

1. INTRODUCTION

BACKGROUND

- Aerosols are a key climate forcer and, at the surface, harmful to human health.
- We use **chemistry-climate models** to project the impacts of changing emissions of aerosols and trace gases on quantities such as radiative forcing and air quality.
- In order to have **confidence** in these models, we evaluate them with respect to different **observations**.

OBJECTIVES

In this work we are **analyzing an hindcast simulation** of the NASA Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and investigate the drivers of uncertainties of GEOSCCM in simulating:

- global and regional long-term trends for **aerosol loading** and **surface fine particulate matter** (PM_{2,5}) concentrations.
- •Assumed relationships between simulated aerosol mass and optical properties.

2. DATA AND METHODS

GEOSCCM MODEL

GEOSCCM is the NASA general circulation model with various chemical packages with interactive chemistry components, i.e. chemistry-climate feedbacks are allowed.

Run ID	period	lat, lon, vertical resolution	chemistry	aerosols	emissions	meteorology	b
REFD1	1958-2018	1° x 1°, 72	online GMI	online GOCART	CMIP6	free running atmosphere	-

Table: Configuration of the GEOSCCM model.

OBSERVATIONS & DATASETS

We compare a model hindcast with **satellite**, ground-based and model-data fusion observations spanning two decades.

observations	platform	source	time coverage
surface PM _{2.5} and components mass	ground- based	IMPROVE network	2001-2018
surface PM _{2.5} mass	data-model fusion	U. Washington, St Louis Atmospheric Composition Analysis Group	1998-2018
surface aerosol scattering coefficient	ground- based	IMPROVE network	2001-2018
Aerosol Optical Depth	satellite	MODIS Aqua (NNR retrieval)	2003-2018

Table: Observations and datasets used to evaluate GEOSCCM aerosols.

Because the model run is **not driven by real meteorology,** we focus our analysis on monthly and yearly time-scales.

From Column to Surface: Connecting the Performance in Simulating Aerosol

Optical Properties and PM_{2.5} Concentrations in the NASA GEOS-CCM Model

Caterina Mogno^{1,2}, Peter R. Colarco¹, Allison Collow^{1,2}, Sarah A. Strode^{1,3}, Vanessa Valenti^{1,4}, Qing Liang¹, Luke Oman¹, K. Emma Knowland^{1,3} ¹NASA Goddard Space Flight Center, ²University of Maryland Baltimore County, ³Morgan State University, ⁴Science Systems and Applications, Inc.

• The model performs well for carbonaceous species (OA and BC, NMB < 0.25).

D1 with nitrate component removed.

6. CONCLUSIONS

- burning regions.
- scattering coefficient in GEOSCCM.

• Our findings suggest that aerosol mass loading and optical properties could both be improved in GEOSCCM by updating the emission inventories, especially over biomass

Biases in PM_{2.5} mass can be reduced by reducing biases in nitrate mass loading component. Improving RH simulation could substantially improve the representation of the aerosol

