): Like the
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previous assumption, the mixing probabilities are determined by numbers of planned low-
amplitude sonic boom maneuvers versus planned and adventitious sonic booms. In this case,
empirical means and standard deviations from as-measured doses in the planned and adven-
titious booms inform the means and standard deviations of the normal mixture components.

4. t(µ = 85, σ = 10, ν = 4): This choice eschews knowledge of the mixture of low-amplitude
and traditional sonic booms. Instead, this unimodal distribution is centered at the empirical
mean taken across all doses as-measured, and it is given an increased spread with heavy
tails, so that loud events would be expected with appreciable probability. Specifically, this
distribution embodies a 32% chance that a true dose exceeds 90 dB, and approximately 6%
chance that a true dose exceeds 105 dB.

Table 4 shows the posterior means and posterior standard deviations for parameters obtained
for each choice of exposure model. When compared to the naive model, each distinct measurement
error model offers adjustment away from zero, and the absolute change in intercept and slope
coefficients increases with the application of more informative exposure models. Models 3 and 4
produce results similar to the SIMEX-Q estimator, with d̂50 ≈ 122 dB.

Table 4: Posterior means and standard deviations from WSPR study

Exposure Model, f (xij) β̂0 (SD) β̂1 (SD) σ̂c (SD) d̂50 (dB)

Naive (Bayes) -19.22 (1.69) 0.154 (0.015) 3.43 (0.72) 125.0

1. Uniform(−100, 200) -20.33 (2.02) 0.162 (0.018) 3.64 (0.79) 125.5
2. 84

110 t1 +
26
110 t2 -20.75 (2.01) 0.167 (0.018) 3.67 (0.79) 124.3

3. 84
110N1 +

26
110N2 -21.87 (2.14) 0.180 (0.019) 3.65 (0.79) 121.5

4. t(µ = 85, σ = 10, ν = 4) -21.93 (2.15) 0.180 (0.019) 3.69 (0.79) 121.8

In contrast, Figure 3, shows that unimodality and near symmetry seemed to be a feature of
the Galveston test as executed. Test procedures exclusively used the low-amplitude sonic boom
maneuver, and the preponderance of events were ‘Quiet’, with a maximum undertrack loudness of
73.7 PL dB. (Page et al., 2020a, Tables 4-2 and 4-3) Below, we consider five choices of exposure
model, each fully defining a distinct Bayesian measurement error model for the QSF18 single-event
data. Here we experiment specifically with the spread and tail-area behaviors of the exposure
model, given some notion of the center of the distribution.

1. Uniform(−100, 200): As before, this choice eschews knowledge of test procedures employed,
imparting little information about actual dose levels that may have been tested more fre-
quently. It assigns a 33% chance that doses could be negative, and a 37% chance that an
actual dose could exceed 90 dB.

2. Triangular(35, 70, 105): Centered with a mode at 70 PL dB, this distribution has a finite
support, meaning that, by assumption, actual doses could never fall below 35 PL dB or exceed
105 PL dB. It assigns approximately 9% chance that an actual dose could exceed 90 dB.

3. N(µ = 70, σ = 12): Similar to assumptions made by Erciulescu & Opsomer (2023), the
normal distribution is also centered at 70 dB. Under this assumption, there is less than a one
percent chance that true doses fall outside the range 35 to 105 dB, and about a 5% chance
that an actual dose could exceed 90 dB.
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4. t(µ = 70, σ = 7, ν = 4): Again centered at 70 dB, this distribution assigns just 2% chance
that an actual dose would exceed 90 dB, and, by symmetry, a 2% chance that actual dose
could fall below 50 dB.

5. Triangular(50, 70, 90): Since the triangular distribution has finite support, it assigns no
probability to outcomes outside the minimum and maximum doses of 50 and 90 dB. It assigns
75% chance that actual doses fall between 60 and 80 dB.

The posterior means and standard deviations from each measurement error model are given
in Table 5. Each of the five Bayesian measurement error models adjusts regression coefficients
of intercept and slope further away from zero, with biggest changes seemingly related to greater
concentration of probability density about the mode at 70 dB. Along with greater absolute change
in estimated intercept and slope coefficients, the corresponding posterior standard deviations show
a dramatic increase relative to the naive model. Model 3 produces a d̂50 on par with the SIMEX-L
estimate, whereas Models 4 and 5 produce outcomes more similar to the SIMEX-Q estimator with
d̂50 approaching 108 to 110 dB.

Table 5: Posterior means and standard deviations from QSF18 study

Exposure Model, f (xij) β̂0 (SD) β̂1 (SD) σ̂c (SD) d̂50 (dB)

Naive (Bayes) -18.62 (2.40) 0.150 (0.029) 2.50 (0.50) 124.1

1. Uniform(−100, 200) -20.34 (3.00) 0.165 (0.034) 2.69 (0.54) 123.3
2. Triangular(35, 70, 105) -21.53 (3.35) 0.181 (0.038) 2.73 (0.58) 119.0
3. N(µ = 70, σ = 12) -22.29 (3.54) 0.193 (0.041) 2.65 (0.55) 115.5
4. t(µ = 70, σ = 7, ν = 4) -24.07 (4.07) 0.217 (0.047) 2.76 (0.59) 110.9
5. Triangular(50, 70, 90) -25.64 (4.54) 0.237 (0.053) 2.73 (0.59) 108.2

For each data set, Figure 8 shows one example of a population average curve adjusted for
measurement obtained via Wakefield closed-form approximation, which can be used to generate
the mean response curve as well as its credible intervals. Once again, the naive population average
curves between the two test sites are more similar to one another, and the QSF18 curve shows
greater adjustment after accounting for dose measurement error through the chosen exposure model.
The shaded area in the right panel indicates dose values greater than 90 dB, the maximum dose
measured during the QSF18 study. Note that the mean response of the measurement error model
(solid red line) falls outside the upper 90% credible interval at the high end of the QSF18 dose
range and beyond. This emphasizes the likely downward bias of the naive model.

1.5 Findings and Recommendations in Relation to Future Community Testing
with X-59

We conclude with some considerations for the future community noise studies.

1. Of the four broad methods reviewed, simulation extrapolation and structural hierarchical
Bayesian models may be the most readily applicable to Quesst mission community noise
study objectives. Regression calibration entails a presumption of gold standard data on which
to build the calibration model. Such data may not be obtainable given the novelty of the
noise source, and regression calibration may not address biases in the variance components of a
subject-specific model. Given its connection to Bayesian computing, data cloning requires the
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Figure 8: Example population average dose response curves derived by closed-form approximation

same structural assumption of a plausible exposure model (a potential source of sensitivity)
while inviting increasing computational burden as the number of clones grows. We do note
that some of the computational techniques designed to make data cloning more tractable are
portable back to the Bayesian hierarchical model.

2. To date, NASA efforts have focused primarily on the classical measurement error model, but
systematic sources of error may be present in the future community noise studies. One antici-
pated example is the difference between the best outdoor estimates and the levels experienced
by indoor listeners. Additionally, scale biases could result if differences in predictive accuracy
of the noise estimation procedure vary as a function with the magnitude of the noise level or
lateral distance from under track. If warranted, use of the linear measurement error model
encapsulates both these random and systematic components of measurement error.

3. Simulation extrapolation (SIMEX) may be ideally suited to the analysis of secondary research
questions, which involves interpreting magnitudes of logistic regression coefficients as well
as their associated hypothesis tests. SIMEX offers a viable means of mitigating bias and
restoring statistical power to hypothesis tests. The SIMEX routine is available in an off the
shelf implementation for unweighted logistic regressions in the simex R package (Lederer
et al., 2022). Furthermore, it can be readily programmed for logistic regression analysis
incorporating survey weights.

4. A benefit of the structural Bayesian hierarchical model is that it potentially corrects biases
in the subject-specific model and propagates the uncertainty into the population average
model. We identified the choice of the exposure model as a potential source of sensitivity in
these types of models, and defining spread or tail-area behavior may be particularly difficult
without auxiliary knowledge. Because this particular prior knowledge is acoustical in nature,
it should be developed in consultation with acoustics subject matter experts. Already planned
efforts during the second (acoustic validation) phase of the Quesst mission will be the first
chance the NASA team has to observe the phenomenon of the X-59 shaped sonic boom. Data
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collected during these flights could be used opportunistically to better inform the exposure
models during community tests during the the execution phase of the mission.

2 Annotated Bibliography

The bibliography below was generated upon review of the extensive statistics, epidemiology, econo-
metrics, and acoustics literatures regarding methodological advancements and applications of mea-
surement error corrections. Given the aims of the NASA Quesst mission and the community
response testing in its final phase, the focus was narrowed primarily to provide insights into meth-
ods pertinent to generalized linear mixed models, e.g., multilevel logistic regression. It is hoped,
however, that the references collected, particularly the reviews and textbooks, can be of general
benefit whenever potential explanatory variables can only be observed or measured imprecisely.

2.1 Measurement Error Text Books and Review Articles

1. Fuller, W. (1987). Measurement Error Models. John Wiley and Sons, Inc. https://doi.

org/10.1002/9780470316665

This is an early and foundational textbook on measurement error, with a major focus on
linear regression models with errors in independent variables. Chapter 3 extends the topic to
cases of 1) non-normal errors and unequal variances, 2) nonlinear models, and 3) measurement
errors that depend on the magnitudes of the true variable.

2. Gustafson, P. (2004). Measurement Error and Misclassification in Statistics and Epidemi-
ology: Impacts and Bayesian Adjustments. Chapman & Hall/CRC. https://doi.org/10.

1201/9780203502761

The text offers some in depth description of the impacts of measurement error (Chapter 2)
and its cousin in the discrete variables case, called misclassification (Chapter 3). Chapter
4 is of particular interest given the emphasis on Bayesian corrections for logistic regression
models, and discussions related to specifying the exposure model, a major source of sensitivity
in structural measurement error models. Advanced topics related to model misspecification
and computation are presented in Chapter 6 and an Appendix.

3. Carroll, R., Ruppert, D., Stefanski, L., & Crainiceanu, C. (2006). Measurement Error in
Nonlinear Models: A Modern Perspective (2nd ed.). Chapman and Hall/CRC. https://doi.
org/10.1201/9781420010138

This text focuses on methods for nonlinear models, including logistic regression and other
forms of generalized linear (and mixed) models. The authors were among some of the most
prolific writers on measurement error methodologies, and the textbook consolidates many
of their references presented and discussed later below. Particular emphasis is given to the
distinction between functional methods (Chapters 3-6) which require no specific assumptions
about the distribution of the true predictor variable and structural methods (Chapters 7-
8) which do require such assumptions. Some particular discussion in Chapter 11 calls into
question the utility of regression calibration for longitudinal data collections like the proposed
Quesst mission community noise studies.

4. Yi, G. Y., Delaigle, A., & Gustafson, P., editors (2021). Handbook of Measurement Error
Models. Handbooks of Modern Statistical Methods. Chapman and Hall/CRC. https://doi.
org/10.1201/9781315101279
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This handbook consolidates chapters on many of the widely known methods, as well as
specialty topics. Chapter 1 includes a succinct history of thought and development in the
area of measurement error mitigations. Chapters 3, 4, and 5 have relevant discussions on
the topic of identifiability. Of interest, there are dedicated chapters on regression calibration
(Chapter 7), semiparametric methods (Chapter 9), nonparametric methods (Chapter 14),
measurement error for mixed effects models (Chapter 17). Given the relative age of the other
references, this reference is one of the few that even alludes to data cloning as a strategy for
measurement error applications (Chapter 18, p. 394), noting it as a method to overcome some
of the computational challenges, especially the impediments to working with full likelihood
methods. Chapter 19 introduces spatial concepts to measurement error models. The final
chapter, Chapter 24, focuses on Bayesian approaches.

5. Keogh, R. H., Shaw, P. A., Gustafson, P., Carroll, R. J., Deffner, V., Dodd, K. W., Küchenhoff,
H., Tooze, J. A., Wallace, M. P., Kipnis, V., & Freedman, L. S. (2020). STRATOS Guidance
Document on Measurement Error and Misclassification of Variables in Observational Epi-
demiology: Part 1—Basic Theory and Simple Methods of Adjustment. Statistics in Medicine,
39(16), 2197–2231. https://doi.org/10.1002/sim.8532

This article is the first of a two-part review on the topic of measurement error. The first
part of the review focuses on descriptions of different types of measurement error (e.g., Berk-
son, linear, and classical measurement error models) and distinguish between differential and
non-differential errors and discussion of impacts on various types of common analyses in epi-
demiology. The authors provide useful discussion about developing the additional types of
studies to obtain information about such errors, and ample thought is given to aspects of
study design (including sample size requirements), both for the main study and in subsets of
the data. Finally, regression calibration and simulation extrapolation are described as two of
the simpler means of dealing with measurement error, and application of each is demonstrated
on the Observing Protein and Energy (OPEN) dietary study. Reviews of available software
for executing the methods are provided.

6. Shaw, P. A., Gustafson, P., Carroll, R. J., Deffner, V., Dodd, K. W., Keogh, R. H., Kipnis,
V., Tooze, J. A., Wallace, M. P., Küchenhoff, H., & Freedman, L. S. (2020). STRATOS
Guidance Document on Measurement Error and Misclassification of Variables in Observa-
tional Epidemiology: Part 2—More Complex Methods of Adjustment and Advanced Topics.
Statistics in Medicine, 39(16), 2232–2263. https://doi.org/10.1002/sim.8531

This article constitutes the second part of the two-part review, written by coauthors with
interest in epidemiology. The more advanced methods alluded to include likelihood methods,
Bayesian methods, moment reconstruction, moment-adjusted imputation, and multiple im-
putation. Lists of software are given, and code is available in the supporting information for
this article. More complicated error structures are discussed, for example, the case where a
predictor is subject to both Berkson and classical errors. The final contribution of this article
is advice for the case when there is only external reference, partial, or no external information
about the magnitudes of the measurement errors.

7. Sevilimedu, V. & Yu, L. (2022). Simulation extrapolation method for measurement error:
A review. Statistical Methods in Medical Research, 31(8), 1617–1636. PMID: 35607297.
https://doi.org/10.1177/09622802221102619

The article is a review of two and a half decades of innovation of simulation extrapolation
(SIMEX) techniques alone. Many of the innovations and modifications are discussed in section
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5 and the references therein. Notably, a technique called empirical SIMEX can potentially be
used when measurement error variances are unknown, or perhaps unattainable. The extension
can cover the case when measurement error is unknown and even heteroskedastic. Additional
SIMEX techniques exist for the case where the measurement error is systematic, i.e., has a
mean other than zero.

2.2 Regression Calibration

8. Carroll, R. J. & Stefanski, L. A. (1990). Approximate Quasi-likelihood Estimation in Models
with Surrogate Predictors. Journal of the American Statistical Association, 85(411), 652–663.
https://doi.org/10.1080/01621459.1990.10474925

This is one of the foundational papers on regression calibration, which can be reduced to
a three part process of obtaining 1) a calibration model by regressing a gold standard data
(validation data) on the error prone measurements and other variables, 2) replacing the
unobserved (true) predictor with its estimate in the standard analysis, and then 3) adjusting
standard errors to account for estimation. The authors further developed a taxonomy of likely
data structures that would be necessary to identify parameters of the regression calibration
models: primary data, internal validation data, internal reliability data, external validation
data, and external reliability data. They note that the primary data generally do not identify
all model parameters. A key takeaway is the need for additional data to perform this method.

9. Fung, K. Y. & Krewski, D. (1999). Evaluation of Regression Calibration and SIMEX Methods
in Logistic Regression When One of the Predictors is Subject to Additive Measurement Error.
Journal of Epidemiology and Biostatistics, 4(2), 64–74

The authors developed several simulated data sets, and applied both simulation extrapolation
and regression calibration. They considered cases of both classical measurement error and
Berkson measurement error. The two methods were compared in terns of bias, mean squared
error, and coverage of confidence intervals of the logistic regression estimates. Based on
their findings in simulated data, the authors advocate for the use of regression calibration
versus simulation extrapolation in all but the case of Berkson error with highly correlated
predictor variables. It should be noted that they did not explore the case of logistic models
incorporating random effects of any kind.

10. Horonjeff, R. D. (2023). Correcting for Bias Effects Due to Exposure Uncertainty in Commu-
nity Noise Exposure-Response Analyses. The Journal of the Acoustical Society of America,
154(3), 1614–1627. https://doi.org/10.1121/10.0020545

The author experimented with a variety simulated data and scenarios, varying the sound level
uncertainty, the sound level range, and the distribution of sound levels over that range, e.g.,
the experimental design. The calibration model was able to remove biases in these scenarios,
but, correctly, inflate the standard errors of model parameters.

2.3 Simulation Extrapolation (SIMEX)

11. Cook, J. R. & Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric
measurement error models. Journal of the American Statistical Association, 89(428), 1314–
1328. https://doi.org/10.1080/01621459.1994.10476871

The paper that established the topic, the authors developed a simulation based means of in-
ference for parametric measurement error models. They describe it as a ‘method-of-moments’
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estimation using Monte Carol estimating equations and establish equivalence to method-of-
moments in the linear measurement error model case. In the logistic case, they showed that
the resulting estimators were nearly asymptotically unbiased. Variance estimation and some
additional theoretical justifications for the method were subsequently developed in papers
noted below.

12. Stefanski, L. A. & Cook, J. R. (1995). Simulation-Extrapolation: The Measurement Error
Jackknife. Journal of the American Statistical Association, 90(432), 1247–1256. http://www.
jstor.org/stable/2291515

The authors established a connection between SIMEX and the jackknife estimation, which is
a known useful technique for reducing bias in nonlinear estimators. The major contribution
of the paper was a resulting useful variance estimation procedure. Application in a logistic
regression setting was demonstrated on the Framingham heart study data set.

13. Carroll, R. J., Küchenhoff, H., Lombard, F., & Stefanski, L. A. (1996). Asymptotics for
the SIMEX Estimator in Nonlinear Measurement Error Models. Journal of the American
Statistical Association, 91(433), 242–250. http://www.jstor.org/stable/2291401

This work added to the theoretical justifications for some previously observed behaviors in
SIMEX estimators. Additionally, it provided the derivation of the asymptotic distribution of
SIMEX estimators, giving rise to large-sample variance estimates.

14. Wang, N., Lin, X., Gutierrez, R. G., & Carroll, R. J. (1998). Bias Analysis and SIMEX
Approach in Generalized Linear Mixed Measurement Error Models. Journal of the Ameri-
can Statistical Association, 93(441), 249–261. https://doi.org/10.1080/01621459.1998.

10474106

The paper focuses on the generalized linear mixed model, and specifically, the linear mixed
model; the probit, logistic, and log-linear mixed model for binary responses; and a Poisson
mixed models for count data. Under assumptions of 1) additive and 2) normally distributed
errors, the authors show that the naive models follow generalized mixed models with altered
fixed effects and random effects structures. The assumptions provide a means of character-
izing magnitudes of (asymptotic) biases. The authors discuss the applicability of regression
calibration and SIMEX methods as corrections, noting inconsistency of the regression cali-
bration approach, i.e., that the sequence of estimates produced when using increasing sample
sizes does not converge in probability to the true value of the parameter. Regression coef-
ficients for fixed and random effects, and especially the variance components, may still be
biased when applying regression calibration to generalized linear mixed models.

15. Vaughn, A. B., Cruze, N. B., Boucher, M. A., & Doebler, W. J. (2024). Dose Error Cor-
rection Using Simulation Extrapolation for Modeling Community Noise Dose-Response Rela-
tionships. Proceedings of Meetings on Acoustics, 54(1), 040002. https://doi.org/10.1121/
2.0001938

The authors conducted an extensive simulation study, specifying dose ranges consistent with
the nominal dose range for tests involving the X-59. They assumed logistic dose-response
relationships for each of 11 populations, with increasing sensitivity to the noise stimulus.
Using the rational linear extrapolant function, they showed correction of parameter estimates
in the expected direction, and even that populations with low propensity to be annoyed within
the observed dose range benefited from the method. The authors also recognized sensitivity
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of the SIMEX approach to the estimated dose uncertainty, pointing to the need for reliable
estimates of variance in its execution.

2.4 Bayesian Hierarchical Models

16. Doebler, W. J., Vaughn, A. B., Ballard, K. M., & Rathsam, J. (2021). Simulation and
Application of Bayesian Dose Uncertainty Modeling for Low-Boom Community Noise Surveys.
Proceedings of Meetings on Acoustics, volume 45. https://doi.org/10.1121/2.0001592

This proceedings paper describes some of NASA’s earliest work on measurement error. The
paper discusses both Berkson and classical error structures in mixed logistic Bayesian hierar-
chical models. The paper analyzed both Waveforms and Sonic Boom Perception and Response
(WSPR) and Quiet Supersonic Flights 2018 (QSF18) data, the limited risk reduction study
available prior to NASA’s Quesst mission community tests. Particular distributional assump-
tions were made on model parameters and a uniform prior with large support was assigned to
the ‘true’ dose predictor, a sound level for the sonic booms as test. Under these specific as-
sumptions, the Berkson and classical measurement error models did not seem to differ greatly
from the corresponding naive models or from one another other.

17. Erciulescu, A. & Opsomer, J. (2023). Accounting for Dose Uncertainty in Dose-Response
Curve Estimation Uning Hierarchical Bayes Models. 2023 Joint Statistical Meetings. [Con-
ference Presentation]. https://ntrs.nasa.gov/citations/20230007198

This conference presentation summarized a portion of work performed in support of the
Quesst mission planning stage, again using Bayesian hierarchical models with application to
Quiet Supersonic Flights 2018 (QSF18) risk reduction study data. In particular, different
distributions were assumed for the true dose predictor, ultimately resulting in larger observed
changes in regression coefficients than in Doebler et al. (2021) and presumably in greater
reduction of biases present in the naive model.

18. Richardson, S. & Leblond, L. (1997). Some comments on misspecification of priors in bayesian
modelling of measurement error problems. Statistics in Medicine, 16(2), 203–213. https:

//doi.org/10.1002/(SICI)1097-0258(19970130)16:2<203::AID-SIM480>3.0.CO;2-T

This paper speaks to the driving force between the observed differences reported in Doe-
bler et al. (2021) and Erciulescu & Opsomer (2023). The idea of model misspecification is
examined in the context of Bayesian measurement error adjustments, with a focus on the
(mis)specification of the prior distribution for the ‘true’ predictor. (This corresponds to the
distribution of true levels of noise dose in the NASA Quesst mission community testing con-
text.) In a simulated data set, the authors deliberately specify distributions inconsistent with
the known data generating process and note the changes in estimates of parameters. Struc-
tural methods, like a fully-parametric Bayesian approach, require assumptions about distri-
bution of the true predictor, which may be difficult to formulate reasonably when information
on the phenomenon is scant. Some of the concluding remarks pointed toward relaxations of
the fully-parametric setup to overcome some of these sensitivities to misspecification.

19. Richardson, S. & Gilks, W. R. (1993). Conditional Independence Models for Epidemiological
Studies with Covariate Measurement Error. Statistics in Medicine, 12(18), 1703–1722. https:
//doi.org/10.1002/sim.4780121806

The paper discusses an approach, or ‘recipe’, for decomposing the Bayesian hierarchical mea-
surement error model into submodels governing disease in the epidemiological context (or
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any outcome in other contexts), a measurement model that describes the nature of likely
mismeasurement, and the exposure model, that describes the probabilistic behavior or the
‘true’ predictor or covariate. In so doing, the thought process makes a variety of measure-
ment error models approachable and accessible through dedicated sampling software. This
flexibility and ability to propagate uncertainty is perhaps one of the greatest merits of the
Bayesian approach. Discussion in the paper includes graphical analysis of candidate models
to be fit and analysis and comparison to other method.

20. Schmid, C. H. & Rosner, B. (1993). A Bayesian Approach to Logistic Regression Models
Having Measurement Error Following a Mixture Distribution. Statistics in Medicine, 12(12),
1141–1153. https://doi.org/10.1002/sim.4780121204

The authors turn to Bayesian methods for describing measurement error in the context of
logistic regression. Mixtures of distributions were implemented as a means of allowing mea-
surement error to change form with the observed exposure, e.g., magnitude of the observed
or measured exposure or other delineations. The demonstration on a Nurses Health Study
data set of reported alcohol consumption exemplified the need for a mixture, as one group of
subjects who truly abstained from drinking accurately reported their consumption, whereas
those who did self report drinking may have incorrectly recalled their actual consumption, as
determined by the difference in a maintained diet record versus a food frequency question-
naire.

21. de Castro, M., Bolfarine, H., & Galea, M. (2013). Bayesian Inference in Measurement Error
Models for Replicated Data. Environmetrics, 24(1), 22–30. https://doi.org/10.1002/env.
2179

The importance of replication or repeated measurement in this article is that it gives rise to
Bayesian measurement error approaches that do not require explicit knowledge or estimates
of unknown error (co)variances. The authors focus on linear models and include homo- and
heteroskedastic measurement errors variances as well as the cases of equation error and no
equation error, for a total of four models under consideration.

22. Bartlett, J. W. & Keogh, R. H. (2018). Bayesian Correction for Covariate Measurement
Error: A Frequentist Evaluation and Comparison with Regression Calibration. Statistical
Methods in Medical Research, 27(6), 1695–1708. PMID: 27647812. https://doi.org/10.

1177/0962280216667764

The article is somewhat tutorial in nature, as the authors advocate that Bayesian methods
for dealing with covariate measurement error are well established and should be more widely
adopted by practitioners. They contrast Bayesian hierarchical models specifically with re-
gression calibration in the context of so-called replication studies, i.e., studies that have one
or more replicate observations of the exposure for some portion of the main study sample.
While the authors note the popularity of regression calibration, there are apparent draw-
backs. Moderately large biases may remain in nonlinear models, even with large sample sizes.
Extensions to non-trivial cases are given where the outcome is a non-linear function of the
true covariate or the measurement error model is heteroskedastic. Finally, the regression
calibration method does not immediately accommodate uncertainty in the parameters of the
measurement model, and therefore, measures of uncertainty often stem from approximate
methods. In contrast, the authors argue that the Bayesian approach naturally handles ad-
ditional sources of uncertainty including measurement error, misclassification, and missing
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data, and echo the arguments of Richardson & Gilks (1993) that it facilitates great flexibility
to adapt to more complex modeling scenarios.

23. Muff, S., Riebler, A., Held, L., Rue, H., & Saner, P. (2015). Bayesian Analysis of Measure-
ment Error Models Using Integrated Nested Laplace Approximations. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 64(2), 231–252. http://www.jstor.org/

stable/24771892

Computation is a recurring theme in the literature for Bayesian corrections to measurement
error. In principle, the hierarchical structures outlined in Richardson & Gilks (1993) and
elsewhere coupled with software to execute sampling from marginal posterior distributions
makes fitting a variety of measurement error models feasible. In practice, sampling-based
approaches can be rather compute intensive, and case-specific implementations can be a
challenge. The primary contribution of this article is clarifying the means by which common
measurement error models, e.g., classical or Berkson models, can be cast as latent Gaussian
models, enabling fast approximation of the posterior marginal distributions via Integrated
Nested Laplace Approximation (INLA). The focus was on application of both measurement
error models in the context of generalized linear (mixed) models. Example R code is available
with the online supplemental material.

2.5 Data Cloning

24. Lele, S. R., Dennis, B., & Lutscher, F. (2007). Data Cloning: Easy Maximum Likelihood Esti-
mation for Complex Ecological Models Using Bayesian Markov Chain Monte Carlo Methods.
Ecology Letters, 10(7), 551–563. https://doi.org/10.1111/j.1461-0248.2007.01047.x

This paper introduced data cloning as an adaptation of a computational approach with sim-
ilarities to simulated annealing algorithms. The data cloning procedure described uses the
Bayesian modeling framework, but only as a means of obtaining frequentist, maximum like-
lihood estimates. The ‘recipe’ involves: 1) constructing a full Bayesian model, with fully
specified, proper prior distributions, 2) substituting the likehood function for the data with
a likelihood corresponding to k copies of the data (the number of clones), and 3) computing
the posterior means and k times the posterior variances, which correspond to the maximum
likelihood estimate and asymptotic variance, respectively. The method overcomes several of
the challenges of maximum likelihood estimation for hierarchical models, and it is invariant
to choices of prior distribution. Several applications to ecological data were demonstrated.

25. Ponciano, J. M., Taper, M. L., Dennis, B., & Lele, S. R. (2009). Hierarchical Models in
Ecology: Confidence Intervals, Hypothesis Testing, and Model Selection Using Data Cloning.
Ecology, 90(2), 356–362. https://doi.org/10.1890/08-0967.1

Data cloning procedures are subject to two inferential limitations. First, the method produces
so-called Wald-type confidence intervals, which may be inaccurate in small sample settings.
Second, the procedure doesn’t numerically evaluate the maximized likelihood function, nec-
essary for profile-likelihood intervals, likelihood ratio hypothesis tests, and model selection.
The authors develop computationally efficient methods for computing likelihood ratios using
data cloning, enabling a larger set of common inferential goals.

26. Lele, S. R., Nadeem, K., & Schmuland, B. (2010). Estimability and likelihood inference
for generalized linear mixed models using data cloning. Journal of the American Statistical
Association, 105(492), 1617–1625. https://doi.org/10.1198/jasa.2010.tm09757
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A follow up article to the ecology papers above, this paper focuses on some methodological
developments related to diagnostics of 1) convergence of the procedure to the maximum
likelihood estimates with a sufficient number of clones, and 2) estimability (identifiability) of
model parameters in generalized linear mixed models. The convergence diagnostic is related
to degeneracy of the posterior distribution; it involves checking that the largest eigenvalue of
the posterior variance matrix is close to zero. Analytical proofs for identifiability are often
difficult and rarely attempted, meaning that practitioners often carry out the analysis as
though parameters are fully estimable. The graphical estimability diagnostic is important,
especially for generalized mixed (and measurement error) models, as it flags the existence of
unidentified model parameters.

27. Sólymos, P. (2010). dclone: Data Cloning in R. The R Journal, 2(2), 29–37. https:

//doi.org/10.32614/RJ-2010-011

This article documents a specific implementation of data cloning in the R statistical program-
ming language. The article discusses some applications of data cloning to data analyzed by a
generalized linear mixed model, specifically, a Poisson regression for wildlife counts data. In
addition to expediting the data cloning procedure, the article discusses the implementation of
some important diagnostics developed and discussed in Lele et al. (2010). The functionality
provided offers a convenient way for those already invested in Bayesian methods to obtain
corresponding maximum likelihood estimates for complex models.

28. Torabi, M. (2012). Likelihood Inference in Generalized Linear Mixed Models with Two Com-
ponents of Dispersion Using Data Cloning. Computational Statistics & Data Analysis, 56(12),
4259–4265. https://doi.org/10.1016/j.csda.2012.04.008

Even in the absence of measurement error, maximum likelihood estimation of parameters
of generalized linear mixed models presents a challenging numerical analysis problem, and
the addition of a second random effect (variance component) amplifies the computational
challenge. The author implements data cloning and compares the results to a variety of com-
peting estimators (hierarchical Bayes, corrected penalized quasilikelihood, quasi-likelihood
and method of moments) for fully-pooled and two-component mixed logistic regression model
on a well-known salamander mating success data set. Data cloning, which produces the
maximum likelihood estimates, produced estimates that were generally more efficient than
competing estimators, and it yields a means of predicting random effects, e.g., subject-specific
intercepts.

29. Torabi, M. (2013). Likelihood Inference in Generalized Linear Mixed Measurement Error
Models. Computational Statistics & Data Analysis, 57(1), 549–557. https://doi.org/10.

1016/j.csda.2012.07.018

This may be one of the few available applications of data cloning specifically on a measure-
ment error problem in the generalized linear mixed models setting currently available in the
literature. Frequentist computation for GLMM, even in the absence of measurement error,
can be quite difficult. The utility of data cloning was demonstrated on real data sets for
mixed linear and mixed logistic regression models. In the linear mixed model applied to
National Cancer Institute’s OPEN Study, data cloning outperformed a corresponding hierar-
chical Bayesian measurement error model in terms of delivering greater precision; the relative
efficiency (hierarchical Bayes relative to maximum likelihood via data cloning) ranged from
100% to 219%. In an analysis of fully-pooled logistic regression applied to the famed Framing-
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ham Heart Study, the author compared data cloning to hierarchical Bayes models, regression
calibration, and simulation extrapolation noting several advantages.

30. Baghishani, H., Rue, H., & Mohammadzadeh, M. (2012). On a Hybrid Data Cloning Method
and Its Application in Generalized Linear Mixed Models. Statistics and Computing, 22, 597–
613. https://doi.org/10.1007/s11222-011-9254-z

In this article, the term ‘hybrid’ data cloning refers to the synthesis of data cloning with a
computational approach known as Integrated Nested Laplace Approximation (INLA). INLA
provides fast, accurate approximation of posterior distributions for a particular (broad) class
of model known as the latent Gaussian model. Since data cloning requires an increasing
number of clones to assure convergence, some of the appeal of the method, e.g., invariance
to choice of prior distributions, may be overtaken by the increasing computational burden.
The primary contribution of this article is one of computational expedience, with asymptotic
theory developed for GLMMs and demonstrated on both simulated and real data.

31. Picchini, U. & Anderson, R. (2017). Approximate Maximum Likelihood Estimation Using
Data-Cloning ABC. Computational Statistics & Data Analysis, 105, 166–183. https://doi.
org/10.1016/j.csda.2016.08.006

In a similar vein to Baghishani et al. (2012), the article investigates more computationally
expedient (approximate) data cloning through approximate Bayesian computation (ABC).
Approximate Bayesian computing is often used when the corresponding likelihood functions
are intractable or cannot be expressed in closed form, e.g., stochastic differential equations,
state-space models, and g-and-k distributions. Data cloning is combined with an ABC-MCMC
sampler to execute the estimation procedure on larger intractable data sets of these types.

2.6 Additional References

32. Lee, J., Rathsam, J., & Wilson, A. (2020). Bayesian Statistical Models for Community
Annoyance Survey Data. The Journal of the Acoustical Society of America, 147(4), 2222–
2234. https://doi.org/10.1121/10.0001021

This article has been a starting point in the naive analysis of QSF18 data, employing Bayesian
hierarchical models to fit two generalized linear mixed models: the random intercept logistic
regression, and the random intercept ordinal regression of QSF18 risk reduction study data.

33. Vaughn, A. B., Rathsam, J., Doebler, W. J., & Ballard, K. M. (2022). Comparison of two
statistical models for low boom dose-response relationships with correlated responses. Pro-
ceedings of Meetings on Acoustics, volume 45. https://doi.org/10.1121/2.0001541

This work by NASA survey team researchers performed naive analysis comparing multilevel
logistic regression and generalized estimating equations to produce population average dose
response curves.

34. Lau, Y. T. A. & Yan, J. (2022). Bias Analysis of Generalized Estimating Equations Under
Measurement Error and Practical Bias Correction. Stat, 11(1), e418. https://doi.org/10.
1002/sta4.418

As one of the alternatives to GLMM, generalized estimating equations (GEE) requires spec-
ification of a working correlation structure. In the presence of covariate measurement error,
the biases and mean squared errors may be greater under correct specification of the working
correlation than under a working independence assumption. The authors propose a functional
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bias correction approaches suitable for large samples sizes, and make further adjustments for
the case of small sample sizes. The methods for these measurement error corrections are
available in the eiv (errors-in-variables) package in the R programming language.

35. Doebler, W., Vaugh, A., Cruze, N., Ballard, K., Rathsam, J., & Parker, P. (2022). Effects of
Dose Error and Sample Size on Sonic Boom Dose-Response Curves. Journal of the Acoustical
Society of America, volume 152. Conference presentation and abstract; proceedings paper
forthcoming. https://doi.org/10.1121/10.0015769

The authors experimented with varying sample sizes and severity of of dose uncertainty
in simulated data sets, noting the effects of sampling error were distinct from the loss of
accuracy due to dose error (covariate measurement error), which couldn’t be ameliorated with
larger sample sizes. Subjecting the same simulated data sets to increasing degrees of dose
uncertainty, the authors observed proportional relationships in the change. This observation
is related to the choice of extrapolant function in SIMEX.

36. Doebler, W., Ballard, K., Vaughn, A., & Parker, P. (2023). Dose Error Impacts on a Collection
of Realistic Dose-Response Curves Based on a NASA Sonic Boom Community Noise Survey.
INTER-NOISE and NOISE-CON Congress and Conference Proceedings, volume 268. https:
//doi.org/10.3397/IN_2023_0621

This work examined the sensitivity of dose response curves to dose error in the context of
many simulated populations with different onset and rate of annoyance. The authors noted up
to a 14 dB difference in dose eliciting high rates of annoyance, attributable to measurement
error, depending on the specifics of the simulated population and the severity of the dose
error.

37. Stefanski, L. A. & Carroll, R. J. (1985). Covariate Measurement Error in Logistic Regression.
The Annals of Statistics, 13(4), 1335 – 1351. https://doi.org/10.1214/aos/1176349741

This is among the early references about the effects of covariate measurement error on logistic
regression. Specifically, the paper characterizes the asymptotic bias of naive logistic regression
estimators and the tendency to both overpredict response at low ends of the covariate range
and underpredict predict response at the high end of the covariate range. Three alternative
estimators are developed, including one estimator that makes only assumptions about mo-
ments of the distribution of measurement errors, and two alternatives based on assumptions
of normally distributed measurement errors.

38. Apanasovich, T. V., Carroll, R. J., & Maity, A. (2009). SIMEX and Standard Error Estimation
in Semiparametric Measurement Error Models. Electronic Journal of Statistics, 3(none), 318
– 348. https://doi.org/10.1214/08-EJS341

Many of the approaches discussed proceed from modeling the mismeasured variable fully
parametrically. This article provides a generalization that enables application of SIMEX that
encompasses models for mismeasured variables that are fully nonparametric, fully parametric,
or have some components that are modeled both parametrically and nonparametrically. A
novel standard error estimator is proposed.

39. Alexeeff, S. E., Carroll, R. J., & Coull, B. (2016). Spatial Measurement Error and Correction
by Spatial SIMEX in Linear Regression Models when Using Predicted Air Pollution Expo-
sures. Biostatistics, 17(2), 377–389. https://doi.org/10.1093/biostatistics/kxv048
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This article considers the case of linear health effects models where one of the predictor
variables (air pollution) is the product of a spatial model that may be subject to estimation
error as well as model misspecification. Both the these cause bias, and the latter also induces
asymptotic biases on a slope coefficient. The spatial SIMEX models were developed to correct
against both. The application included a study relating effects of air pollution on birth weights
in Massachusetts. Given that the prevailing thinking for estimating dose involves the uses of
a spatial model, the method may have potential application during the Quesst mission.

40. Baghishani, H. & Mohammadzadeh, M. (2011). A Data Cloning Algorithm for Computing
Maximum Likelihood Estimates in Spatial Generalized Linear Mixed Models. Computational
Statistics & Data Analysis, 55(4), 1748–1759. https://doi.org/10.1016/j.csda.2010.11.
004

While not a measurement error topic, per se, this reference couples the appeal of data cloning
with spatial analysis of a generalized linear mixed model, which may have applicability in the
X-59 community tests as the loudness generally varies spatially with lateral distance away
from undertrack.
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