([. Acoustic Insights into Flow Condensation Mechanisms
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Vapor Quality Calculation Results (cont.)
Inlet quality of saturated vapor: Relationship between Acoustic Power and Flow Condensation

Motivation

Flow condensation occurs in a variety of thermal-fluid
applications, with distinct heat transfer characteristics
observed across different flow regimes.

Interfacial instabilities in flow condensation have
potential to degrade thermal performance.

Traditional analysis of flow condensation, such as
thermofluidic measurements or high-speed
visualization, are not always available and lack the

Flow regimes during sampling rate required to capture rapid dynamics.
flow condensation
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Vapor quality profiles at various Gnpfh and set inlet vapor qualities
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Innovative Solution

Acoustic Sensing Technigues

» Does not require direct visualization access, providing greater flexibility In
flow condensation studies

« QOffers a better time resolution compared to optical imaging, enabling the
capture of high-frequency characteristics 0 RN ol DR e

* Enables non-destructive measurement of acoustic waves, minimizing impact on 0 . 0 , 0 , ,
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« Convert raw sensor data to frequency domain using STFT Acoustic spectrogram matrix across varying flow conditions.
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USlng non-destructive acoustic sensors to characterize flow condensation and Acoustic (a) spectrogram and (b) power of flow w/ vs. w/o condensation ° Linear|y reduces CNN features’ focusing on PCs to denoise data

Identify dominant transport mechanisms during flow regime transitions under UMAP (Uniform Manifold Approximation and Projection):

- : - * Flow condensation generates significant acoustic power . .
gravity and microgravity n 9Ener J . P . » Nonlinearly reduces data, preserving local and global structures
* Broad frequency interaction (250 kHz) during condensation .
K-Means Clustering

Experimental Setup * Minimum acoustic power in non-condensation flow * Organizes data into clusters, evaluated by the Adjusted Rand Index (ARI)

Effect of Vapor Quality on Accelerometer Power

NASA Condensation Module — Heat Transfer (CM-HT) " 40 Performance of unsupervised machine learning
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2 500 .".' o/ Slug Slug flow regime was effectively identified through distinct acoustic patterns.
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+ Test fluid: normal perfluorohexane (npfh) Flow Vertical = =R R (S‘;ﬁ retention and facilitate the classification of flow condensation.
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- nPFH flow rate: 2 g/s — 25 g/s Orientation downflow Future testing will be conducted under microgravity.

-140

Target Inlet  1.15/1.0/0.8

« Water flow rate : up to 27 g/s Quality 106 Time (s)

* Vapor inlet conditions: subcooled,

Acoustic identification of slug flow regime
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