

Safety Benefit Analysis of Conformance Monitoring for Situation Awareness in UTM

Min Xue[♦] Vincent Kuo^{*}

José Ignacio de Alvear Cárdenas+

Priyank Pradeep[♦]

Seungman Lee

NASA Ames Research Center *Metis Technology Solutions

◆ San Jose Sate University Research Foundation

♦ Universities Space Research Association

Moffett Field, CA

AIAA Scitech Conference, Jan. 10, 2025

Background & Motivation

Initial safety case was developed and published in the ASTM standard:

Strategic deconfliction (SD) can significantly mitigate UA to UA collision risk by two to three orders of magnitudes

Two key questions remain unanswered:

- 1) Can strategic deconfliction (SD) alone achieve the target level of safety?
- 2) Under what circumstances is conformance monitoring for situation awareness (CMSA) needed?

Outline

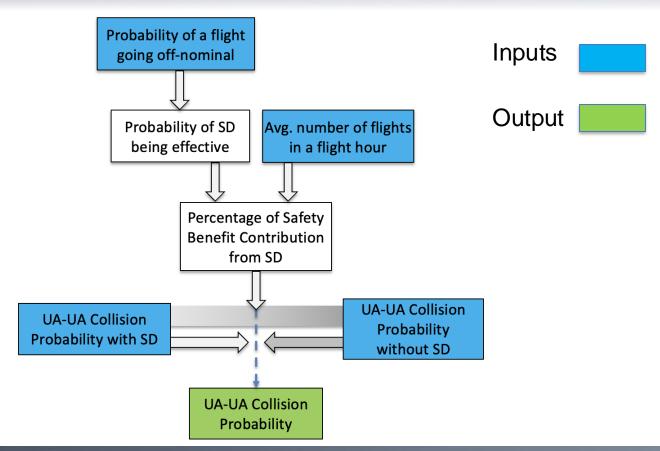
- Analysis Method
 - Assumptions in service modeling
 - Analysis model
 - Relationship Between Off-Nominal Flights and UA-to-UA Collision Risk
- Results: Conditions that require CMSA
 - Results driven by the risk of UA-to-UA collision
 - · Results driven by the risk of ground injuries
- Conclusions

Assumptions in Service Modeling

Assumption 1: When the SD is applied and operational intent volumes are valid, the UA-to-UA collision probability or Mid-Air-Collision (MAC) risk can be reduced to zero.

$$P(MAC|(SD \cap Valid_OIV)) = 0$$

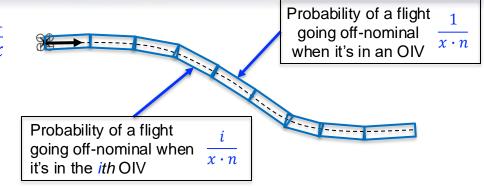
Assumption 2: When the CMSA service is active, there is no time delay between when a UA goes off-nominal and when the updated off-nominal operational intent volume.


$$P(Valid_OIV|CMSA) = 1$$

Assumption 2: the CMSA is assumed to include deconfliction services - whether strategic or tactical deconfliction, and the deconfliction process takes no time to ensure successful resolution of potential conflicts.

$$P(MAC|(CMSA\cap SD)) = 0$$

Analysis Approach



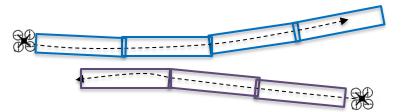
Step I: Probability of any OIV in a flight being invalid

- Probability of a flight going off-nominal: $\frac{1}{x}$
- Probability of the flight going off-nominal during any OIV is:

$$\frac{1}{x \cdot n}$$

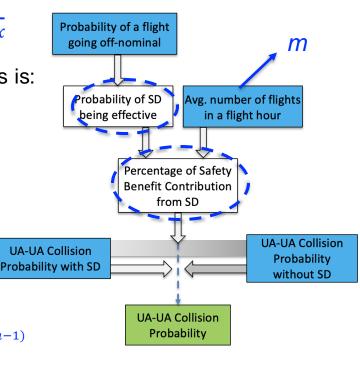
• The probability of an operational intent volume (*i* th OIV of the total *n* OIVs in this flight) becomes invalid due to the flight going off-nominal is:

$$\frac{i}{x \cdot n}$$


• The probability of any operational intent volume (OIV) in a flight being invalid given the likelihood of the flight going off-nominal is then:

P(invalid OIV exists in a flight) =
$$1 - \prod_{i=1}^{n} (1 - \frac{i}{x \cdot n}) \approx \frac{1}{2x}$$

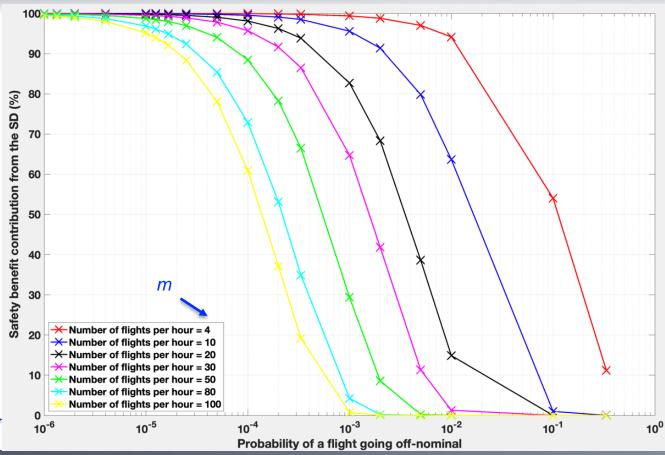
Step II: Percentage of the safety contribution from SD


- The probability of all OIVs in a flight being valid: $1 \frac{1}{2x}$
- The probability of SD being effective given any two flights is:

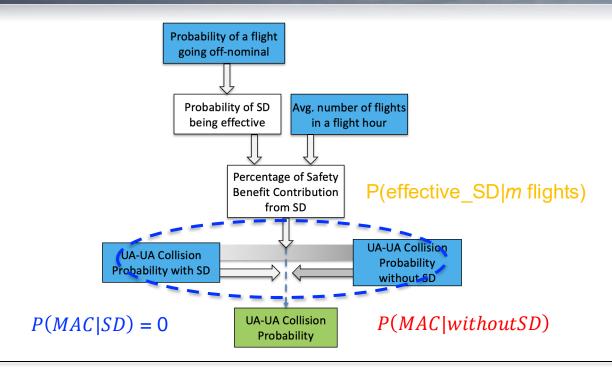
P(effective_SD|any two flights) =
$$\left(1 - \frac{1}{2x}\right)^2$$

Assuming the number of flights in a flight hour is m,

P(effective_SD|*m* flights) =
$$\left[\left(1 - \frac{1}{2x} \right)^2 \right]^{C_m^2} = \left(1 - \frac{1}{2x} \right)^{m(m-1)}$$



Relationship between off-nominal flights and effective SD


P(effective_SD|*m* flights)

$$= \left(1 - \frac{1}{2x}\right)^{m(m-1)}$$

Relation between UA-to-UA collision risk and off-nominal flights (I)

 $P(UA-UA Collision Risk) = P(MAC|SD) \cdot P(effective_SD|m flights) + P(MAC|withoutSD) \cdot (1 - P(effective_SD|m flights))$

Relation between UA-to-UA collision risk and off-nominal flights (II)

 $P(UA-UA Collision Risk) = P(MAC|SD) \cdot P(effective SD|m flights) + P(MAC|withoutSD) \cdot (1 - P(effective SD|m flights))$

Target UA-to-UA collision

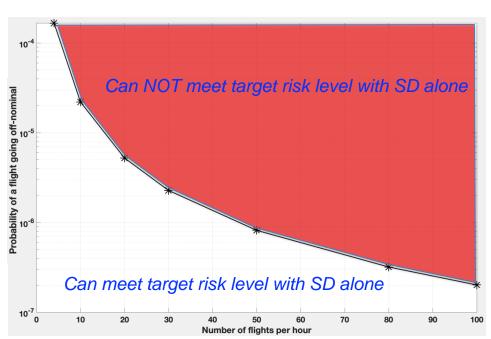
$$P(MAC|SD) = 0$$

P(MAC|withoutSD)

P(effective SD|m flights)

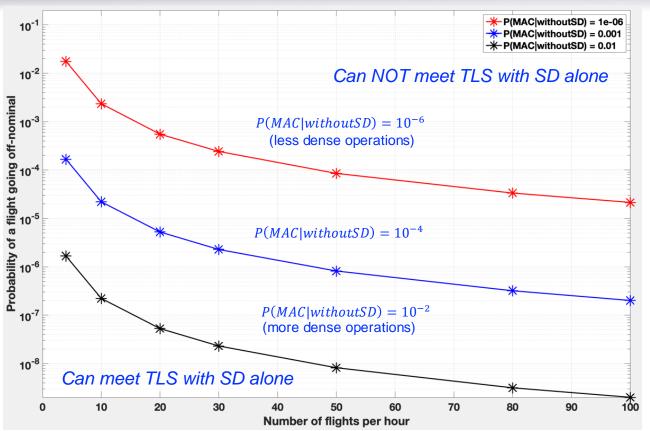
Probability of off-nominal flights

$$\frac{1}{x} \le 2 \cdot \left(1 - \sqrt{1 - \frac{Target\ UAtoUA\ Collision\ Risk}{P(MAC|withoutSD)}}\right)$$


When SD alone can not meet the target UA-to-UA collision risk

$$\frac{1}{x} \le 2 \cdot \left(1 - \sqrt{1 - \frac{Target\ UA - UA\ Collision\ Risk}{P(MAC|withoutSD)}}\right)$$

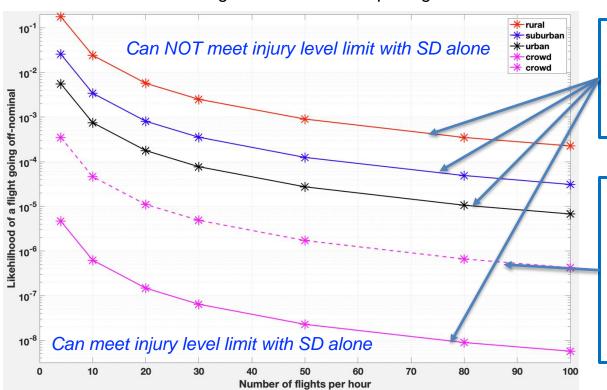
 $P(MAC|withoutSD) = 10^{-4}$


Target: 10⁻⁷ UA-to-UA collision

Analysis with different P(MAC/withoutSD)

In order to maintain the target level of safety (UA-to-UA collision risk) by SD alone, the higher operational tempo/density is, the lower likelihood of off-nominal flights will be required.

Outline


- Analysis Method
 - Assumptions in service modeling
 - Analysis model
 - Relation between off-nominal flights and UA-to-UA collision risk
- Results
 - Results driven by UA-to-UA collision risk
 - Results driven by ground injury risk
- Conclusions

When SD alone can not meet the target injury risk on the ground

 $P(MAC|withoutSD) = 10^{-4}$

If switch from target UA-UA collision per flight hour 1.0×10^{-7} to target injuries per flight hour.

Target: 2.0 × 10⁻⁷ injuries per flight hour

(equivalent to **10** injuries each year if 10K operations/hour and 14 hours/day)

Target: 1.5 × 10⁻⁵ injuries per flight hour

(equivalent to 766 injuries each year if 10K operations/hour and 14 hours/day)

Note: SD alone is sufficient for operations in "rural", "suburban", and "urban" areas

Conclusions

- This work defines the operational thresholds when SD alone is insufficient, requiring CMSA services.
- The thresholds were derived using two risk metrics: UA-to-UA collision risk and ground injury risk.
- The probability of a flight going off-nominal is the key factor in determining when CMSA services are required
- As operational tempo, density, and complexity increase, the baseline UA-to-UA collision risk without SD rises, thereby driving an increased demand for CMSA services.