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ABSTRACT

Quantum networking protocols relying on interference and precise time-of-flight measurements require high-
precision clock synchronization. This study describes the design, implementation, and characterization of two
optical time transfer methods in a metropolitan-scale quantum networking research testbed. The first technique
called active electronic stabilization (ELSTAB), was able to achieve sub-picosecond time deviation (TDEV) at
integration times between 1 s and 105s over multiple different fiber lengths of both underground and aerial
deployed fiber. The second technique, White Rabbit-Precision Time Protocol (WR-PTP), was able to achieve
10-picosecond TDEV’s over similar fiber lengths at comparable integration times. Environmental fluctuations
affected the stability of clock synchronization over deployed fiber. These fluctuations resulted in path delay
gradients, chromatic dispersion, polarization drift, and optical power variations. The results from this study will
inform future work in the development of compensation methods essential for enabling experimental research in
developing practical quantum networking protocols.
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1. INTRODUCTION

The potential benefits of quantum networks include theoretically secure quantum key distribution,1 distributed
quantum sensing2 and computing,3 and secure clock synchronization.4,5 High-precision time and frequency
synchronization enables fundamental quantum networking capabilities from measuring the indistinguishability6

of sources to entanglement distribution7–9 and swapping.10–12 High-precision clock synchronization is sufficient
to support near-term point-to-point quantum communications. As networks scale, the protocol requirements for
high-accuracy time synchronization could evolve. Time transfer needs for quantum networking research include
the ability to integrate into existing telecommunications infrastructure, co-propagation of quantum and classical
signals,13–16 scalability, resilience, and security. As single photon pulse durations can vary from nanoseconds
to the femtosecond regime using ultrashort lasers, our initial goal is to achieve 10−11 s time deviation (TDEV)
at one second integration time to enable delivery of entangled photons to distant nodes.17,18 Optical two-way
time and frequency transfer (OTWTFT) over fiber can achieve the initial testbed requirements,19–23 including
the standards-based White Rabbit–Precision Time Protocol (WR-PTP)24–26 and the electronically stabilized
(ELSTAB) OTWTFT27–31
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Figure 1. (A) The electronically stabilized (ELSTAB) and White Rabbit-Precision Time Protocol (WR-PTP) time and
frequency transfer methods are deployed as two separate networks in the DC-QNet. E0 through E2 denote the locations
of the ELSTAB modules. W0 through W5 denote the locations of the WR-PTP switches. WR-PTP communications pass
through the optical switch (links are connected to a point on the star) or are directly connected (links start at a point on
the pentagon) at the hub for the tests. (B) Fractional frequency instability models of atomic clocks and optical two-way
time and frequency transfer (OTWTFT) methods in the DC-QNet with the measured noise range of the WR-PTP and
ELSTAB devices included.

2. TIME SYNCHRONIZATION FOR DC-QNET 7 NODE NETWORK

Several groups are currently developing metropolitan-scale quantum networks.23,32–36 As an emerging testbed
to advance research in quantum network metrology and protocols, the Washington DC Metropolitan Quantum
Network (DC-QNet) comprises seven locations with deployed underground and aerial optical fibers (Fig. 1A).
Fig. 1B models the fractional frequency instability of the atomic clocks and the two OTWTFT methods integrated
into the DC-QNet, each with their benefits and limitations. WR-PTP has been employed in various quantum
network testbeds ranging from laboratory to metropolitan-scales.13,33,37,38 Here, we configure White Rabbit
Switches (WRS)∗ in a star topology where a centrally located reference clock (W3) synchronizes multiple WRS
(Fig. 1A). For each of the links, WR-PTP was deployed over two separate fibers operating at identical optical
wavelengths, using the dense wavelength division multiplexing (DWDM) either at wavelength 1539.77 nm or
at 1541.35 nm. To design and demonstrate a communications network that can co-propagate with quantum
signals in the low-loss C-band, we also implemented a single-fiber bi-directional synchronization architecture
using coarse wavelength division multiplexing (CWDM) transceivers at 1270 nm and 1290 nm. Transceiver
wavelength is chosen depending on the wavelength of the quantum source and noise that is generated from the
interaction between classical light and fiber. For shorter distances, sources that operate in the telecommunication
O-band are preferred due to the small amount of noise that leaks into that band.39 However, at larger distances,
losses are greater for O-band, so rather than accept those losses in the quantum channel, we choose the 1270
nm/1290 nm transceivers which produce small amounts of noise in the C-band.15

2.1 Sub-10ps Time Synchronization Over Deployed Fiber

One of the goals for this work was to achieve high stability time synchronization across all nodes of the network
which is necessary for current quantum networking protocol research and development. Given that we want to
accomplish this over optical fiber and we also want to coexist classical and quantum signals on the same fiber,
that accuracy is 10 ps to 40 ps for distances from 10 km to 100 km.14 The TDEV’s reported in Fig.2 show that
we are able to achieve this goal.

∗Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such
identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the
Department of Defense, or the National Aeronautics and Space Administration, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.



Figure 2. TDEV for various DC-QNet two-way time transfer deployments looking at both the ELSTAB and WR-PTP
methodologies. (left) ELSTAB measurements were a simple loopback with the local and remote units located in the same
lab where the time tagger was located. (right) WR-PTP measurements used an out and back technique, starting with one
local device, connected to a remote device over deployed fiber, then routed back to a second local device over a second
deployed fiber, in order to compare the two local devices with a time tagger. Each distribution technique is referenced to
the same Cesium clock (measurements were not taken over the same time period).

Comparing the fiber paths as illustrated in Fig.1 to the resulting TDEV’s in Fig.2 (left), we observed with
active compensation, the phase stability remained similar for both underground, more environmentally stable,
and aerial links. Additionally, this sub 10 picosecond accuracy was possible over large integrations times, up to
10,000 seconds on our noisiest fiber link. Although, for WR-PTP (Fig.2 (right)), phase stability varied much
more between aerial (green) and underground links (blue), we still observed TDEV’s less than or equal to 40 ps.

2.2 Environmental Effects On Phase Stability

Environmental conditions can have a large impact on the stability of each of the two methods of time transfer.
We found that fibers that are exposed to the elements are significantly more susceptible to degradation in clock
synchronization, as should be expected. This is most evident when you look at the TDEV of our fiber link with
the most aerial fiber, the green line of Fig.2 (right). We can also see this more directly if we look at the path
delay time between two nodes Fig.3. This path delay was calculated using WR-PTP and the air temperature is
taken using the approximate GPS coordinates of the site within an area of about 500 m. This is almost a direct
correlation between the two. We have also plotted the periods of time when cloud cover (gray) affected the path
delay.

Path delay variation is largely due to temperature fluctuations causing the expansion and contraction of
the fiber. This is the reason why aerial fibers have a greater tendency to vary. However, stretching fiber also
results in greater polarization drift and optical power variation. We found that a combination of optical power
fluctuations and temperature variations results in the largest clock synchronization error with regard to WR-
PTP. Fortunately, if we wanted to correct for this error, temperature changes are relatively slow, so with the
proper compensation scheme we should be able to make improvements.

3. CONCLUSION

Our goal was to achieve picosecond level time synchronization stability across all nodes of the DC-QNet and we
were able to accomplish that goal. However, that level of synchronization is not sufficient for all use-cases (e.g.
phase stabilization) and can still be improved. We are currently investigating machine learning models that use
weather and clock error data for training sets. The hope is that these models can be used to predict sources of
clock error that can be used to compensate path delay variations. Additionally, we will be investigating what



Figure 3. One-way path delay of the W4-W3 link (see Fig.1) with air temperature measured at a weather station located
at W4. The shaded areas depict cloud cover.

combination of ELSTAB and WR-PTP is optimal for DC-QNet. ELSTAB is more stable, but it is point to
point. Whereas WR-PTP can be dispersed from one reference clock to 18 different WR-PTP enabled devices,
but is less stable. Improving stability and understanding the maximum range and flexibility these distinct time
transfer technologies remains an active area of research.
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