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GFR Background

GFR – Glenn Flux Reconstruction code

Unstructured CFD code based on the high-order flux reconstruction (FR) method with 
particular focus on providing a large-eddy simulation (LES) capability for complex 
aeropropulsion flows.

Why the flux reconstruction (FR) method?

• High-order (> 2nd order) methods are ideal for LES.

• Unstructured methods are best for complex geometries.

• Created by our coworker H.T. Huynh here at NASA Glenn.

• Combines several existing high-order finite-element type methods under a single framework.

• Different versions of discontinuous Galerkin (DG) methods; Spectral-Difference, Spectral-Volume, and has been expanded to 
generate new methods.

• Arbitrary order of accuracy through a single input parameter.

• Specify solution polynomial degree P, giving P+1 order of accuracy.

• Scales very well for very large numbers of parallel processes (10k+).
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New Capabilities and Improvements
Improved Time-Advancement Methods

Runge-Kutta Method Status Stages Order ∆𝒕/∆𝒕𝑺𝑺𝑷𝟑 Time-to-Solution Speedup vs SSP3

Strong-Stability-Preserving (SSP) 3/3 Baseline 3 3 1.0 1.0

SSP 5/4 Existing 5 4 1.889 1.22

Carpenter-Kennedy 5/4 Low Storage Existing 5 4 1.556 0.99

Vortex-Optimized (VO) 5/3 New 5 3 1.667 1.08

VO 11/3 New 11 3 4.444 1.33

VO 6/4 New 6 4 1.889 1.02

VO 15/4 New 15 4 6.0 1.33

VO 8/5 New 8 5 2.556 1.05

VO 16/5 New 16 5 5.833 1.18

Advection-Optimized (AO) 16/5 New 16 5 5.0 0.98

Dormand-Prince EP 7/5(4) New 6 5(4) 1.222 0.64

Dormand-Prince EP 12/8(7) New 12 8(7) 2.378 0.61

Optimized EP 5/3(2) FSAL New 5 3(2) 1.767 1.09

Optimized EP 5/3(2) New 5 3(2) 1.767 1.10

Optimized EP 9/4(3) FSAL New 9 4(3) 3.333 1.22

Optimized EP 9/4(3) New 9 4(3) 3.556 1.25

Optimized EP 10/5(4) FSAL New 10 5(4) 2.778 0.85

Baseline time-advancement method

• Strong Stability Preserving (SSP) 3-stage/3rd-order 
Explicit Runge-Kutta (ERK) method.

• This has been used for nearly all previous GFR simulations.
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New Capabilities and Improvements
Improved Time-Advancement Methods

Runge-Kutta Method Status Stages Order ∆𝒕/∆𝒕𝑺𝑺𝑷𝟑 Time-to-Solution Speedup vs SSP3
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Carpenter-Kennedy 5/4 Low Storage Existing 5 4 1.556 0.99

Vortex-Optimized (VO) 5/3 New 5 3 1.667 1.08

VO 11/3 New 11 3 4.444 1.33

VO 6/4 New 6 4 1.889 1.02
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Dormand-Prince EP 7/5(4) New 6 5(4) 1.222 0.64

Dormand-Prince EP 12/8(7) New 12 8(7) 2.378 0.61

Optimized EP 5/3(2) FSAL New 5 3(2) 1.767 1.09

Optimized EP 5/3(2) New 5 3(2) 1.767 1.10

Optimized EP 9/4(3) FSAL New 9 4(3) 3.333 1.22

Optimized EP 9/4(3) New 9 4(3) 3.556 1.25

Optimized EP 10/5(4) FSAL New 10 5(4) 2.778 0.85
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Significance:
• Large scale-resolving simulations can take weeks to produce 

quality time-averaged solutions.
• A time-to-solution speedup of 20-30% can eliminate days of 

expensive run time.
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New Capabilities and Improvements
3D Mixed Element Capability

Added support for grid topologies containing 
tetrahedra, pyramid, and/or prism elements.

Required significant updates to many parts of 
the code:

• Preprocessing, including periodic boundary 
conditions.

• Creating geometry-generic algorithms to create the 
matrix operators needed for the FR method.

• Interpolation, derivative, correction, projection, filtering, 
switching between nodal/modal forms

• Generating high-order face connectivities needed 
for cell interface operations.

• Post-processing algorithms for exporting high-order 
mixed-element solution data using parallel CGNS.

Taylor-Green Vortex Problem
Instantaneous contours of vorticity magnitude at t*=8

P4 Tet-only grid with 4693 DoF

P4 Hex-only grid with 5103 DoF

P4 Tet-only grid with 2413 DoF

P4 Hex-only grid with 2553 DoF
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New Capabilities and Improvements
Rotating Turbomachinery Capability

Successfully added rotating reference frame capability to GFR.

• This capability allows the user to specify arbitrary grid rotation about all three 
Cartesian axes.

• Traditional turbomachinery codes tend to only allow rotation about a single 
primary axis.

Added rotated periodic boundary conditions.

• This can significantly reduce computational costs of turbomachinery flows that 
contain rotational symmetries.
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Results
Spacecraft Cabin Ventilation Fan

Geometry

• Single-stage fan with 9 rotor blades 
and 11 stators

• Approximately 9 in. long with 4 in. diameter

• Design conditions

• 12,000 RPM

• 150.3 ft3/min (CFM) volumetric flow rate

• 3.64 in. of water stagnation pressure rise

• @ 70°F and 14.7 psia

Meridional View

Fan Geometry
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Results
Spacecraft Cabin Ventilation Fan

Computational Domain

• Single blade with rotationally periodic 
domain of 40°.

• Sponge layer was added at outflow to help 
damp out non-physical pressure waves 
reflecting off the outflow boundary.

• The sponge region did not include the stator blade.

• The hub geometry was modified at the 
inflow to a shallower incident angle.

• The air gap between the rotating and 
stationary parts of the hub was removed, 
and the stationary part of the hub was 
changed to rotating.

Meridional View

GFR Computational Domain
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Results
Spacecraft Cabin Ventilation Fan

Computational Grid

• 2,323,333 Cells

• Degrees of Freedom

Computational Setup

• Implicit LES (no subgrid modeling)

• 11-stage/3rd-order vortex-optimized Runge-Kutta

Boundary Conditions

• Hub, rotor, and case walls set to no-slip adiabatic
• Hub and rotor in MRF → zero wall velocity

• Case in inertial reference frame → -Ω rotational speed imposed at the wall

• Subsonic inflow specifying total conditions
• Inflow only in axial direcition

• No inflow turbulence

• Subsonic outflow setting a static pressure ratio relative to 
the inflow conditions

• Rotationally periodic

Edge length of surface mesh elements in wall units.

Tet Pyr Pri Hex

820K 56K 1.1M 336K

P1 P2 P3 P4

13M 38M 84M 157M
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Results
Spacecraft Cabin Ventilation Fan

Fan performance map using P1 simulations

• 16 total P1 operating points using PR = 1.0025–1.0078

• The experimental data is included to
gauge if the GFR results are reasonable.
• Experiment contains rotor+stator so not

a one-to-one comparison.

• Notable operating points:
• PR=1.0055

• Peak efficiency at 144 CFM

• PR=1.0077

• Peak ΔP0 at 110 CFM

• PR=1.00775 and PR=1.0078

• Plummeting CFM indicates stall

• Peak efficiency also run at P3.
• Lower dissipation results in slightly higher 

CFM, ΔP0, and adiabatic efficiency than P1.

Convergence of CFM for P1 cases

CFM vs. ΔP0 CFM vs. Adiabatic Efficiency

Exp. (Rotor+Stator)

P1 (Rotor only)

P3 (Rotor only)
P1 (Rotor only)

P3 (Rotor only)
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Results
Spacecraft Cabin Ventilation Fan

Fan performance map using P1 simulations

• 16 total P1 operating points using PR = 1.0025–1.0078

• The experimental data is included to
gauge if the GFR results are reasonable.
• Experiment contains rotor+stator so not

a one-to-one comparison.

• Notable operating points:
• PR=1.0055

• Peak efficiency at 144 CFM

• PR=1.0077

• Peak ΔP0 at 110 CFM

• PR=1.00775 and PR=1.0078

• Plummeting CFM indicates stall

• Peak efficiency also run at P3.
• Lower dissipation results in slightly higher 

CFM, ΔP0, and adiabatic efficiency than P1.

Convergence of CFM for P1 cases

CFM vs. ΔP0 CFM vs. Adiabatic Efficiency

Exp. (Rotor+Stator)

P1 (Rotor only)

P3 (Rotor only)
P1 (Rotor only)

P3 (Rotor only)



National Aeronautics and Space Administration 16

Results
Spacecraft Cabin Ventilation Fan

Fan performance map using P1 simulations

• 16 total P1 operating points using PR = 1.0025–1.0078

• The experimental data is included to
gauge if the GFR results are reasonable.
• Experiment contains rotor+stator so not

a one-to-one comparison.

• Notable operating points:
• PR=1.0055

• Peak efficiency at 144 CFM

• PR=1.0077

• Peak ΔP0 at 110 CFM

• PR=1.00775 and PR=1.0078

• Plummeting CFM indicates stall

• Peak efficiency also run at P3.
• Lower dissipation results in slightly higher 

CFM, ΔP0, and adiabatic efficiency than P1.

Convergence of CFM for P1 cases

CFM vs. ΔP0 CFM vs. Adiabatic Efficiency

Exp. (Rotor+Stator)

P1 (Rotor only)

P3 (Rotor only)
P1 (Rotor only)

P3 (Rotor only)



National Aeronautics and Space Administration 17

Results
Spacecraft Cabin Ventilation Fan
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Results
Spacecraft Cabin Ventilation Fan

Flow details vs. P order

• Starting with same P1 solution, 
P1-P4 simulations were run 
for 0.2522 revolutions.

• Slices taken at 99% passage height.
• We are looking at the flow over the blade 

tips, which are located just underneath the 
screen.

• Located within the tip gap, just above the 
blade.

• P1 resolves all the major flow 
features.
• Misses the T-S waves above the tip.

• No structures within the leading edge wake.

P1 with 13 million DoF P2 with 38 million DoF

P3 with 84 million DoF P4 with 157 million DoF
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Results
Spacecraft Cabin Ventilation Fan

P4 animation at PR = 1.0077 (peak ΔP0)

• Slice taken at 99% passage height.

• Looking at the flow over the blade tips, which 
are located just underneath the screen.

• Flow is moving bottom to top.

• Post-processing tools were used to create this 
multi-blade flow by replicating the single blade 
solution.
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Results
Spacecraft Cabin Ventilation Fan

P4 streamtraces at PR = 1.0055 (peak efficiency)

• Further verification against currently limited and future experimental 
measurements still needed.

• Potential for new insights into the fluid dynamics for this and similar 
configurations not found/detectable by RANS or experiment.
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Results
Spacecraft Cabin Ventilation Fan

P4 streamtraces at PR = 1.0055 (peak efficiency)

• Further verification against currently limited and future experimental 
measurements still needed.

• Potential for new insights into the fluid dynamics for this and similar 
configurations not found/detectable by RANS or experiment.Significance:  

• First successful simulations demonstrating the 
new rotating turbomachinery capability in GFR.

• Demonstration of the new mixed-element 
mesh capability towards real-world problem.

• High-order solutions show potential for new 
insights into the fluid dynamics for this and 
similar configurations not found/detectable by 
RANS or experiment.



National Aeronautics and Space Administration 22

Summary

New Capabilities and Improvements

• Added several explicit RK methods demonstrating 20-30% time-to-solution improvements.

• Added and verified 3D mixed element and rotating reference frame capabilities.

Applications

• Paper: Demonstrated unstructured mixed-element mesh capability using Taylor-Green vortex.

• Paper: Used Turbulent Heat Flux – Phase 3 (single-hole cooling flow) for verification and validation of LES 
capability for flows with complex aerodynamic and thermodynamic interactions.

• The spacecraft cabin ventilation fan was used to demonstrate that GFR is ready for rotating turbomachinery 
applications where high-order LES is preferable to RANS approaches.

• Used P1 to efficiently establish a full fan performance map.

• Demonstrated the potential use of higher-order “deep dives” on selective operating points for further insights and analysis of the fluid 
dynamics.

Future Work

• Support for running on GPUs.

• Sliding mesh interface capability for coupled rotor/stator simulations.

• Add wall-modeled LES capability to reduce grid resolution required for LES of wall-bounded flows.

• Improved shock-capturing with minimal tuning for flows involving shocks.
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