Validation of Self-Scheduling Countermeasures in NASA's HERA Campaign 6

John A. Karasinski, Shivang Shelat, Jessica J. Marquez
NASA Ames Research Center, Moffett Field, CA 94043, USA
AIAA SciTech Forum, 6–10 January 2025

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Background

- ➤ Today, International Space Station (ISS) schedules are handled by expert planners on the ground.
- During any given week, hundreds of activities are performed, each with its own resource needs (e.g., power), constraints (e.g., physical space), or crew availability (e.g., a given crew member trained for a particular task).
- Future long-duration exploration missions will require crew to take a more active role in the planning process, but crew are not expert schedulers.

Playbook

- Playbook is an interactive, web-based platform designed to facilitate crew members' visualization of their schedules and constraints.
- Playbook aims to enable effective collaboration between crew and Mission Control Center (MCC) personnel.

Self-Scheduling

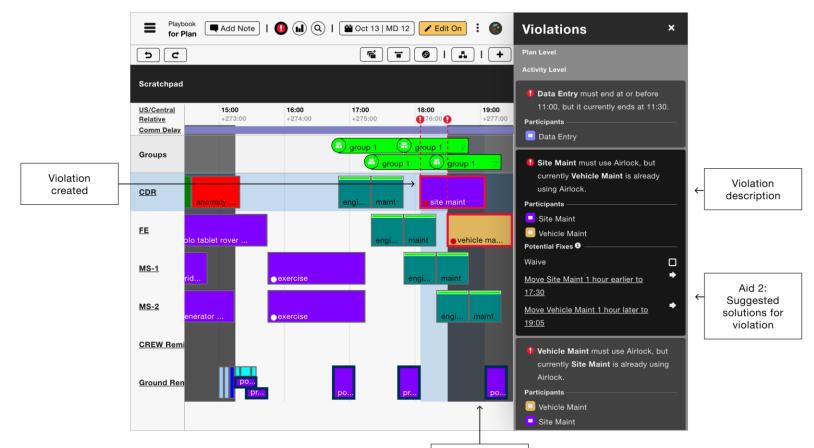
- Self-scheduling is the ability for an astronaut to autonomously manipulate their own spaceflight schedule.
- Currently, ISS astronauts do not have the ability to rearrange schedules. Self-scheduling is a new concept of operations that our team has been exploring for years.

Human Exploration Research Analog (HERA)

➤ HERA C6, conducted from September 2021 to March 2023, consisted of four missions (M1–M4) and marked the first mission-level implementation of self-scheduling within an analog setting.

Methods (1/2)

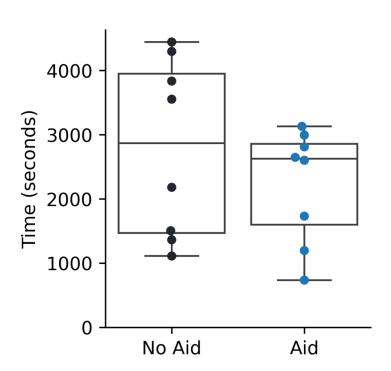
- ➤ During each of HERA C6's four missions, four astronaut-like crew members participated in a simulated 45-day mission.
- Each crew member took turns acting as the assigned planner to schedule one operational day for the entire crew.
- > This resulted in a total of 16 self-scheduled days.

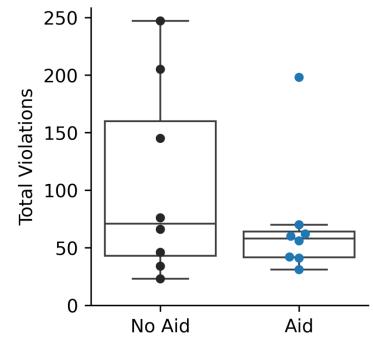

Methods (2/2)

- ➤ In this study, we examined the performance of the analog crew and the workload associated with the scheduling process during HERA C6.
- ➤ All participants used Playbook to complete their scheduling sessions. Our analysis focused on a between-subjects variable of no aid (C6M1 and C6M2) and aid (C6M3 and C6M4).

Aid 1: "No-Go Zone"

Operational Constraints

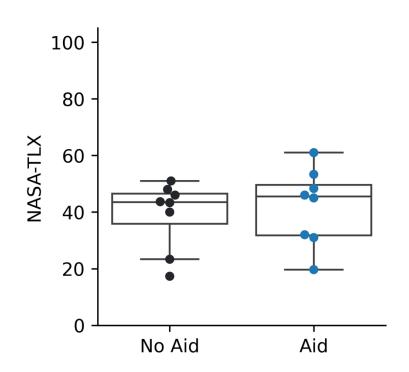

- Due to the operational constraints of the HERA campaign, each crew member had a unique day to schedule, each with a different number of activities and various amounts and types of constraints.
- ➤ At least one of each constraint type was present on each crew member's scheduled day, and we attempted to select days with an even distribution of constraints.

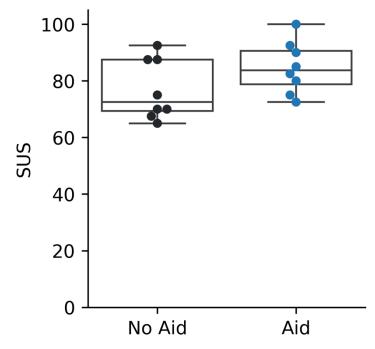


Performance Measures

Violation Types

Decreased total violations driven by decreased Claims and Binary constraint violations.


		Total	Claims	Binary	Assignment	Unary	Profile
Mean	No Aid	105	52	38	7	8	0
	Aid	70	29	19	16	6	2
Median	No Aid	71	35	14	5	8	0
	Aid	58	21	14	11	5	0
Standard Deviation	No Aid	84	45	52	6	6	1
	Aid	53	23	13	15	6	4



Workload and Usability Measures

Results

- Although none of the differences between the groups reached statistical significance, the Aid group exhibited trends toward better performance on several measures.
- Participants who received aids tended to complete tasks more quickly, reported higher usability scores on the SUS, and committed fewer total violations.

Discussion

- While this work provides evidence that targeted scheduling countermeasures (i.e., no-go zones) can reduce the occurrence of specific types of constraint violations, the development of additional countermeasures is ongoing.
- ➤ By introducing no-go zones, we may have inadvertently shifted the prevalence of scheduling constraint violations to Assignment constraint violations.
- ➤ HERA C7 has recently been completed and included 32 self-scheduled days.

Acknowledgments

- ➤ The authors would like to acknowledge the participants in HERA C6 and the SPIFe team for supporting HERA observations.
- ➤ This research was funded by the NASA HRP's Human Factors and Behavior Performance Element (NASA Program Announcement number 80JSC017N0001-BPBA) Human Capabilities Assessment for Autonomous Missions (HCAAM) Virtual NASA Specialized Center of Research (VNSCOR) effort.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS