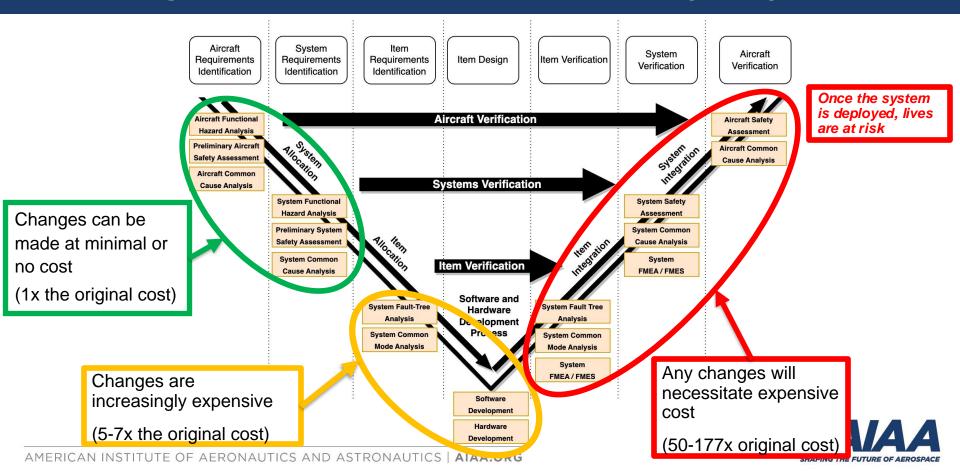
Towards Functional Hazard Assessment (CFHA): A Gap Analysis and Concept for Emerging Aviation Systems

Seydou Mbaye, Ph.D., Daniel Hulse, Ph.D., Lukman Irshad, Ph.D., Hannah Walsh, Ph.D., and Sequoia Andrade

NASA – Ames Research Center

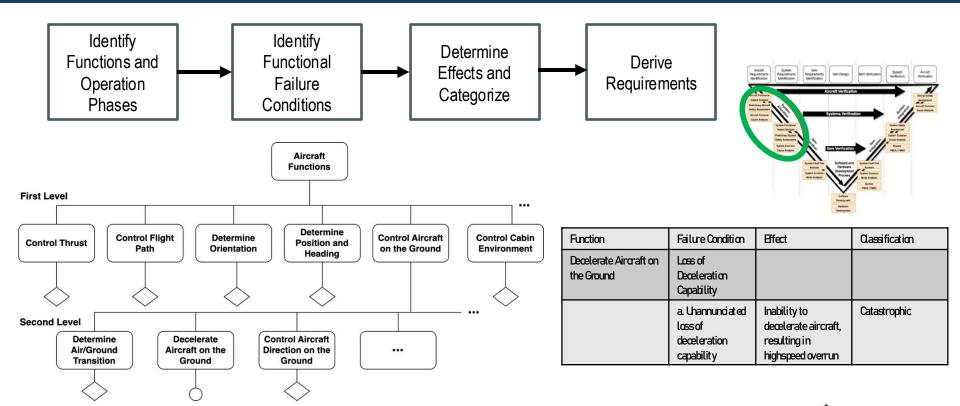
2025 AIAA SCITECH, 6-10 January 2025


This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Aerospace Recommended Practices (ARP) 4761A

Aim & Objectives


Identify challenges in FHA for novel, increasingly autonomous aviation concepts

Identify opportunities for new and improved approaches

Propose Computational Functional Hazard Assessment (CFHA) to address gaps in analysis capabilities for emerging aviation concepts

Functional Hazard Analysis (FHA)

Adapted from ARP4761A: GUIDELINES AND METHODS FOR CONDUCTING THE SAFETY ASSESSMENT

PROCESS ON CIVIL AIRBORNE SYSTEMS AND EQUIPMENT

FHA for Novel Aviation Concepts: Barriers and Considerations

- Conventional FHA may be insufficient to capture:
 - Large, complex hazard space
 - > Due to autonomy, human-system interaction, system-of-systems, etc.
 - What if the design (or, software) changes?
 - What if our assumptions were wrong?
 - > Time-based behaviors and interactions needed to represent systems resilience
 - New, more complex mission profiles
 - What if we wanted to integrate new entrants carrying out new operations?
 - Meaningful classification of effects in emerging operational environments
 - Systems for which existing safety expertise is limited

Literature Review

Models and Formalisms for FHA

- Energy-Materials-Signals Based Models
- Socio-Technical Models

Model-Based Engineering for Traceability in FHA

- Model as a single point of truth
 - Improved communication and collaboration
 - Efficiency of hazard analysis

Computational Support for Analyzing Hazardous Scenarios

- Modeling and simulation in FHA e.g., Functional Failure Identification and Propagation (FFIP)
- Learning from incident and accident reports

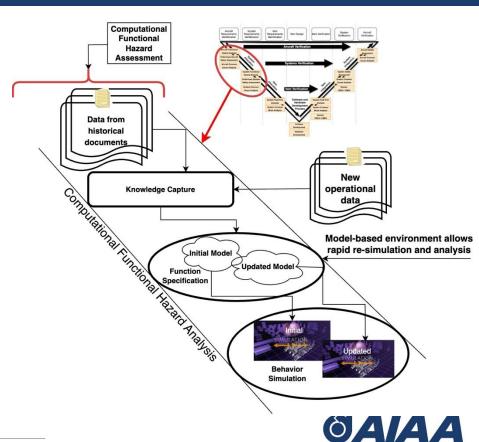
Opportunities for the Next Generation FHA

Using computation to support hazard assessments

- Managing large, complex hazard space
- Enabling rapid re-analysis and adaption
- Enabling identification and assessment of resilience
- Enabling assessment of severity of failure effects

Standardizing model capture and representation

- Incorporating human and operational hazards
- Deriving and decomposing system functions
- Enabling traceability through Model-Based Engineering


Incorporating existing knowledge and data

 Improving completeness of knowledge capture by incorporating broad and analogous data sources

Towards Computational Functional Hazard Assessment

- Knowledge Capture
 - Leverage historical data
 - Monitor system during operations
- Specification of functions in a model-based environment
 - Enable updates
 - Better understanding of failure propagation
- Simulation of behaviors in scenarios
 - Assess system behavior over a
 - 9 wide variety of scenarios

Conclusion

This study examined the current state of existing FHA approaches and identified existing gaps

- Opportunities identified from the gap analysis realized through the proposed framework:
 - Computational Functional Hazard Analysis
- Future work will integrate existing tools with capabilities addressing individual elements of CFHA
- Additional tool maturation required

Thank you!

seydou.mbaye@nasa.gov

daniel.e.hulse@nasa.gov

lukman.irshad@nasa.gov

hannah.s.walsh@nasa.gov

sequoia.r.andrade@nasa.gov

