NASA’S AI FOUNDATION MODELS FOR
SCIENCE: CURRENT INITIATIVES,
WORKFLOW, ROADMAP AND LESSONS
LEARNED

Rahul Ramachandran

Science Research and Projects Division (ST10)
NASA Marshall Space Flight Center
rahul.ramachandran @nasa.gov

Abstract—NASA’s scientific data archives have grown rapidly,
surpassing 150 petabytes and expected to exceed 500 petabytes
by 2029. This expansion presents considerable challenges in data
management and analysis. To address these, the Office of the
Chief Science Data Officer (OCSDO) has implemented a strategy
centered on Al foundation models (FMs) to enhance workflows
across NASA’s five science divisions. These models, trained with
self-supervised pretraining, create versatile, application-agnostic
representations that can be adapted efficiently to specific tasks.
The OCSDO’s ”’5+1” strategy integrates tailored FMs for each
science division with a large language model for cross-domain
tasks. Notable initiatives include the INDUS language model suite
covering all science divisions, the Prithvi-HLS model for optical
remote sensing, and the Prithvi-WxC model for atmospheric
analysis. These models reduce computational demands and data
labeling needs while performing well on existing benchmarks.
Current efforts focus on new models for heliophysics (Surya-
SDO), lunar studies, and biological research, undertaken with
new partnerships. The FM development process follows science
standards prioritizing transparency, accuracy, and relevance.
Key workflows encompass pretraining, adaptation, and inference.
Lessons learned from this work emphasize the value of balancing
costs and benefits, fostering interdisciplinary collaboration, de-
signing science use case-driven models, and maintaining rigorous
validation. This paper details the design, implementation, and
roadmap of NASA’s FMs, illustrating their potential role in ad-
vancing scientific discovery through Al-powered methodologies.

Index Terms—foundation models, artificial intelligence, open
science, large language model.

I. INTRODUCTION

NASA'’s scientific data archives are large and expanding at
a rapid pace. Currently, the archive exceeds 150 petabytes and
is projected to surpass 500 petabytes by fiscal year 2029. It
holds over 1.5 billion files, with an annual data ingestion rate
of 50 petabytes. This large scientific repository will continue
to grow even after the instruments that originally collected
the data cease operations. Managing and analyzing this huge
volume of data presents considerable challenges.

To address these challenges, NASA is adopting new strate-
gies to manage its datasets efficiently and to extract valuable
scientific insights. The Office of the Chief Science Data
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Officer (OCSDO) is leading this effort by improving research
methodologies and reducing barriers for users to effectively
utilize complex scientific data. Specifically, the OCSDO has
implemented a comprehensive strategy to leverage artificial in-
telligence (AI) for advancing scientific research. This strategy
has four components. First, establishing a scalable infrastruc-
ture to support the development and deployment of Al models
within NASA’s operational framework. Second, promoting
interdisciplinary collaboration by integrating and analyzing
data from diverse sources and missions, while also fostering
Al literacy across NASA’s Science Mission Directorate. Third,
enhancing the efficiency of data-related tasks such as search,
discovery, analysis, and visualization. And finally, building
predictive models and simulations to address varied scientific
challenges and support researchers in drawing meaningful
insights.

The OCSDO is actively exploring the potential of Al foun-
dation models [1] to augment current scientific analysis work-
flows. Unlike traditional AI models, which are constrained by
labeled data availability and lack of model generalizability,
Foundation models use self-supervised learning during pre-
training. This approach allows them to be fine-tuned for a
wide range of applications, significantly reducing the effort
required for downstream tasks.

To demonstrate their utility, OCSDO has developed a “5+1”
strategy. This involves collaboration with NASA’s five science
divisions to create tailored foundation models for each di-
vision. Additionally, a large language model will serve as a
cross-disciplinary tool applicable across all divisions. OCSDO
works with science teams from different divisions while pro-
viding expertise in Al, systems engineering, infrastructure, and
training to ensure the success of these initiatives.

The development of these foundation models follows the
same rigorous standards applied to all NASA data products
and algorithms. OCSDO’s design and development process
emphasizes transparency, accuracy, and reliability. This paper
outlines our approach used in designing and implementing the
foundation models, highlights current initiatives and released



models, and presents a roadmap for future development. It also
examines the obstacles encountered during this endeavor and
the strategies employed to overcome them.

II. BACKGROUND ON AI FOUNDATION MODELS

Al foundation models (FMs) are large-scale, pre-trained
models designed to learn versatile, general-purpose representa-
tions of data [2]. These representations enable FMs to perform
a wide range of tasks across domains with minimal fine-tuning.
Through pretraining on vast datasets and pretext tasks, FMs
develop an understanding of the relationships, structures, and
latent features embedded in the data.

Foundation models map input data () to a feature represen-
tation (z) learning a function F'. This representation captures
essential patterns and relationships within the data, which can
then be fine-tuned to a task-specific function G(z) to produce
outputs such as classifications or predictions. An ideal FM can
generalize to unseen tasks without additional adjustments as
zero-shot generalization [2]. Most real-world FMs still require
some degree of fine-tuning to adapt to specific downstream
applications.

Pretext tasks play a critical role in FM training. These
artificial, unlabeled tasks teach the model to extract meaningful
features from raw data. Examples include masked language
modeling (predicting missing words in text), image inpainting
(reconstructing missing parts of an image), and contrastive
learning (identifying similarities and differences between data
points). This pretraining process allows FMs to develop
generalized representations that are applicable across diverse
domains [2].

One of the strengths of FMs lies in their ability to per-
form effective representation learning. They automatically
identify and extract meaningful features—often called latent
factors—from data, which reduces reliance on manual feature
engineering [3]. These representations are smooth (changing
gradually with input variations), hierarchical (breaking down
complex concepts into simpler ones), and sparse (focusing
only on the most relevant features) [3]. Furthermore, FMs
often use manifold learning to simplify high-dimensional data
by mapping it onto lower-dimensional spaces, preserving key
relationships while reducing complexity [3]. For instance, a
model might map images of faces onto a manifold where
dimensions represent features like expression, lighting, and
angle.

Al FMs offer significant advantages in their ability to sup-
port multimodal learning, domain transfer, and task-specific
adaptability. They align and integrate relationships across
different data types, such as linking radar data (e.g., Sentinel-
1) to optical data (e.g., Sentinel-2) using shared feature
representations [2]. Additionally, FMs enable domain transfer
by applying structural insights from one domain to another;
for instance, a model trained on optical satellite imagery
from one instrument can assist in analyzing imagery from
another instrument as long as their underlying instrument
characteristics are similar.

FMs are adaptable, allowing their learned representations to
be fine-tuned and reshaped for specific tasks, optimizing their
performance for diverse applications. From a mathematical
perspective, foundation models transform raw input data into
meaningful representations through a function F'(z) = =z.
These representations can then be fine-tuned for downstream
tasks using a task-specific function G(z) = y. This is a
two-step process—general representation learning followed
by task-specific adaptation. By learning general-purpose rep-
resentations from diverse datasets, they simplify workflows,
enable cross-domain applications, and support a wide range
of downstream science tasks.

III. WORKFLOW

The workflow for developing and applying Al FMs for
science involves three key phases: pretraining, adaptation, and
inference. Each phase has distinct objectives, characteristics,
and challenges, requiring careful planning and collaboration
to achieve optimal results.

In the pretraining phase, the goal is to create a general-
purpose Al model for a science domain by training it on
a massive dataset of scientific data using self-supervised
learning techniques. This phase is computationally intensive,
requiring access to high-performance computing clusters and
significant technical expertise in AI/ML, the scientific domain,
and data engineering. Pretraining is typically a collaborative
effort, involving multiple stakeholders to ensure that the
model addresses the diverse needs of the scientific community.
Success in this phase relies on access to large, high-quality
scientific datasets and the ability to preprocess and utilize them
effectively. Additionally, designing the model requires careful
consideration of architecture, hyperparameters, and training
objectives to ensure generalizability and value for downstream
tasks. This phase also involves balancing the cost and effort
of FM development against its potential downstream benefits.
Open collaboration among different researchers, institutions,
and organizations is crucial to maximizing the effectiveness of
these models. Additionally, rigorous validation and evaluation
procedures are necessary to ensure the quality, reliability, and
relevance of the FMs for their intended applications.

The adaptation phase focuses on tailoring the pretrained FM
to specific scientific research or application tasks. Compared to
pretraining, this phase requires less computational power and
small labeled datasets. It is user-focused, targeting individual
researchers or data practitioners and using different approaches
such as fine-tuning, few-shot learning, or zero-shot learning.

Finally, in the inference phase, the adapted FMs are de-
ployed for real-world scientific research applications. This
phase emphasizes the importance of providing user-friendly
tools and services, enabling researchers or decision makers to
interact with and benefit from the models.

All three phases must be considered if FMs for science are
to be developed and deployed to advance scientific research
effectively and responsibly.



IV. CURRENT INITIATIVES

NASA is actively developing advanced Al models tailored
to its scientific needs, with notable initiatives including IN-
DUS, Prithvi-HLS, and Prithvi-WxC.

INDUS is a suite of encoder language models developed
in collaboration with IBM Research, specifically designed for
NASA’s scientific domains, covering Earth science, biological
and physical science, heliophysics, planetary science, and
astrophysics [4]. Designed for NASA’s specialized tasks, IN-
DUS addresses the shortcomings of general-purpose language
models, such as RoOBERTa, and domain-specific models like
SCIBERT. The suite includes several models: INDUSBASE,
a masked language model built on the RoBERTa BASE
architecture and trained on the NASA Science Mission Di-
rectorate (SMD) corpus. INDUSSMALL, an efficient version
of INDUSBASE created using knowledge distillation. INDUS-
RETRIEVERBASE.,is fine-tuned for dense retrieval with con-
trastive learning and INDUS-RETRIEVERSMALL, a distilled
retriever model optimized for speed and latency. To evaluate
these models, NASA also developed benchmarks for named
entity recognition (NER), question answering (QA), and in-
formation retrieval (IR), including a climate-focused NER task
(CLIMATE-CHANGE NER), NASA-QA for extractive QA in
Earth sciences, and NASA-IR, an IR dataset spanning multiple
domains. Our evaluations show that INDUS models outper-
formed general-purpose models on these benchmarks, with
knowledge-distilled versions offering faster inference without
compromising accuracy. Applications of INDUS include its
integration into NASA’s Science Discovery Engine (SDE)
for improved document retrieval and search and automated
tagging and classification of scientific data using fine-tuned
models.

Prithvi-HLS was the first FM built using NASA science
data. With two iterations to date, Prithvi-HLS aims at optimiz-
ing optical remote sensing tasks related to satellite imagery.
Prithvi-HLS v1.0 is NASA’s first foundation model built on the
Harmonized Landsat Sentinel (HLS) dataset, a 100-million-
parameter model trained on one year of HLS data over the
continental United States (CONUS) [5]. It demonstrated the
advantages of a FM in reducing computational demands and
labeled data requirements for downstream tasks. Prithvi-HLS
v2.0, an improved version developed in response to user feed-
back, retained the masked autoencoders (MAE) architecture
with a vision transformer (ViT) backbone while incorporating
temporal and location metadata encoded as weighted sums
[6]. Trained on NASA’s HLS dataset (2015-2024) with an
improved sampling strategy, this model was pretrained on
a Jiilich Supercomputing Centre system, requiring approx-
imately 23,000 GPU hours for the 300-million-parameter
version and 58,000 GPU hours for the 600-million-parameter
version. Prithvi-HLS v2.0 has been benchmarked on the GEO-
Bench evaluation framework and has outperformed six leading
models and its predecessor, Prithvi-EO-1.0, particularly for
medium-resolution tasks [6].

Prithvi-WxC is a 2.3-billion-parameter model trained on

NASA’s MERRA-2 reanalysis dataset. It has been designed
to capture atmospheric states across multiple variables and
scales. The model is pretrained for forecasting and masked
reconstruction tasks [7]. Prithvi-WxC has been used for ap-
plications such as downscaling, parameterization, and zero-
shot prediction, making it a useful research tool for advancing
atmospheric research [8].

Through these initiatives, NASA is seeking to increase
the use of Al to enhance scientific research by addressing
the challenges in data analysis, interpretation, and application
across various domains.

V. ROADMAP AND LESSONS LEARNED

Our roadmap for FM development for science has several
key initiatives and milestones across diverse scientific do-
mains.

The new version of Prithvi WxC V2 will focus on data
assimilation to enhance its capabilities to support atmospheric
modeling workflows. The updated version is set for release
in June 2025, incorporating improvements to better support
weather forecasting and scientific research needs. In addition,
to encourage NASA’s research and application communities to
use these FMs in their work and to support NASA’s new Earth
Science to Action strategy, the Earth Science Division has
developed additional research and application solicitations to
further enhance these FMs and to build applications and tools
leveraging these FMs. These announcements are available in
NASA’s Research Opportunities in Space and Earth Science
(ROSES 2025).

Surya-SDO, a heliophysics foundation model, uses the Solar
Dynamics Observatory (SDO) data to support solar corona and
magnetic field analysis [9]. This model targets applications
such as active region detection, solar wind forecasting, and
coronal hole predictions. Surya-SDO will scale to 7-21 billion
parameters using computational resources provided by the
NSF NAIRR. The first version (V1) is scheduled for release
in June 2025, with a community workshop planned for later
in the year to engage researchers to evaluate the model and
gather feedback.

For planetary sciences, a Lunar FM development effort
will be launched in early 2025, with a V1 release targeted
for October 2025. This initiative aims to support specialized
applications related to lunar exploration and research.

For biological and physical sciences, the development of a
Biological and Physical Sciences FM is tentatively planned to
begin in fall 2025. This model will focus on addressing the
unique challenges and opportunities in this field.

NASA is also strengthening its collaboration with the Eu-
ropean Space Agency (ESA) on the joint development of
Al FMs. The NASA science team is supporting an ongoing
ESA-funded multimodal model which will be tentatively re-
leased in September 2025. Additionally, a joint NASA-ESA
Al workshop for Earth observation is scheduled from May
5-7, 2025, in Italy. This workshop will emphasize fostering
international cooperation in developing open FM models to
drive Al innovation in Earth sciences.



The development of these AI FMs over the last two years
have unearthed some lessons for maximizing their scientific
value and usefulness. It is important to balance cost with
scientific impact. Efforts should focus on FMs that offer the
greatest potential to drive meaningful advances in research and
discovery.

Collaborations grounded in open science principles have
emerged as the critical ingredient for success. Cross-
institutional partnerships expand resources and expertise, en-
abling broader and more impactful applications of FMs.
Equally important is building interdisciplinary teams that inte-
grate Al specialists, data scientists, and domain experts. This
diverse expertise ensures that models address both technical
and scientific challenges effectively.

Science-driven design is another essential principle.
Grounding model development in a wide variety of science
use cases ensures that the resulting tools are practical and
address important research needs. Alongside this, a deep
understanding of complex and nuanced scientific data as well
as underlying scientific principles is crucial. Having science
domain expertise enables the team to handle data and domain
intricacies effectively—from preprocessing to model design
and training.

Finally, rigorous validation is critical for ensuring model
trust worthiness. Robust evaluation frameworks help build
confidence in the models, ensuring they meet the standards
necessary for scientific research.

These lessons should form the basis for any future FM
initiatives, emphasizing strategic focus and collaboration to
maximize their impact in advancing science.
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