

NASA Standards Update:

Electrical, Electronic, Electromechanical, and Electro-optical (EEEE or Quad-E) Parts Selection, Testing and Derating Standard (NASA-STD-8739.11)

Peter Majewicz

NEPP Program Manager

peter.majewicz@nasa.gov

NASA/GSFC

Susana Douglas

NASA EEEE Parts Manager

DPM NEPP Program

susana.p.douglas@nasa.gov

NASA/GSFC

Policy / Guidance

NPR 8705.4
Risk Classification for NASA
Payloads

NASA-STD-8739.10
NASA EEE Parts Assurance
Standard *

NASA-STD-8739.11
NASA EEEE Parts Testing
Standard

NPR 8705.2 Human Rated Requirements for Space Systems

NASA-STD-8739.XX
NASA RHA Process Standard
for Space Flight Hardware

^{*} Not a direct reference

Revision planned for FY25

NASA Engineering and Safety Center Recommendations on the Use of COTS EEE Parts for NASA Missions

NASA/TM-20220018183 NESC-RP-19-01490

Recommendations on the Use of Commercial-Off-The-Shelf (COTS) Electrical, Electronic, and Electromechanical (EEE) Parts for NASA Missions – *Phase II*

Robert F. Hodson/NESC, Yuan Chen, and John E. Pandolf Langley Research Center, Hampton, Virginia

Kuok Ling

Ames Research Center, Moffett Field, California

Kristen T. Boomer

Glenn Research Center, Cleveland, Ohio

Christopher M. Green, Susana P. Douglas, Jesse A. Leitner, and Peter Majewicz Goddard Space Flight Center, Beltsville, Maryland

Scott H. Gore

Jet Propulsion Laboratory, Pasadena, California

Carlton S. Faller

Johnson Space Center, Houston, Texas

Erik C. Denson

Kennedy Space Center, Kennedy Space Center, Florida

Ronald E. Hodge

Marshall Space Flight Center, Huntsville, Alabama

Angela P. Thoren


Jacobs Space Exploration Group, Huntsville, Alabama

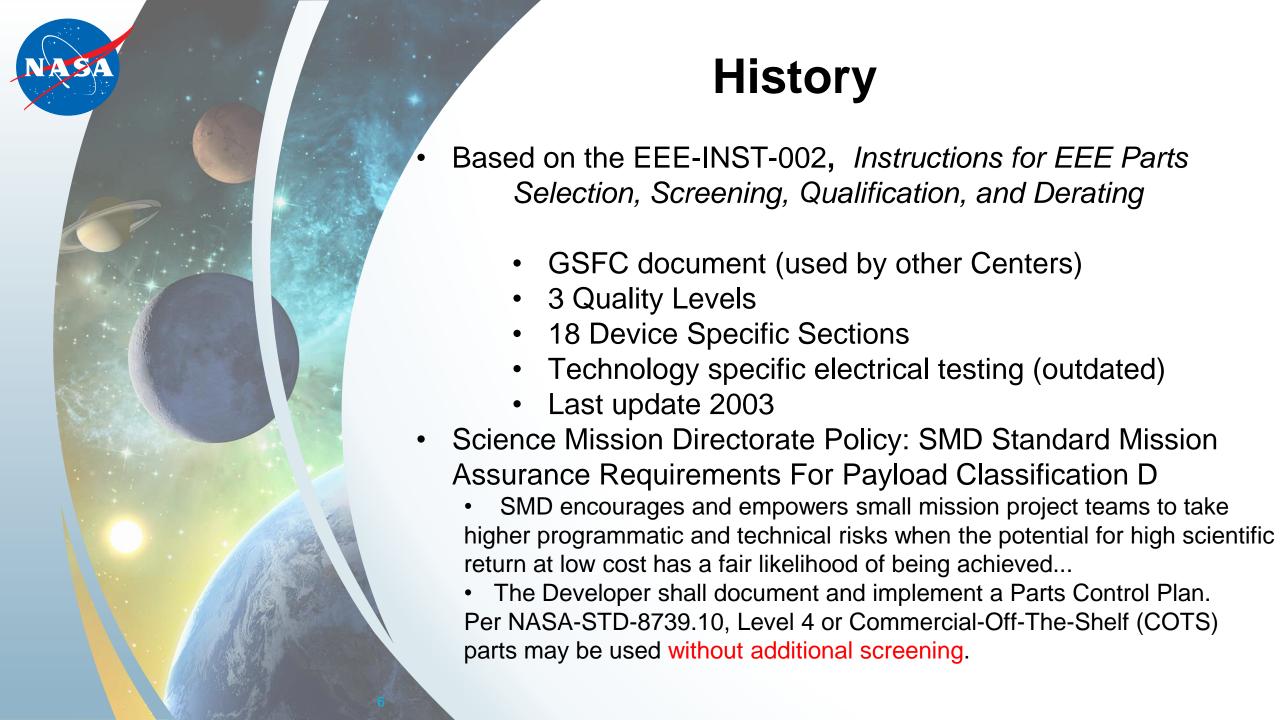
Michael A. Defrancis

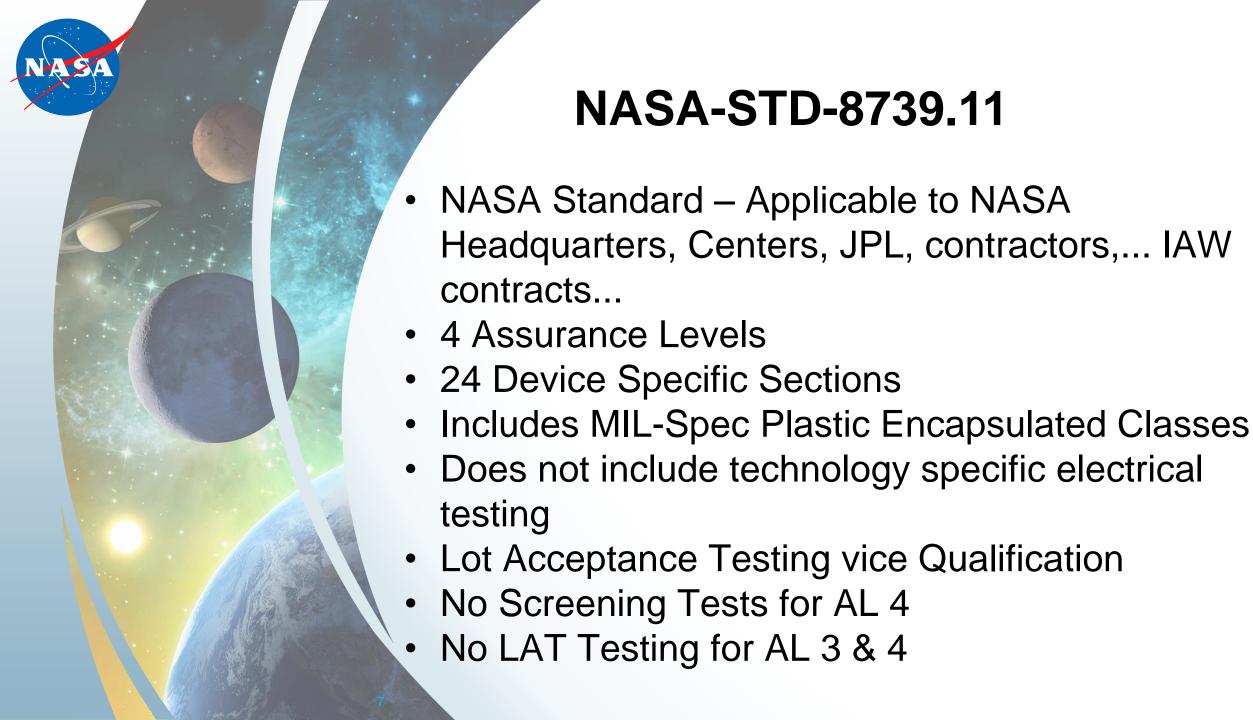
Science Applications International Corporation, Reston, Virginia

December 2022

EEE Parts Assessment Flow Using the ILPM Process

To be presented at IEEE SCC 2024, 17-Jul





Electrical, Electronic, Electromechanical, and Electro-optical (EEEE or Quad-E) Parts Selection, Testing and Derating Standard

• Purpose:

- Establishes a consistent set of requirements for selection, screening, lot acceptance testing, and derating of quad-E parts for use on NASA spaceflight projects.
- Provides a mechanism to ensure that appropriate parts are used that will support mission reliability objectives within budget constraints.
- Does not attempt to adequately cover radiation effects of EEEE parts.

Sections (new in red)

LIST OF SECTIONS

SECTION C1.	CAPACITORS	25
SECTION C2.	CONNECTORS AND CONTACTS	81
SECTION C3.	CRYSTALS	11
SECTION C4.	CRYSTAL OSCILLATORS	11
SECTION D1.	DETECTORS	13
SECTION F1.	FIBER OPTICS, PASSIVE	14
SECTION F2.	FILTERS	16
SECTION F3.	FUSES	16
SECTION H1.	HEATERS	18
SECTION L1.	LASER DEVICES	19
SECTION M1.	MAGNETICS	21
SECTION M2.	MICROCIRCUITS HYBRID (HERMETIC)	23
SECTION M3.	MICROCIRCUITS, MONOLITHIC	23
SECTION M5.	MICROCIRCUITS, PLASTIC ENCAPSULATED	25
SECTION M6.	RF AND MICROWAVE DEVICES	26
SECTION M7.	MICROCIRCUITS, HYBRID (NON-HERMETIC)	23
SECTION 01.	OPTOELECTRONICS	27
SECTION R1.	RELAYS, ELECTROMAGNETIC	28
SECTION R2.	RESISTORS	30
SECTION S1.	SEMICONDUCTOR DEVICES, DISCRETE	35
SECTION S2.	SEMICONDUCTOR DEVICES, PLASTIC ENCAPSULATED	36
SECTION S3.	SWITCHES	37
SECTION T1.	THERMAL SENSORS	40
SECTION W1.	WIRE AND CABLE	41

Review Comments: 849 Total

IST OF S	ECTIONS	COMMENTS
ECTIONS 1-4		128
ECTION C1.	CAPACITORS	82
ECTION C2.	CONNECTORS AND CONTACTS	37
ECTION C3.	CRYSTALS	20
ECTION C4.	CRYSTAL OSCILLATORS	24
ECTION D1.	DETECTORs	12
ECTION F1.	FIBER OPTICS, PASSIVE	3
ECTION F2.	FILTERS	46
ECTION F3.	FUSES	26
ECTION H1.	HEATERS	11
ECTION L1.	LASER DEVICES	14
ECTION M1.	MAGNETICS	10
	MICROCIRCUITS HYBRID (HERMETIC)	13
ECTION M3.	MICROCIRCUITS HYBRID (NONHERMETIC)	17
	MICROCIRCUITS, MONOLITHIC	4
ECTION M5.	MICROCIRCUITS, PLASTIC ENCAPSULATED	20
	RF AND MICROWAVE DEVICES	11
ECTION M7.	MICROCIRCUITS, HYBRID (NON-HERMETIC)	
	OPTOELECTRONICS	31
ECTION R1.	RELAYS, ELECTROMAGNETIC	17
ECTION R2.	RESISTORS	71
	SEMICONDUCTOR DEVICES, DISCRETE	30
ECTION S2.	SEMICONDUCTOR DEVICES, PLASTIC ENCAPSULATED	
ECTION S3.	SWITCHES	8
ECTION T1.	THERMAL SENSORS	27
ECTION W1.	WIRE AND CABLE	31

Notes from comments adjudication

- Evident of meticulous review
- Not adding tests to raise "Class B" to "Class B+"
 - X-ray, PIND, NDBP
- Not limiting method of hermetic testing.
- Removed glass type capacitors
- Includes reference to ILPMs
- Wire and Cable Section in rewrite.
- Adding an option row for AEC-Q qualified devices for different data elements from manufacturer

Section M5 PEMs Table 1

Table 1. PLASTIC ENCAPSULATED MICROCIRCUIT REQUIREMENTS 1/

Assurance Level	Monolithic Microcircuit Type	Specification	Use as Is	Screening 4/	LAT 4/	DPA 4/
Level 1	QML Class P	MIL-PRF-38535				X
	QML Class N 2/	MIL-PRF-38535		X	X	X
	Automotive, Commercial, SCD 3/	AEC-Q100, VICD, SCD		X	X	X
Level 2	QML Class P or N	MIL-PRF-38535				X
	Automotive, Commercial, SCD 3/	AEC-Q100, VICD, SCD		X	X	X
Level 3	QML Class P or N	MIL-PRF-38535				X
	Automotive, Commercial, SCD 3/	AEC-Q100, VICD, SCD		X		X
Level 4	QML Class P or N	MIL-PRF-38535	X			
	Automotive, Commercial, SCD 3/	AEC-Q100, VICD, SCD	X			

Section M5 PEMs Table 2

Table 2. PLASTIC ENCAPSULATED MICROCIRCUIT SCREENING 1/4/

	Test	Test Methods, Conditions, and Requirements	Level 1	Level 2	Level 3
1	Wafer Lot Acceptance	MIL-STD-883, Methods 5010 Appendix II and 5007	X		
2	Internal Visual	MIL-STD-883, Method 2010	X Cond. A		
3	Temperature Cycling	MIL-STD-883, 1010, Condition B, 10 Cycles min.	X	X	
4	External Visual	MIL-STD-883, 2009 (3 to 10X)	x	R	
5	PIND 2/	MIL-STD-883, 1010, Condition A	X	X	
6	Serialization		X	X	
7	Radiographic	PEM-INST-001 Para 5.3.2	X		
8	Burn-in 3/	MIL-STD-883, 1015, Condition D.	X 240 hr. @ 125 °C	X 160 hr. @ 125 °C	R 96 hr. @ 125 °C
9	Final Electrical Measurements at +25 °C, Min. and Max. Operating Temp.	Per applicable device procurement specification	X	X	Х
10	Maximum Percent Defective Allowable (PDA)	Post Burn-in / Final Electrical Measurements @ 25 °C only	≤ 5%	≤ 10%	
11	External Visual	MIL-STD-883, 2009 (3 to 10X)	X	X	R

10-Sep-2020 12

Questions?

4 Parts Assurance Levels

Assurance Level 1: The most stringent set of testing requirements; **typically aligns** with the highest classes of MIL-SPEC space-grade parts (i.e., Class S). Requirements include screening, lot acceptance testing, DPA, and use of source control drawings for custom test flows.

Assurance Level 2: A substantial set of testing requirements; **typically aligns with the second-highest classes of MIL-SPEC parts (i.e., Class B)**. Requirements include screening, lot acceptance testing, and DPA, but with some tests, sample sizes, and durations reduced from Assurance Level 1. Use of source control drawings is encouraged, but not always required.

Assurance Level 3: Allows MIL-SPEC based designs and an infusion of commercial part-based designs with minimally burdensome piece-part testing requirements. **Generally, includes some screening, but does not impose lot acceptance testing.** Criteria rely heavily on DPA as an inexpensive test to obtain objective insight into manufacturer workmanship and quality.

Assurance Level 4: Use of commercial parts with **no additional screening** or qualification. In applications that have low tolerance for risk, it is essential to have detailed information about the manufacturer and part prior histories.

Example from EEE-INST-002

Table 1 MONOLITHIC INTEGRATED CIRCUIT REQUIREMENTS (Page 1 of 2) 1/

Part Designation	Use As Is	Screen To Requirements in Table 2 2/	Qualify To Requirements in Table 3 2/
Level 1: 1) Class V or Class S 2) Class Q or Class B 3) SCD 4) 883-Compliant or Class M 5/	х	X 3/, 4/, 5/ X 4/, 5/ X 4/, 5/, 6/	X X
Level 2: 1) Class V or Class S 2) Class Q or Class B 3) 883-Compliant or Class M 6/ 4) SCD 5) Mfr. Hi-Rel 7/ 6) Commercial	х	X 4/ X 4/, 8/ X 4/, 8/ X 4/, 8/ X 4/, 8/	X 9/ X 9/ X 9/ X 9/
Level 3: 1) Class V (or S) 2) Class Q (or B) 3) 883-Compliant or Class M 4/, 9/ 4) SCD 9/ 5) Mfr. Hi-Rel 10/ 6) Commercial 10/	х	X 4/ X 4/ X 8/ X 8/ X 8/	

Notes follow on next page.

New Tables from 8739.11

Table 1. MONOLITHIC MICROCIRCUIT REQUIREMENTS 1/2/

Assurance Level	Monolithic Microcircuit Type	Specification	Use As Is	Screening	LAT	DPA
Level 1	QML Classes V, Y, S	MIL-PRF-38535	X			
	QML Classes; Q, B, 3/	MIL-PRF-38535		X 4/	X	
	All Types	SCD		X	X	X
Level 2	QML Classes V, Y, S	MIL-PRF-38535	X			
	QML Classes; Q, B, M	MIL-PRF-38535		X 4/		
	All Types	Automotive, Commercial, SCD		X	X	X
Level 3	QML Classes: V, Y, S	MIL-PRF-38535	X			
	QML Classes; Q, B, M	MIL-PRF-38535		R 4/		
	All Types	Automotive, Commercial, SCD		X		X
Level 4	QML Classes: V, Y, S, Q, B, M	MIL-PRF-38535	X			
	All Types	Automotive, Commercial, SCD	X			

New Tables from 8739.11

Table 1. PLASTIC ENCAPSULATED MICROCIRCUIT REQUIREMENTS 1/

Assurance Level	Monolithic Microcircuit Type	Specification	Use as Is	Screening 3/	LAT 3/	DPA 3/
Level 1	QML Class P	MIL-PRF-38535				X
	SCD 2/	SCD		X	x	X
Level 2	QML Class P or N	MIL-PRF-38535				X
	Automotive, Commercial, SCD 2/	AEC-Q100, VICD, SCD		x	x	X
Level 3	QML Class P or N	MIL-PRF-38535				X
	Automotive, Commercial, SCD 2/	AEC-Q100, VICD, SCD		x		X
Level 4	QML Class P or N	MIL-PRF-38535	X			
	Automotive, Commercial, SCD 2/	AEC-Q100, VICD, SCD	X			

Table 2. MONOLITHIC MICROCIRCUITS SCREENING 1/

T	Test Sequence	T and 1 G No. 17	Quality Level			
Test		Test Methods, Conditions, and Requirements	Level 1	Level 2	Level 3	
1	Wafer Lot Acceptance	MIL-STD-883, Methods 5010 Appendix II and 5007	X			
2	Nondestructive Bond Pull	MIL-STD-883, Method 2023, 2% PDA	X	X		
3	Internal Visual	MIL-STD-883, Method 2010	Condition A	Condition B		
4	Temperature Cycling	MIL-STD-883, Method 1010, Condition C, 10 Cycles min.	X	X		
5	Constant Acceleration	MIL-STD-883, Method 2001, Condition E, Y ₁ Orientation Only	X			
7	PIND	MIL-STD-883, Method 2020, Condition A	Х	Х	R	
8	Serialization		X			
9	Radiographic 2/	MIL-STD-883, Method 2012, Two Views	X			
10.	Initial Electrical Measurements	Applicable device specification at +25°C	X	X		
11	Burn-in	MIL-STD-883, Method 1015, Condition C or D.	240 hrs	160 hrs		
12	Final Electrical Measurements	Applicable device specification at +25°C, Minimum, and Maximum Operating Temperatures	X	х	R	
13	Calculate Delta	25°C Pre-Post Burn-in	Х			
14	Calculate PDA	Pre-Post Burn-in 25°C DC Electrical 25°C Functional	5% 3%	10%		
15	Seal (Hermetic Types only) a. Fine Leak b. Gross Leak	MIL-STD-883, Method 1014 Condition CH or B (or A as Alternate) for Fine Leak Condition CH, B3, or C4 for Gross Leak	X X	X X		
16	External Visual	MIL-STD-883, Method 2009 (3X to 10X)	X	Х	X	

Notes:

- 1/ The character "X" designates a requirement. The character "R" designates a recommendation.
- 2/ Only one view is required for flat packages and leadless chip carriers having lead terminal metal on four sides.

New Tables from 8739.11

₽-

Table 3. MONOLITHIC MICROCIRCUITS LOT ACCEPTANCE TESTING 1/, 2/

Table 5. MONOLITHIC MICROCIRCUITS LOT ACCEPTANCE TESTING 1/, 2/						
To an anti-on/Tout	Total Made de Conditions and Bossians and	Quantity (Ad	cept Number)			
Inspection/Test	Test Methods, Conditions, and Requirements	Level 1	Level 2			
Group B		3(0)	3(0)			
Solderability	MIL-STD-883, Method 2003, Soldering temperature of 245 °C \pm 5 °C, 3 samples min.	22 leads(0)	22 leads(0)			
Group C		45(0)	22(0) 3/			
Steady State Life Test	MIL-STD-883, Method 1005, Condition D, 1,000 hours at +125 °C	X	X			
End-Point Electrical Parameters	Per applicable device procurement specification	X	X			
Package Element Evaluation						
Subgroup 1		3(0)	3(0)			
Physical Dimensions	MIL-STD-883 Method 2016, Acquisition Document	X	X			
Subgroup 2						
Visual Inspection	MIL-STD-883, Method 2009	100%	100%			
Device Finish	Use a recognized methodology, verify all surface finishes are compliant with specification.	3(0)	3(0)			
Subgroup 3		3(0)	3(0)			
Thermal Shock	MIL-STD-883, Method 1011	X	X			
High Temperature Bake	MIL-STD-883, Method 1008	X	X			
Lead Integrity	MIL-STD-883, Method 2004					
	Condition A1 (braze attached leads, 3 lead min.)	X	X			
	Condition B1 (Rigid Leads and terminals only)	X	X			
	Condition B2 (Lead Fatigue)	X	X			
	Condition D (Pad adhesion of leadless chip carriers)	X	X			
	Condition E (Plating integrity of flexible and semi-flexible lead, 3 leads min.)	X	X			
	MIL-STD-883, Method 2028 for Pin grid array leads	X	X			
Seal	MIL-STD-883, Method 1014 Condition A4 Unlidded cases	X	X			
Subgroup 4		3(0)	3(0)			
Metal Package Isolation	MIL-STD-883 Method 1003, Condition E, 100nA max.	X	X			
Subgroup 5						
Solderability	MIL-STD-883, Method 2003, Condition Soldering Temperature +245°C ±5°C	3(0)	3(0)			