

From Simulation to Reality with Random Noise

Steven Luo¹, Rory Lipkis², Ignacio López-Francos³, Pavlo Vlastos³, and Adrian Agogino²

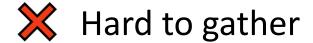
- ¹ University of California, Berkeley
- ² NASA Ames Research Center
- ³ KBR / NASA Ames Research Center

About

- Third-year at UC Berkeley
 - Computer Science, Data Science, Public Policy
 - Website: stevenfluo.github.io

Simulation-to-Reality

Real data can be



Expensive

X Time-consuming

> Potentially unsafe

Simulated data is

Low-cost

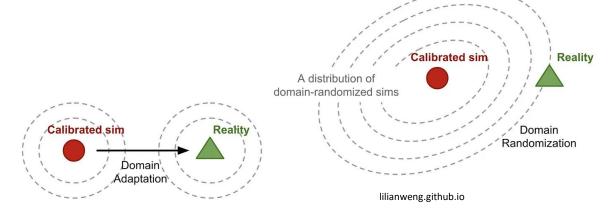
Fast

No threats to physical health

Zhao, W., Queralta, J. P., & Westerlund, T. (2020, December). Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 737-744). IEEE.

Simulated Data Isn't Perfect

- "Reality gap" physical and visual differences
- Methods for sim2real transfer
 - Domain/dynamics randomization
 - Simulation environments
 - Domain adaptation



AmesDT and RRAV

Lopez-Francos, I. G., Mitchell, S. C., Lipkis, R., Vlastos, P. G., Mbaye, S., & Infeld, S. I. (2023). A Model-Based Systems Engineering Approach for Developing an Autonomous Rover Testbed. In AIAA SCITECH 2023 Forum (p. 1894).

Research Goals

- 1. Use the RRAV testbed (rover) to conduct experiments
- 2. Validate Ames Digital Twin (AmesDT) as a good simulation of the Ames Research Center
- 3. Quantify the effect of domain randomization on the real-world accuracy of classifiers trained in simulation

Data

Figure 1: Images from AmesSim (left) and the real_data dataset (right).

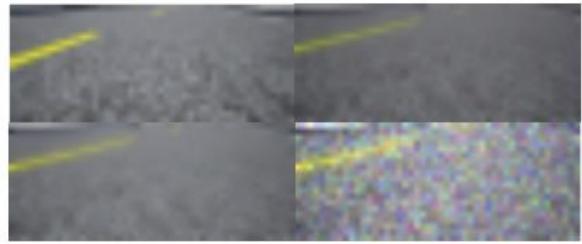


Figure 2: Sample images from each dataset. Clockwise from top left: none_sim, sharpcj_sim, shot_sim, and the sharp_sim dataset.

Real Data

Model Information: Left/Right Classifier

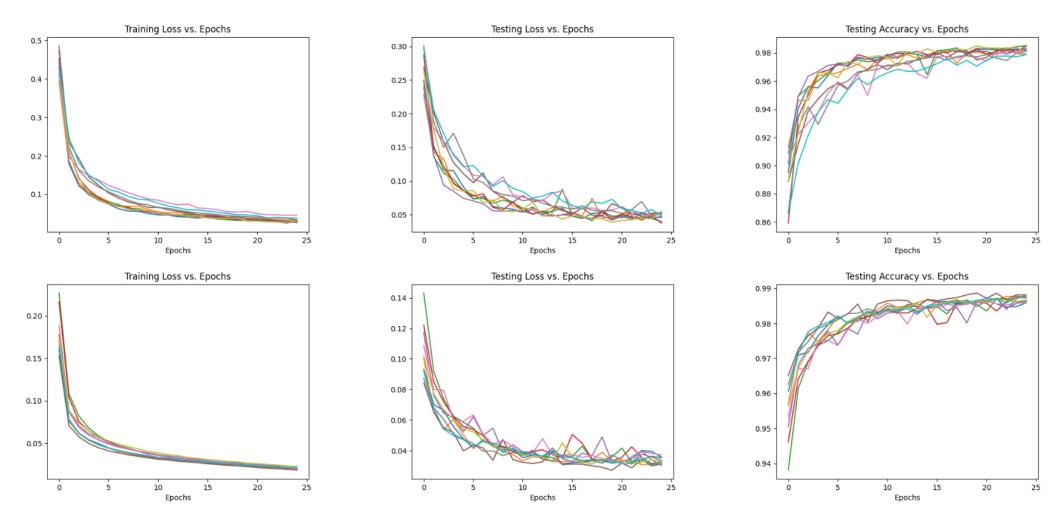
```
Hyperparameters
class ConvNet(nn.Module):
   def __init__(self):
                                                                                    Batch size: 128
       super().__init__()
       self.conv1 = nn.Conv2d(3, 6, 5) # 5x5, 6 channels
                                                                                    Learning rate: 1e-3
       self.maxpool = nn.MaxPool2d(2, 2) # 2x2 max pool
       self.conv2 = nn.Conv2d(6, 16, 5) # 5x5, 16 channels
                                                                                    Epochs: 25
       self.lin1 = nn.Linear(288, 100) # fully connected to hidden layer
                                                                                   Adam optimizer
       self.lin2 = nn.Linear(100, 2)
                                      # fully connected to logit output
   def forward(self, x):
       x = self.maxpool(F.leaky_relu(self.conv1(x)))
                                                                                       1x288
       x = self.maxpool(F.leaky_relu(self.conv2(x)))
       x = torch.flatten(x, 1)
       x = self.lin2(F.leaky_relu(self.lin1(x)))
       return x
                                                                                                                        1x100
                                                              16@4x18
                                   6@16x44
                    3@20x48
                                                                             16@2x9
                                                   6@8x22
                                                                                                                                    1x2
                          Convolution MaxPool Convolution MaxPool
                                                                      Flatten
                                                                                           Linear
                                                                                  Linear
```


Results

Dataset	Size	Details	Data2Data	Data2Sim	Sim2Real
none_sim	48,000	No transforms	98.03%	N/A	64.10%
sharp_sim	528,000	Blur	99.75%	99.78%	69.55%
sharpcj_sim	528,000	Blur + Color Jitter	99.92%	99.94%	71.80%
shot_sim	528,000	Blur + Color Jitter + Poisson Noise	98.59%	99.51%	<u>78.59%</u>

Real dataset: 4,800 images captured in parking lot outside N269 using the RRAV testbed's camera **Real2Real average testing accuracy:** 88.90%

Results



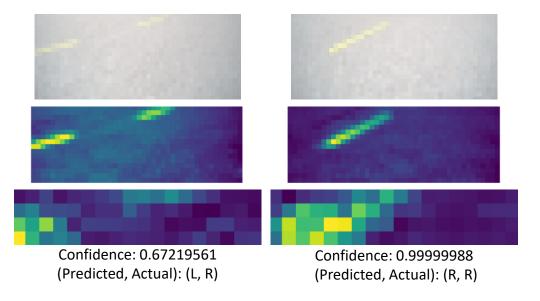
Performance metrics for models trained on the unaugmented none_sim dataset (top row) and the fully-augmented shot_sim dataset (bottom row).

Discussion

- Well-selected augmentations can bridge the reality gap, improve performance and classifier robustness
- Validated AmesDT and RRAV testbench for sim-to-real transfer learning using domain adaptation
- Applications include use as low-fidelity runtime monitor for airplane taxiing/centerline following
- Benchmarking future data augmentation techniques

Technical Contributions

- Real-time data collection script, saved many hours of labeling data
- Real-time streaming of convolutional layer outputs
- Packaged helper functions and analysis methods in Python module, contributing to RRAV repository



Feature maps from a model trained on simulated data with shot noise applied. The top image is the preprocessed, raw image; the middle and bottom images are the channel-averaged outputs from the first and second convolutional layers.

Acknowledgements

Rory Lipkis, Adrian Agogino, Ignacio López-Francos, Pavlo Vlastos, the RRAV group, RSE & Intelligent Systems Division, N-269 summer 2023 interns, and everyone I was fortunate enough to meet during my internship.

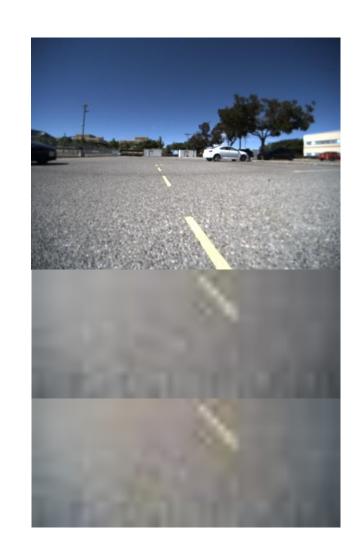
This work was conducted during an Office of STEM Engagement undergraduate internship and was supported by the System-Wide Safety (SWS) Project under the NASA Aeronautics Research Mission Directorate (ARMD) Airspace Operations and Safety Program (AOSP).

Thank you!

Contact me: sfluo@berkeley.edu stevenfluo.github.io

Initial Results

- Bad performance when models trained on simulated data were evaluated on real dataset
 - Brightness, line somewhat resembles a faded yellow or white line
- Models trained on the shot_sim dataset had sim2real accuracy of 61.46% (10 random seeds)
- Solution: saturate real images in real dataset



Dataset Limitations

Model Information: Left/Right Classifier

```
class ConvNet(nn.Module):
   def __init__(self):
                                                                                                                                 1x288
       super().__init__()
       self.conv1 = nn.Conv2d(3, 6, 5) # 5x5, 6 channels
       self.maxpool = nn.MaxPool2d(2, 2) # 2x2 max pool
                                                                                                                                                        1x100
       self.conv2 = nn.Conv2d(6, 16, 5) # 5x5, 16 channels
                                                                                            6@16x44
                                                                                                                16@4x18
                                                                                  3@20x48
                                                                                                        6@8x22
       self.lin1 = nn.Linear(288, 100) # fully connected to hidden layer
                                                                                                                                                                1x2
       self.lin2 = nn.Linear(100, 2)
                                          # fully connected to logit output
   def forward(self, x):
       x = self.maxpool(F.leaky relu(self.conv1(x)))
                                                                                                                                      Flatten
                                                                                       Convolution MaxPool Convolution MaxPool
                                                                                                                                                    Linear
                                                                                                                                                              Linear
       x = self.maxpool(F.leaky_relu(self.conv2(x)))
       x = torch.flatten(x, 1)
       x = self.lin2(F.leaky_relu(self.lin1(x)))
       return x
```

Hyperparameters
Batch size: 128
Learning rate: 1e-3

Epochs: 25

