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I. Abstract
Efficient management of air traffic and mitigation of delays depend on extracting actionable information from

unstructured data, such as dialogues from the Federal Aviation Administration’s (FAA’s) Air Traffic Control System
Command Center (ATCSCC) telecons. This study presents a pipeline utilizing Natural Language Processing (NLP)
methods for Intent Classification (IC) and Slot Filling (SF) to identify and extract Traffic Management Initiatives (TMIs)
from aviation-specific dialogues. We leveraged DeBERTa, a pre-trained transformer model, and fine-tuned it to the
nuances of the aviation domain. Despite challenges posed by annotation complexities, the IC model achieved promising
results with a weighted average F1-score of 0.81. Our results are close to those of human annotators, which demonstrates
the model’s strong alignment with human-level performance. The SF model also showed strong performance, achieving
a weighted F1-score of 0.97, which demonstrates its effectiveness in accurately predicting key slots. Our analysis
revealed limitations in handling less frequent intents and slot labels due to data sparsity, motivating future efforts to
adopt joint IC-SF modeling and data augmentation strategies. This research highlights the potential of domain-specific
NLP to streamline decision-making in the aviation industry and improve the management of TMIs.

II. Introduction
The Federal Aviation Administration’s (FAA) Air Traffic Control System Command Center (ATCSCC) plays a

pivotal role in regulating air traffic, especially during adverse weather conditions or airport constraints that stress the
U.S. National Airspace System (NAS). Experts from government agencies and the aviation industry manage traffic and
balance capacity with demand through a collaborative decision-making process. Using daily teleconference calls (or
telecons), various stakeholders including Air Traffic Control (ATC) centers, Terminal Radar Approach Control Facilities
(TRACONs), Towers, and Aviation industry partners discuss flight planning under weather constraints, runway closures,
and other potential issues[1]. One integral component of these conference calls is engaging in discussions regarding
Traffic Management Initiatives (TMIs). TMIs are techniques used by Air Traffic Controllers (ATCos) to balance demand
with capacity when conditions are not ideal, either at an airport or in a section of airspace. One example of a TMI is the
Ground Delay Program (GDP), which involves delaying aircraft at their departure airport to reconcile demand with
capacity at their arrival airport. Another example is Ground Stop (GS) which is a procedure that requires aircraft that
meet specific criteria to remain on the ground at their origination airport. Following each telecon, ATC specialists
compile and publish detailed ATCSCC advisories. The advisories include information regarding airspace restrictions,
weather conditions, TMIs, and other relevant updates that affect flight operations and are crucial to air traffic users and
other stakeholders.

A manual analysis of telecons is a time-consuming, tedious process and requires considerable resources. Therefore,
the goal is to develop an automated system that accurately retrieves key or specific information from the recorded audio
of telecons. Harnessing cutting-edge Natural Language Processing (NLP) techniques enables comprehension of these
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audio files and the extraction of essential points from the conversation.

III. Related work
NLP techniques have been widely applied in the aviation domain for various tasks. This research focuses on

extracting key information, particularly TMI-related sentences and attributes, from telecon transcripts. NLP applications
in aviation have demonstrated effectiveness in various contexts, such as classifying and organizing safety-critical
information. For instance, Tanguy et al. [2] used text classification to categorize safety reports based on the causes of
incidents or accidents. They employed a supervised machine learning model (SML) to assign each report the appropriate
label, showing how classification models can be used to manage and interpret complex aviation data. A fundamental
issue with SML algorithms is their reliance on the availability of large, labeled datasets for efficient training. To address
this issue, several other studies [3–5] avoided training a classification model from scratch and instead fine-tuned a
pre-trained Large Language Model (LLM), such as RoBERTa [6], for their classification task. Recent advancements
include Aviation-BERT [7], a domain-specific model pre-trained on accident and incident text narratives from the
National Transportation Safety Board (NTSB) and Aviation Safety Reporting System (ASRS) databases, which has
been shown to outperform general-purpose BERT in aviation text-mining tasks. Matthews et al., [8] used RoBERTa
for sentiment analysis of aviation safety reports using ASRS dataset followed by clustering using the HDBSCAN [9]
method to glean common corrective actions taken by pilots. In another study, Badrinath et al. [10], used rule-based
techniques and a Named Entity Recognition (NER) model to extract call-signs and runway identifiers from ATC-Pilot
communication transcripts. Wang et al., [11] proposed a method to transform complex unstructured ATCo’s commands
into simple structured ones. They employed Automatic Speech recognition (ASR) to transcribe ATC audio commands
followed by the application of NLP techniques such as semantic labeling and NER to analyze the transcript and eventually
obtain the structured instruction.

Despite significant progress in applying NLP techniques to aviation tasks, several challenges remain. Existing
approaches, such as those by Matthews et al., [8] and Badrinath et al. [10], focus primarily on predefined structured
outputs or specific tasks, such as extracting call signs or clustering sentiment-based corrective actions. While these
methods demonstrate the utility of NLP for aviation safety, they often rely on either manual rule-based systems or
lack robustness in handling domain-specific variations, such as those seen in telecon dialogues. Our work builds
on these methods by addressing a critical gap in the aviation NLP domain: extracting key information directly from
conversational dialogues, which presents unique challenges compared to structured data like incident reports or call
signs. The unstructured nature of telecon dialogues, requires a novel approach to both labeling and structuring the
data. This work directly extracts sentence-level intents as a crucial first step. Following this, the focus shifts to
extracting TMI-related attributes from these TMI-related sentences, as these attributes are crucial for effective air traffic
control decision-making. Natural language understanding (NLU) techniques are employed to close the gap between
unstructured communication data and specific actionable insights. This hierarchical approach addresses issues such as
complex relationships within unstructured text and offers a more robust solution compared to static rule-based systems
or single-task models.

IV. Proposed approach
NLU focuses on understanding and interpreting human language in a meaningful way. Intent Classification (IC) and

Slot Filling (SF) — with SF referring specifically to the NLP domain and not any FAA process — are two key techniques
that, when applied in Air Traffic Management (ATM), can significantly aid the decision-making processes. IC involves
the categorization of user statements to find the intention behind them. By automatically categorizing relevant text into
predefined intents, users can focus on the most critical tasks without having to read through long telecon transcripts (or
listen to the audio). SF is the task of extracting specific information, such as dates, times, and quantities from the user’s
input. It complements IC by identifying key details within the text that are relevant to the determined intent.

This study focuses on identifying the intents behind telecon phrases, followed by extracting detailed information
specifically related to TMIs. For instance, in a sentence describing a planned TMI, the IC model first determines the
sentence’s intent as TMI-related. The SF model then extracts key TMI attributes, such as type, scope, status, and
underlying reasons (e.g., poor visibility or runway closure). By combining IC and SF, our approach efficiently distills
actionable insights from extensive telecon transcripts. Figure 1 illustrates a sample sentence, where the IC model
predicts the intent, followed by the SF model extracting the relevant attributes.

Figure 2 provides an overview of our process, starting with the transcription of telecons and progressing to training
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Fig. 1 A sample teleconference sentence is first categorized by IC, and subsequently, the slots are extracted
through SF.

both IC and SF models, illustrating the relationship between the two. Starting with 25 ATCSCC telecons, comprising a
total of 5 hours of audio, we first divided the audio files into 1-minute segments. These segments were then transcribed
into text using our in-house, fine-tuned Whisper model [12]. After transcription, Subject Matter Experts (SMEs)
manually reviewed and refined the unformatted text. The compiled text then underwent preprocessing steps, including
Inverse Text Normalization (ITN) and sentence splitting by punctuation marks (e.g., question marks and periods).
ITN was used to convert unformatted text into a more readable form for end-users: for instance, converting words to
numerical representations (e.g., "thirty-eight" to "38"), standardizing temporal expressions (e.g., "seventeen hundred
zulu" to "1700Z"), and formatting TMI names according to FAA standards (e.g., "seattle g d ps" to "Seattle GDPs").
For further details on the ITN step, refer to the work by Guo et al. [13].

Fig. 2 Overview of the IC and SF tasks.

V. Datasets
After processing, the individual sentences were organized into an IC dataset of 4,300 real-world examples from

telecon transcriptions. Using the Prodigy software [14] as an interface, Subject Matter Experts (SMEs) annotated each
sentence with one of the nine labels defined in Table 1. The labels were categorized into general aviation issues, including
flight arrival rate changes (AAR_change), TMI-related topics (add_TMI), airport constraints (add_airport_constraint),
weather constraints (add_weather_constraint), removal of TMIs or constraints (remove_item), and changes in flight
routes (route). Additionally, some labels reflected more natural language scenarios, such as requests for updates from
stakeholders by ATC (getting_updates) or reports of positive situations at stakeholder bases (give_positive_report).
Sentences that did not convey any specific meaning or intention were labeled as none.

However, due to the complexity of the telecons and the conversational nature of the sentences, creating the dataset
was particularly challenging. It was often difficult to determine which label to assign to a given sentence, as multiple
intents could occur simultaneously or the distinctions between labels were subtle, requiring careful judgment. To assess
how challenging this task was and evaluate annotator agreement, a subset of the dataset (150 sentences) was tagged
by four different SMEs based on the definitions provided for each label in Table 1. To find the agreement between
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annotators, Fleiss’ Kappa [15] score was calculated. Fleiss’ Kappa is a statistical measure for inter-rater reliability,
assessing the degree of agreement among multiple raters, where a score of 0 indicates no agreement and 1 indicates
perfect agreement. For the dataset subset, the Fleiss’ Kappa score was 0.35, indicating ’fair agreement’ among the
annotators. Insights from this analysis guided multiple rounds of dataset refinement to ensure each sentence was
assigned a single, most-suitable label. This iterative process was crucial for creating a consistent and reliable dataset for
downstream tasks.

Table 1 Intent definitions and examples.

Intent Definition Example
AAR_change A change in the arrival rate at an airport “Looks like they’re operating at the 34 rate

with the trips”
add_TMI An indication that there is a need to mod-

ify/add a TMI (or a strategic plan) or a
potential for a future TMI/strategic plan

“We are managing with some mile in trail
there”

add_airport_constraint A constraint was added due to a condition
at an airport, it can be a possible constraint

“We have some overage here, low ceilings
and runway construction”

add_weather_constraint A constraint was added due to weather con-
ditions, it can be a possible constraint

“Sparse coverage throughout Florida”

getting_updates Asking stakeholders for updates “New York center anything you’d like to
add?”

give_positive_report An indication that the conditions are desir-
able at a center/airport

“Yeah, the TAF showing actually clearing,
yeah, between 13 and 14Z”

none General discussions that do not have a spe-
cific intent

“Thanks for that Potomac”

remove_item An indication that a TMI, airport constraint,
weather constraint, or route will be removed
or canceled early, prior to its scheduled end
time

“San Francisco showing clearing sometime
around the 1530”

route Any conversation regarding routes “Newark and Kennedy wind routes are out”

The SF dataset was constructed by selecting all sentences labeled as add_TMI from the IC dataset, focusing on
extracting relevant TMI attributes. This selection was made because TMIs are considered one of the most critical
aspects of the telecons and extracting the TMI-related attributes can facilitate and expedite decision making for the
command center traffic specialists. The SF dataset was comprised of 550 sentences out of the total 4,300 sentences from
the telecons.

Each slot (or label) has its own definition and role in describing TMIs comprehensively. However, similar to the IC
dataset creation, the conversational format of telecons presents a challenge, as not all slots are stated within a single
sentence. Another significant challenge during data annotation was determining the appropriate label for each token, as
there were often multiple ways to assign slot labels to entities—or even decide whether an entity should be assigned a
slot at all. To address this, we conducted multiple rounds of tagging with different domain experts, but certain instances
still lacked consensus on the correct slot, highlighting the inherent difficulty of labeling conversational data. The final
dataset was created only after several group discussions among the experts to reach a consensus on each sentence,
ensuring consistency and accuracy in the annotations. Our goal was to align the selected TMI attributes with the FAA’s
Flow Information Exchange Model (FLXM). The selected TMI attributes include the type of TMI (Type), the scope of
the TMI (Scope), the current status of the TMI (Status), with examples such as current, future, or possible. Additionally,
the attributes capture any information explaining why the TMI was implemented (Information), arrival rate information
within the TMI context (Rate), the timing of the upcoming TMI (Time), and relevant details about the TMI’s impact
on arrivals or departures (Statistics). The complete list of TMI slots for the SF task is provided in Table 2. For each
attribute, an example sentence is provided in the third column, with the corresponding attribute highlighted in bold for
clarity.

For SF dataset tagging, the SMEs used the Prodigy software interface to label relevant slots, applying the IOB
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(Inside-Outside-Beginning) tagging scheme at the token level to mark each slot’s boundaries within the text. Each
character is tagged as:

• B- (Beginning): Marks the start of a token.
• I- (Inside): Marks characters continuing within the same slot.
• O (Outside): Marks characters that are not part of any slot.
Figure 3 shows an example of how a sentence from the dataset is tagged using the IOB scheme.

Fig. 3 IOB tagging of a sentence from the dataset.

Table 2 TMI-attributes definitions and examples.

TMI attribute Definition Example
Type The type of the TMI being discussed “Seattle expecting a GDP due to the runway

construction ongoing there”
Scope The scope of where the TMI applies “Seattle expecting a GDP due to the runway

construction ongoing there”
Status Indicates the status of the TMI: current,

future, or possible
“Seattle expecting a GDP due to the runway
construction ongoing there”

Information Represents causal factors to the TMI “Seattle expecting a GDP due to the runway
construction ongoing there”

Rate Arrival rate information “We do some around 28 30 airborne”
Time The temporal information about a TMI “I was told Toronto extended their GS until

1215Z and it’s for all aircraft”
Statistics used for delay statistics and other TMI sta-

tistical details
“I was told Toronto extended their GS until
1215Z and it’s for all aircraft”

VI. AI Model Description
For both IC and SF tasks, BERT [16], a pre-trained large language model developed by Google AI in 2018, was

utilized. Trained on a vast corpus of text, BERT provides a solid foundation for a wide range of NLP tasks. However,
fine-tuning is essential to adapt BERT to the unique terminology and phraseology of the aviation domain. Unlike
training a model from scratch, which requires large amounts of labeled data, fine-tuning allows for adjusting BERT’s
parameters to better fit the specific dataset and tasks at hand.

BERT-based models, such as Distilled BERT, DeBERTa (both large and base variants), and uncased BERT, are
optimized versions of the original BERT model, each designed to improve performance, reduce computational overhead,
or handle specific nuances like casing in text, offering flexibility for various natural language processing tasks. DeBERTa
Large was used for model training due to its enhanced performance over traditional BERT models. DeBERTa [17]
improves upon BERT by incorporating a more efficient attention mechanism and better handling of word dependencies,
which allows it to capture richer semantic information. Its larger model size provides greater capacity to understand
complex language patterns, making it particularly well-suited for the specialized terminology and structure of the
aviation domain. After training, the model’s performance is evaluated by analyzing its predictions and identifying areas
for improvement. The datasets are then iteratively refined and improved to enhance accuracy and achieve the desired
performance level.
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The following metrics were used to evaluate the model training:
• Precision is the ratio of correctly predicted positive observations to the total predicted positives. It is defined as:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

where 𝑇𝑃 is the number of true positives, and 𝐹𝑃 is the number of false positives.
• Recall is the ratio of correctly predicted positive observations to all observations in the actual class. It is defined

as:
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

where 𝑇𝑃 is the number of true positives, and 𝐹𝑁 is the number of false negatives.
• The F1-score is the harmonic mean of precision and recall, and it is calculated as:

𝐹1 = 2 × Precision × Recall
Precision + Recall

Each of the IC and SF datasets were split into 80% for training and 20% for testing. After the split, the sentences
were tokenized and further processed in preparation for the model training. The training datasets were subjected to
5-fold cross-validation, where it was partitioned into five subsets. During each fold, one subset was used for validation,
and the remaining four subsets were used for training. This technique ensures that the model is evaluated on different
portions of the training data, improving its generalization and reducing the risk of overfitting.

VII. Results
The distribution of intents in the IC dataset is shown in Figure 4. The dataset is imbalanced, with the majority of

sentences labeled as either none or getting_updates indicating that they do not contain any useful information. Following
those two majority classes, the most frequent intents are weather constraints (add_weather_constraint), TMI-related
(add_TMI), and airport constraints (add_airport_constraint), respectively.

Fig. 4 IC dataset distribution.

DeBERTa Large was fine-tuned on the IC dataset, and the evaluation results are presented in Table 3. Varying
performance is observed across different intents. For instance, the AAR_change intent has high precision (0.93) but a
lower recall (0.74), suggesting that the model is accurate when predicting this intent but misses some instances. In
contrast, add_airport_constraint and give_positive_report exhibit lower precision and recall (0.47 and 0.50, respectively),
indicating that the model struggles to consistently identify these intents. On the other hand, add_weather_constraint
and getting_updates show strong performance with high F1-scores (0.85 and 0.87), reflecting balanced precision and
recall, and suggesting that the model accurately identifies these intents without significant errors.
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Overall, the macro average F1-score of 0.73 reflects the model’s average performance across all intents, while the
weighted average F1-score of 0.81 demonstrates better performance on more frequent intents (such as none). The
accuracy of 0.80 indicates that the model has a solid understanding of the dataset, though there is still room for
improvement in handling less frequent intents. To compare the model’s performance with the initial SME-tagged 150
sentences, all four labels for each sentence were evaluated. If at least one annotator selected the correct label, it was
recorded in a separate column as a correct label, and the same classification report was generated. Annotator scores of
0.74 for F1-score and 0.83 for accuracy were obtained, showing close alignment with the model’s classification scores,
indicating consistency between the initial annotations and the model’s predictions.

Table 3 Evaluation results for IC.

Intent Precision Recall F1-score
AAR_change 0.93 0.74 0.82
add_TMI 0.80 0.81 0.80
add_airport_constraint 0.47 0.52 0.50
add_weather_constraint 0.88 0.83 0.85
getting_updates 0.89 0.84 0.87
give_positive_report 0.50 0.47 0.49
none 0.87 0.87 0.87
remove_item 0.42 0.67 0.51
route 0.85 0.83 0.84
accuracy 0.80 0.80 0.80
macro avg 0.73 0.73 0.73
weighted avg 0.81 0.80 0.81

To evaluate the IC model’s performance in more detail, the confusion matrix shown in Figure 5 is examined to identify
challenging predictions and instances where certain labels, such as add_airport_constraint, were inaccurately predicted.
Analysis of the matrix reveals that the model frequently misclassified add_airport_constraint as add_weather_constraint,
add_TMI, or AAR_change.

DeBERTa Large was fine-tuned on the SF dataset, and the overall weighted F1 score for the test set is 0.97. Instead
of presenting multiple evaluation metrics such as F1-score, accuracy, and precision for the SF model training results, the
confusion matrix is studied due to the complexity introduced by the IOB (Inside, Outside, Beginning) format. The
confusion matrix in Figure 6 illustrates the performance of the SF model, showing the alignment between true and
predicted labels across multiple attribute types. The diagonal entries represent correctly classified instances for each
label, while off-diagonal entries indicate misclassifications. For example, the model shows relatively strong performance
on key labels such as B-scope with 41 correct predictions and B-type with 37 correct predictions, suggesting reliable
detection of these key categories. However, some misclassifications are evident, such as instances of B-information and
I-information predicted as O (outside), as well as instances of I-status and B-status classified incorrectly across various
other labels. Since the information and status slots are less critical and serve to add additional details rather than being
essential for the core task, misclassifications in these categories are more forgivable. There is a notable class imbalance,
as seen from the high count of O predictions (4003 instances), indicating the predominance of outside entities in IOB
tagging. This demonstrates that the model is strongly capable of selecting the slots of interest and accurately dismissing
irrelevant ones.
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Fig. 5 Confusion matrix for IC.

Fig. 6 Confusion Matrix for SF.
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VIII. Conclusions
In this study, we focused on extracting critical information, specifically TMIs, from ATCSCC’s telecons in the

aviation domain. To achieve this, aviation domain experts manually tagged two datasets: one for Intent Classification
and one for Slot Filling. Tagging these datasets was particularly challenging due to the conversational nature of the
sentences, which introduced complexity in annotation. In a small subset of the data, annotator agreement was only 0.35
for the IC dataset, which shows the difficulty in achieving consistent tagging. Therefore, it required several rounds of
tagging and revisions to acquire the final datasets. A BERT-based model called DeBERTa was employed, which was
fine-tuned for both the IC and SF models. The evaluation results demonstrate promising performance in classifying
telecon sentences by their intent and accurately identifying key attributes related to TMIs within each sentence. When
compared to the initial SME-tagged 150 sentences, the model’s performance aligns closely with human annotators. To
calculate the human annotator score, for each sentence, all four labels were evaluated at once, and if at least one annotator
selected the correct label, it was marked as correct and stored in a separate column. Using this approach, the model
performance was calculated and we achieved a weighted F1-score of 0.81, compared to 0.88 for human annotators, and
an accuracy of 0.80, compared to 0.83 for the human annotators. This demonstrates that the model’s predictions are
very close to those of human annotators, indicating its strong capability in replicating human-level annotation.

For the SF model, a weighted average F1-score of 0.97 was obtained, demonstrating the model’s strong capability
in accurately selecting the relevant slots of interest while effectively dismissing outside slots (as indicated by the
IOB tagging). This high score highlights the model’s ability to focus on key attributes related to TMIs and shows its
robustness in distinguishing between important slots and non-relevant information. Moving forward, our efforts will
focus on developing a joint IC and SF model that can process both tasks simultaneously. Additionally, we aim to explore
data augmentation and active-learning techniques to address the challenges posed by manual dataset tagging, which is
time-consuming and resource-intensive. These advancements will help improve model performance and efficiency in
real-world applications.
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