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MEASURING AND UTILIZING GRAVITY-GRADIENT INDUCED
TORQUES ON FUTURE GRAVITY RECOVERY MISSIONS

Ryan Kinzie*, Riccardo Bevilacqua†, Dongeun Seo‡, Huaizu You§, John W.
Conklin¶ and Peter J. Wass||

This research is a novel investigation into the use of newly-available relative
angular acceleration measurements between a spacecraft utilized for gravity
recovery missions and an internally located test mass. The gravity-gradient
torque equation for zonal spherical harmonic order n is formulated for a
known gravitational potential field, and through simulations it is proven that the
Simplified-Gravitational Reference Sensor will be sensitive to the gravity-gradient
induced torques acting on its test mass. This research then demonstrates how
the presented gravity-gradient torque equation and the measured relative angular
acceleration between the spacecraft and test mass will improve the accuracy of
the gravity field models acquired by future gravity recovery missions by directly
measuring the drag acting on the spacecraft with a single accelerometer.

INTRODUCTION

Starting in 2002 the Gravity Recovery and Climate Experiment (GRACE) mission measured the
temporal variations of Earth’s gravity field caused by the transport of masses and their redistribution
in the Earth system.1 Several years after the beginning of the GRACE mission, the Gravity
Field and Steady-State Ocean Circulation Explorer (GOCE) spacecraft was launched with the
objective of improving the accuracy and spatial resolution of Earth’s gravity field maps measured
by GRACE.1 The GOCE mission accomplished this by using a 6-component gradiometer, which
was comprised of six three-axis precision accelerometers. The gradiometer allowed the spacecraft
to directly measure the drag acting on the GOCE spacecraft and the gravity-gradient tensor (second
derivative of the gravitational potential).2 Following the end of the GRACE mission in 2017, the
Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission began in 2018. The
accelerometers utilized in the GRACE, GOCE and GRACE-FO mission were all built by Office
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National d’Etudes et Recherches Aérospatiales (ONERA) and consist of a test mass electrostatically
suspended in a vacuum surrounded by six pairs of sensing and actuation electrodes.3 Since there are
six pairs of sensing and actuation electrodes there is the potential for the accelerometers to measure
the simultaneous 6-axis relative acceleration measurements (3-axis translation and 3-axis angular)
of the host spacecraft with respect to the test mass.

Although the GOCE accelerometer had the potential to measure the relative angular acceleration,
only the relative translational acceleration measurements were utilized to measure the drag and
gravity-gradient tensor.2 Similarly, only the relative translational acceleration measurements are
utilized in the current version 04 release of the GRACE-FO level 1-A and level 1-B data products.4

In the case of the GRACE-FO mission, the relative angular acceleration measurements from the
ONERA accelerometer are instead replaced by angular acceleration estimations of the GRACE-FO
spacecraft which are computed from a Kalman filter that uses star tracker, IMU and magnetorquer
measurements as inputs.3 The reason for replacing the measured relative angular acceleration with
the estimated angular acceleration of the spacecraft is attributed to the noise of the accelerometer
and its insensitivity to gravity-gradient induced torques on the test mass under normal operating
conditions.4 Although the estimations computed by the Kalman filter have been shown to be
less noisy and more accurate than the measurements from the accelerometer, the estimations are
only available for the spacecraft angular acceleration, not the relative angular acceleration between
the spacecraft and test mass. Using the spacecraft angular acceleration instead of the relative
acceleration potentially excludes useful gravity recovery data, the main observable for the GRACE-
FO mission. Although it is unlikely that the gravity-gradient induced torques on the test mass
will ever be observable to the GRACE-FO accelerometer, we believe that these torques will be
observable to the Simplified Gravitational Reference Sensor’s (S-GRS) accelerometer which is
estimated to be up to 500 times more sensitive than the GRACE accelerometers and 5 times more
sensitive than the GOCE accelerometers.1, 5 The S-GRS is an ultra-precise inertial sensor for future
Earth geodesy missions currently being developed by the University of Florida and houses an
accelerometer in addition to laser ranging equipment. The S-GRS’s accelerometer is illustrated
in Figure 1 and consists of a test mass electromagnetically suspended in a vacuum surrounded by
seven pairs sensing and actuation electrodes.

In 2019 as part of the Decadal Survey for Earth Science, the Mass Change Applications Team
found that most practical applications require an increase to the temporal and spacial resolutions
and the accuracy of the spherical harmonic coefficients and functions of the currently available
gravity field maps.6 As stated by the Committee on Earth Gravity from Space,7 this is of significant
interest to many fields of study including ocean dynamics, continental water variation, sea-level
rise, post-glacial rebound, structure and evolution of the earth’s crust and lithosphere, and mantle
dynamics. Kornfeld et al.8 have identified the major sources of error for the GRACE-FO mission,
which lists drag modeling errors as a main contributor to the error of the estimated geopotential
parameters. However, Behzadpour et al.9 state that it is not possible to model the drag accurately
for the GRACE-FO mission. Therefore, in addition to presenting the sensitivity of the S-GRS’s
accelerometer to the gravity-gradient torques acting on its test mass, this research also demonstrates
how the newly available data may be utilized to directly measure the drag on a GRACE-FO
type gravity recovery mission. To the extent of the authors’ knowledge, no previous research
has investigated the connection between gravity recovery scientific data and the relative angular
acceleration between a host spacecraft and its test mass.
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Figure 1. S-GRS’s Test Mass with Sensing and Actuation Electrodes

The rest of this paper is organized as follows; the Formulation section explains the frames that
are referenced throughout this paper and formulates the gravity-gradient torque equation for zonal
spherical harmonic degree n. Additionally, this section presents the algorithm for directly measuring
the drag on a gravity recovery spacecraft when a minimum of two accelerometers are present,
and presents the derivation of how a single S-GRS accelerometer may directly measure the drag
acting on the same spacecraft. The Simulation section then presents the sensitivity of the S-GRS
to the relative angular acceleration between the GRACE-FO spacecraft and the S-GRS’s test mass
and simulates the two accelerometer algorithm and the single accelerometer algorithm. Finally,
the Discussion and Conclusion sections of this paper compare the two algorithms and state the
achievements of this research.

FORMULATION

In this section, the reference frames are presented followed by the equations used to model
the gravity-gradient torque due to zonal spherical harmonic degree n for a known gravitational
potential field. The algorithm for directly measuring the drag on a gravity recovery spacecraft when
a minimum of two accelerometers is also presented, which is followed by the derivation for a single
accelerometer.

Frame Definition

For this research, a test mass is placed inside of a low-Earth-orbiting spacecraft. Therefore, three
frames are utilized; the Inertial Frame (denoted with I), the Body-Fixed Frame (denoted with B),
and the Test Mass Frame (denoted with TM ). The Inertial Frame is the defined as the canonical
Earth-Centered Inertial (ECI) coordinate frame. The Body-Fixed Frame is defined the same way
that the Satellite Frame and the Science Reference Frame are defined in the GRACE-FO Level-1
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Data Product User Handbook,10 with origin of the Body-Fixed Frame attached to the center-of-
mass of the spacecraft. Finally, the Test Mass Frame originates at the center-of-mass of the test
mass where the x-axis is ram pointing, the z-axis is nadir pointing, and the y-axis follows from the
right-hand rule. All three frames are presented in Figure 2, where a single GRACE-FO spacecraft
is illustrated. In Figure 2, r̄TM/B denotes the position of the Test Mass Frame with respect to the
Body-Fixed Frame, and r̄B/I and r̄TM/I denote the position of the Body-Fixed Frame and the Test
Mass Frame with respect to the Inertial Frame, respectively.

Figure 2. Frames of Reference. The Inertial Frame (I), Body-Fixed Frame(B) and
Test Mass Frame (TM ) are illustrated along with their respective position vectors

Gravity-Gradient Torque

When the gravitational potential U (the negative of the potential energy) is known, its respective
gravity-gradient tensor, GJn , may be used to model the gravity-gradient torque, τ̄∇g, on the
spacecraft for Jn zonal spherical harmonics,11

(τ̄∇g)
× =

(
GJnI

B
)T −GJnI

B (1)

Here, IB is the moment of inertia of the spacecraft and the superscript × denotes the skew-
symmetric operator. The gravity-gradient tensor for zonal spherical harmonic degree n and its
relation to the gravitational potential follow as the matrices,12

GJn =


∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2

 =


∂gx,n
∂x

∂gx,n
∂y

∂gx,n
∂z

∂gy,n
∂x

∂gy,n
∂y

∂gy,n
∂z

∂gz,n
∂x

∂gz,n
∂y

∂gz,n
∂z


Note that āJn = [gx,n, gy,n, gz,n]

T is the transitional gravitational acceleration vector. The gravity-
gradient tensor is symmetric since ∂gx,n

∂y , ∂gy,n
∂x both lie on the spacecraft’s xy-plane, ∂gx,n

∂z , ∂gz,n
∂x on

the xz-plane and ∂gy,n
∂z , ∂gz,n

∂y on the yz-plane. GJn may be solved for discretely if we assume that,

∂gx,n
∂x

≈ ∆gx,n
∆x

=
gx1,n − gx2,n

x1 − x2
(2)
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where gx1,n and gx2,n are discrete gravitational acceleration measurements made at the known
locations, x1 and x2, respectively. Similarly we can say that, ∂gx,n

∂y ≈ ∆gx,n
∆y , ∂gx,n

∂z ≈ ∆gx,n
∆z ,

∂gy,n
∂y ≈ ∆gy,n

∆y , ∂gy,n
∂z ≈ ∆gy,n

∆z and ∂gz,n
∂z ≈ ∆gz,n

∆z . Using Eq. (2) and considering only the
symmetric elements of (τ̄∇g)

×, relation between the discrete acceleration measurements and the
gravity-gradient torques can be derived with the help of Eq. (2) as follows,

τ̄∇g = H
(
IB,∆x̄

)
×∆āJn =

 −Ixx
1
∆x − Ixy

1
∆y − Ixz

1
∆z

−Iyy
1
∆y − Iyz

1
∆z − Ixy

1
∆x

−Izz
1
∆z − Ixz

1
∆x − Iyz

1
∆y

×∆āJn (3)

where ∆x̄ = [∆x,∆y,∆z]T and where ∆āJn = [∆gx,n,∆gy,n,∆gz,n]
T are nth order acceleration

measurements.

Accelerometer Measurements

Since the electrode housing of the S-GRS’s accelerometer is rigidly connected to the spacecraft
the accelerometer will measure the relative translational and angular acceleration between its
test mass and the spacecraft. To find an expression for the relative translational acceleration
measurements, the translational acceleration of the S-GRS’s test mass is first considered,

āBTM/I =
(
āBTM/I

)
Earth

+ ᾱB
B/I × r̄BTM/B + ω̄B

B/I ×
(
ω̄B
B/I × r̄BTM/B

)
+ 2ω̄B

B/I × v̄BTM/B +
(
āBTM/I

)
other

(4)

Here,
(
āBTM/I

)
Earth

is the translational acceleration acting on the test mass resulting from

Earth’s gravity, ᾱB
B/I × r̄BTM/B , is the Euler acceleration due to the angular acceleration of

the spacecraft and the position offset of the test mass relative to the spacecraft center-of-mass,
ω̄B
B/I×

(
ω̄B
B/I × r̄BTM/B

)
is the centripetal acceleration due to the angular velocity of the spacecraft

and the test mass offset and 2ω̄B
B/I× v̄BTM/B is the Coriolis acceleration of the test mass with respect

to the spacecraft’s center-of-mass. Additionally, it is important to note that the superscripts I , B,
TM , denote whether the respective vector is resolved in either the Inertial, Body-Fixed or Test Mass
Frames, respectively. Finally,

(
āBTM/I

)
other

denotes all other translational accelerations acting on
the test mass such as the acceleration which results from the spacecraft - test mass coupling, which
is a force that is exerted on the test mass that is generated by the spacecraft’s changing gravitational
and magnetic field.13 Here, it is assumed that the spacecraft’s attitude is controlled and the position
of the test masses from the spacecraft’s center-of-mass are reasonably small. Therefore the Euler,
centripetal and Coriolis accelerations are negligible2 and will not appear in the rest of the derivation.

The translational acceleration of the spacecraft is now considered, and is a summation of the
acceleration acting on the spacecraft due to Earth’s gravity

(
āBB/I

)
Earth

, the acceleration due to

drag
(
āBB/I

)
drag

and the all other nongravitational accelerations
(
āBB/I

)
other

which result from

external forces such as Earth radiation pressure, solar radiation pressure, etc.

āBB/I =
(
āBB/I

)
Earth

+
(
āBB/I

)
drag

+
(
āBB/I

)
other

(5)
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The measured relative translational acceleration between the test mass and spacecraft is found by
subtracting Eq. (5) from Eq. (4),

āBTM/B =
(
āBTM/I

)
Earth

−
(
āBB/I

)
Earth

−
(
āBB/I

)
drag

+
(
āBTM/I

)
other

−
(
āBB/I

)
other

The above equation will be simplified slightly by setting
(
āBTM/B

)
other

=
(
āBTM/I

)
other

−(
āBB/I

)
other

for notation convenience,

āBTM/B =
(
āBTM/I

)
Earth

−
(
āBB/I

)
Earth

−
(
āBB/I

)
drag

+
(
āBTM/B

)
other

(6)

To derive an expression for the relative angular acceleration measurements, the angular
acceleration of the S-GRS’s test mass is considered,

ᾱB
TM/I =

(
ᾱB
TM/I

)
Earth

+
(
ᾱB
TM/I

)
other

(7)

Here,
(
ᾱB
TM/I

)
Earth

is the angular acceleration acting on the test mass due to Earth’s gravity

gradient torque and
(
ᾱB
TM/I

)
other

is the angular acceleration due to all other forces acting on
the test mass, such as the angular acceleration that is generated from the spacecraft - test mass
coupling. Similarly, the angular acceleration of the spacecraft will be the summation angular
acceleration acting on the spacecraft due to Earth’s gravity gradient torque

(
ᾱB
B/I

)
Earth

, the

angular acceleration resulting from drag
(
ᾱB
B/I

)
drag

and the all other nongravitational angular

accelerations which result from external forces acting on the spacecraft
(
ᾱB
B/I

)
other

,

ᾱB
B/I =

(
ᾱB
B/I

)
Earth

+
(
ᾱB
B/I

)
drag

+
(
ᾱB
B/I

)
other

(8)

Subtracting Eq. (8) from Eq. (7) yields the measured relative angular acceleration between the test
mass and spacecraft,

ᾱB
TM/B =

(
ᾱB
TM/I

)
Earth

−
(
ᾱB
B/I

)
Earth

−
(
ᾱB
B/I

)
drag

+
(
ᾱB
TM/I

)
other

−
(
ᾱB
B/I

)
other

The above equation will be simplified slightly for notation convenience by setting
(
ᾱB
TM/B

)
other

=(
ᾱB
TM/I

)
other

−
(
ᾱB
B/I

)
other

,

ᾱB
TM/B =

(
ᾱB
TM/I

)
Earth

−
(
ᾱB
B/I

)
Earth

−
(
ᾱB
B/I

)
drag

+
(
ᾱB
TM/B

)
other

(9)

Solving For Drag

In this subsection two methods for solving for the drag using the S-GRS’s accelerometer will
be presented. The first method assumes there are a minimum of two accelerometers onboard the
spacecraft, and the second method may be applied when only a single S-GRS accelerometer is
present (any number of S-GRS accelerometers may be present).
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Two Accelerometers When two accelerometers are present the drag acting on the spacecraft may
be solved for by using a derivation similar to the one presented in Cesare.2 If the derivation is done
correctly, the drag on the spacecraft will be equal to,(

āBB/I

)
drag

=
1

2

((
āBTM1/B

)
other

− āBTM1/B

)
+

1

2

((
āBTM2/B

)
other

− āBTM2/B

)
(10)

where TM1 and TM2 denote the first and second test masses, respectively, and
(
āBTMi/B

)
other

=(
āBTMi/I

)
other

−
(
āBB/I

)
other

with i = 1, 2. It is important to note the this method only utilizes
the translational acceleration measurements which allowed this method to be implemented on the
GOCE mission.2

One S-GRS Accelerometer When only one S-GRS accelerometer is present the derivation to
solve for the drag acting on the spacecraft is more involved and is one of the major innovations
of this research. The derivation begins by taking advantage of the fact that τ̄ = x̄ × F̄ where τ̄ is
torque and x̄ is the position of the force, F̄ , with respect to the spacecraft’s center-of-mass. The
torque acting on the spacecraft due to drag is therefore,(

τ̄BB/I

)
drag

= x̄Cp/B ×
(
F̄B
B/I

)
drag

(11)

where
(
F̄B
B/I

)
drag

is the drag force and x̄Cp/B is the position of the spacecraft’s center-of-pressure

with respect to the spacecraft’s center-of-mass,

x̄Cp/B =
S1x̄cp1 + S2x̄cp2 + . . .+ Snx̄cpn

S1 + S2 + . . .+ Sn

Here, Sn is the cross-sectional area of the nth panel and x̄cpn is the nth position of the center-

of-pressure with respect to the spacecraft’s center-of-mass. Since
(
F̄B
B/I

)
drag

= mB
(
āBB/I

)
drag

where mB is the mass of the spacecraft and
(
τ̄BB/I

)
drag

= IB
(
ᾱB
B/I

)
drag

, the angular acceleration

of the spacecraft due to drag may be solved for from Eq. (11),(
ᾱB
B/I

)
drag

= mB
(
IB

)−1
x̄Cp/B ×

(
āBB/I

)
drag

(12)

Utilizing Eq. (3) the angular accelerations acting on the test mass and spacecraft due to Earth’s
gravity gradient torque in Eq. (9) are equivalent to,(

ᾱB
TM/I

)
Earth

=
(
ITM

)−1H
(
IB,∆x̄TM,B

)
×
[(

āBTM/I

)
Earth

−
(
āBB/I

)
Earth

]
and, (

ᾱB
B/I

)
Earth

=
(
IB

)−1H
(
IB,∆x̄TM,B

)
×
[(

āBTM/I

)
Earth

−
(
āBB/I

)
Earth

]
where ITM is the mass of the test mass. Substituting the above equations and plugging Eq. (12)
into Eq. (9) yields,

ᾱB
TM/B =

[(
ITM

)−1 −
(
IB

)−1
]
H

(
IB,∆x̄TM,B

)
×
(
āBTM/I

)
Earth

−
[(
ITM

)−1 −
(
IB

)−1
]
H

(
IB,∆x̄TM,B

)
×
(
āBB/I

)
Earth

−mB
(
IB

)−1
x̄Cp/B ×

(
āBB/I

)
drag

+
(
ᾱB
TM/B

)
other

(13)

7



Operation Action

Addition a+ b =
[
a0 + b0,

(
ā+ b̄

)T ]T
Multiplication ab =

[
a0b0 − ā · b̄,

(
a0b̄+ b0ā+ ā× b̄

)T ]T
Scaler Multiplication λa =

[
λa0, λā

T
]T

Dot Product a · b = a0b0 + ā · b̄

Conjugate a∗ =
[
a0,−āT

]T
Norm ∥a∥ =

√
a · a

Inverse a−1 = a∗

∥a∥2

Table 1. Quaternion Operations (H)

Equation (6) and (13) will now be mapped from R3 to H (where H denotes quaternion space) since
quaternion algebra will be advantageous when solving for

(
āBB/I

)
drag

. In this case, mapping R3 to

H is as simple as rewriting the variables in R3 as vector quaternions (scaler part zero). For example,
this means that a variable x̄ ∈ R3 will be mapped into H as x =

[
0, x̄T

]T ∈ H. Referring to the
canonical quaternion operations presented in Table 1 and setting,

qH =

[
0[(

ITM
)−1 −

(
IB

)−1
]
H

(
IB,∆x̄TM,B

) ]
and qdrag =

[
0

mB
(
IB

)−1
x̄Cp/B

]

yields the translational and angular relative acceleration measurement equations in H,

aBTM/B =
(
aBTM/I

)
Earth

−
(
aBB/I

)
Earth

−
(
aBB/I

)
drag

+
(
aBTM/B

)
other

(14)

αB
TM/B = qH

(
aBTM/I

)
Earth

− qH

(
aBB/I

)
Earth

− qdrag

(
aBB/I

)
drag

+
(
αB
TM/B

)
other

(15)

Between Eq. (14) and Eq. (15) there appears to be three unknowns:
(
aBTM/I

)
Earth

,
(
aBB/I

)
Earth

and
(
aBB/I

)
drag

. However, if
(
aBTM1/I

)
Earth

is solved for in Eq. (15) and plugged into Eq. (14),(
aBB/I

)
Earth

will cancel out. Therefore, there are two equations with two unknowns. From Eq.
(14) and Eq. (15) the drag acting on the spacecraft may now be solved for directly,(

aBB/I

)
drag

=
(
q−1
H qdrag − 1q

)−1
[
aBTM/B − q−1

1 αB
TM/B + q−1

1

(
αB
TM/B

)
other

−
(
aBTM/B

)
other

] (16)

Here, 1q denotes the unit quaternion 1q = [1, 0, 0, 0]T ∈ H, and x−1 denotes the quaternion inverse
acting on a variable x ∈ H and is presented in Table 1.
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SIMULATIONS

Using Eq. (1) the torques acting on the GRACE-FO spacecraft and the S-GRS’s test mass were
modeled in MATLAB for a near polar nadir-pointing orbit assuming a known gravitational potential.
The moment of inertia of the GRACE-FO spacecraft was acquired from the GRACE-FO user
handbook10 while the moment of inertia of the S-GRS’s test mass was acquired from Álvarez et al.5

The MATLAB function gravitysphericalharmonic was used to find the translational accelerations
from Earth’s gravitational potential field for zonal spherical harmonic degrees n = 1, 2, ..., 23.
Then āJ1 , āJ2 , ..., āJ23 were plugged into Eq. (2) to calculate GJ1 , GJ2 , ..., GJ23 , respectively,
for both the spacecraft and the test mass. Next, GJ1 , GJ2 , ..., GJ23 were plugged into Eq. (1)
to acquire the gravity-gradient torques acting on the spacecraft and test mass. Figure 3 presents
the angular acceleration sensitivity of the S-GRS (solid black line) compared to the relative
angular acceleration amplitude spectral density between the GRACE-FO spacecraft and the S-
GRS’s test mass. The angular acceleration sensitivity of the S-GRS was calculated from the S-
GRS’s transitional acceleration sensitivity simulations.5 Figures 4 through 7 present the S-GRS’s
sensitivity to the individual zonal spherical harmonics.

The nongravitational accelerations from the Level-1B GRACE-FO data products14 were then
applied to the GRACE-FO spacecraft in addition to the gravity gradient torque and translational
gravitational acceleration for zonal spherical harmonic degrees n = 1, 2, ..., 23. Equations (10) and
(16) were used to solve directly for the drag acting on the GRACE-FO spacecraft with the results
presented in Figure 8 and Figure 9, respectively.

DISCUSSION

From Figures 4 through 7 it is proven that the S-GRS will be able to measure to the relative
gravity-gradient torque between the spacecraft and test mass resulting from zonal spherical
harmonic order 23 or higher. However, the main take away from these figures is not the order
of zonal spherical harmonic degree which will be observable, instead the main take away is that
the relative gravity-gradient torque will be observable at all to the S-GRS’s accelerometer. This is
important since as previously stated, the relative gravity-gradient induced torque data is not currently
utilized for the GRACE-FO data products which is attributed to limitations with the current ONERA
accelerometers.4

Since the accelerometer in the S-GRS will be sensitive to the relative gravity-gradient induced
torque, the algorithm derived in Eq. (16) may be utilized to directly measure the drag acting on
the spacecraft with a single S-GRS accelerometer. Directly measuring drag is of critical necessity
since drag modeling errors are a main contributor of error in the current version 04 release of the
GRACE-FO data products.8, 9 Additionally, when we compare the results of the algorithm in Eq.
(16) to the results of the algorithm presented in Eq. (10) we find both errors to be on the order of
≈ 10−13 m/s2. This result is greatly important for future gravity recovery missions since instead of
requiring a minimum of two precision accelerometers to directly measure drag, only a single S-GRS
is needed.

Finally, it is important to note that for the simulations which estimated the drag acting
on the spacecraft in Figures 8 and 9, the terms which subtract out additional external forces(
αB
TM1/B

)
other

and
(
aBTM1/B

)
other

, were set to zero. Both terms were set to zero because the
algorithm directly solves for the drag (i.e. no estimation nor filtering), therefore the accuracy of the
drag estimation becomes a function of the modeling accuracy of the other nongravitational forces
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(Solar radiation pressure, Earth radiation pressure, spacecraft - test mass coupling, etc.), which
may be modeled more accurately than the drag acting on the spacecraft.9 Therefore, modeling and
adding the other external forces to the spacecraft - test mass system only to then subtract them out
directly in Eq. (10) and Eq. (16) would be a null point for these simulations.

CONCLUSIONS

This research formulated the gravity-gradient torque equations for zonal spherical harmonic order
n when Earth’s gravitational potential is known. This research also proved that the S-GRS will
be sensitive to the gravity-gradient induced torques acting on its test mass through simulations
which plotted the relative angular acceleration amplitude spectral density between the GRACE-FO
spacecraft and the S-GRS’s test mass. The newly-available measured relative angular accelerations
between the gravity recovery spacecraft and test mass were then used to directly measure the drag
acting on a gravity recovery spacecraft with only a single S-GRS accelerometer. This algorithm
was then compared to the another drag estimation algorithm which requires a minimum of two
accelerometers. Through this comparison, it was shown that the both algorithms are able to estimate
the drag to a similar error level. Finally, to the extent of the authors’ knowledge, this research is
novel since no other research has investigated the sensitivity of precision accelerometers to gravity
gradient induced torque, nor has any research demonstrated the potential for these measurements to
improve the accuracy of gravity recovery mission observables.
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Figure 4. Relative Angular Acceleration Amplitude Spectral Density Between the
GRACE-FO Spacecraft and The S-GRS’s Test Mass for Zonal Spherical Harmonic
Degrees J1 to J5.
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Figure 5. Relative Angular Acceleration Amplitude Spectral Density Between the
GRACE-FO Spacecraft and The S-GRS’s Test Mass for Zonal Spherical Harmonic
Degrees J6 to J11.
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Figure 6. Relative Angular Acceleration Amplitude Spectral Density Between the
GRACE-FO Spacecraft and The S-GRS’s Test Mass for Zonal Spherical Harmonic
Degrees J12 to J17.
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Figure 7. Relative Angular Acceleration Amplitude Spectral Density Between the
GRACE-FO Spacecraft and The S-GRS’s Test Mass for Zonal Spherical Harmonic
Degrees J18 to J23.
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Figure 8. Two Test Mass Estimation Case
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Figure 9. Single Test Mass Estimation Case
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