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1. Introduction 

This study seeks to motivate and focus NASA Biological and Physical Sciences (BPS) Division’s engagement 

within the broader Integrated Computational Materials Engineering (ICME) community to understand the 

phenomena underlying material processing, structure, and properties in the microgravity environment of space and 

to thereby support future space exploration efforts. Understanding the physical phenomena and properly capturing 

them in computational models will enable rapid advances in materials for both terrestrial and space use – for 

example, through better predictions of in-space joining, welding, and manufacturing. We have assembled a diverse, 

intermural team that connects NASA civil servants and contractors with external academic and industrial partners.  

A broad range of ICME-relevant disciplines are covered by this team, including but not limited to solidification 

simulations, thermodynamics and kinetics modeling, atomistic modeling, computational fluid dynamics, plasticity 

and process modeling, uncertainty quantification, thermophysical property measurements, structural and fracture 

mechanics, microgravity flight experiments on solidifying alloys, and advanced computing infrastructure. The 

team’s expertise and membership is not exhaustive but serves as a starting point to begin investigations of ICME 

with respect to BPS.  This BPS ICME study group sought to survey the heritage & current flight experiments, 

current ICME engagement, and future opportunities concentrating on the BPS-relevant fields of thermophysical 

properties, solidification kinetics, coupled solidification-fluids, and structures up to the grain length scale 

(mesoscale). These fields were chosen as they represent the disciplines most relevant to metal alloys, which serve as 

a unifying theme throughout this report to assist the reader in understanding the links and other relations between 

flight experiments and ICME tools. The emergence of additive and in-space manufacturing gives emphasis to 

studies of rapid solidification in metal alloys. Certainly, other microgravity materials science themes are vital to 

study – for instance, semiconductor crystal growth, optical fiber drawing, etc. – but their inclusion is beyond the 

scope of this report. The study group also documented the required computational resources, elucidated scale 

bridging1, and reviewed how uncertainty in this ICME framework can not only be quantified but also how 

uncertainty reduction via validation datasets is a raison d’etre for microgravity materials science – generating theory 

and physically validated computational models useful for understanding materials both in space and on the Earth. 

 

1.1. Integrated Computational Materials Engineering (ICME) 

NASA’s mission to travel beyond near earth orbit for a sustained human presence in space will require tremendous 

and rapid innovation. The equipment, processes, and understanding humans use to live on Earth are not necessarily 

applicable in space environments, even on extraterrestrial surfaces such as the Moon. Under the conditions of high 

vacuum, cryogenic to hot temperature swings, and reduced gravity, few areas of expertise have more gaps in 

understanding than materials science. For example, soldering is a common manufacturing method used to create 

circuits and join electronics. However, solder joints exhibit excessive porosity when fabricated in microgravity, 

resulting in degradation of mechanical strength and electrical conductivity [1]. Traditionally, experiments were 

required to reveal material-related issues like these in space environments. However, the adoption of ICME 

approaches allows prediction of the response of materials under conditions unique to space, such as microgravity, by 

capturing physics in computational tools to reduce the burden of experimentation. The materials engineer-scientist 

and component designer can thus make informed, quantitative decisions rather than relying solely on intuition or 

experimentation. Thus, well-developed ICME tools would greatly accelerate the infusion of innovative materials and 

processes necessary to achieve a sustainable presence in the space environment. Additionally, with uncertainty 

quantified and models verified and validated, computationally informed qualification and certification can be 

applied to terrestrial and in-space materials and processes. For instance, it may be possible to certify an in-space 

weld based on its known composition and process parameters captured in situ and simulated via a computational 

model without needing expensive and time-consuming physical inspection or mechanical testing in space. 

The challenge of traditional materials design and performance prediction is illustrated by the example of novel alloy 

design shown in Figure 1. After identification of the need for a new alloy, the cycle starts by choosing a composition 

and then a processing path. The sample is then created and tested. Initial compositions are unlikely to achieve the 

 

 
1 linking fundamental thermodynamic models derived from first principles ab initio and atomistic molecular dynamics 

via solidification microstructures given by the present study’s simulations to mesoscale plasticity models and 

macroscale property predictions 
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desired performance. Thus, a new material composition is chosen, and the process is repeated. Not surprisingly, this 

empirical approach to materials design is costly, laborious, and time-consuming. These costs form barriers to the 

introduction of new materials and to modifying existing ones for the requirements of space applications. The ICME 

paradigm aims to break this Sisyphean cycle. Data derived from experiment, simulation, and computational methods 

drastically decrease the expense to yield a material with the desired performance. A desired set of performance 

metrics is used to identify properties necessary for this performance. Next the microstructure needed to give those 

properties is delineated. Finally, the processing needed to create the desired microstructure is selected. This 

materials development approach is well described by a systems design chart as in Figure 2. This shows the 

connections between performance, properties, structure, and processing that are needed to engineer a high 

temperature Co-alloy, for example. The lines that connect one box to another are provided by computational tools, 

with experiments providing datasets to validate such tools. These process-structure-property/performance (PSP/P) 

relationships are informed and linked by uncertainty throughout. It is critical to perform uncertainty quantification 

(UQ) so that these relationships and the eventually resulting materials and processes can be qualified and certified. 

Figure 2 shows a theoretical model for systems design of a material using this systems design PSP/P framework [2], 

with Figure 3 demonstrating several of the computational tools that could be used to achieve this in the context of a 

powder-based additive manufacturing method [3]. Empirical data feeding simulations and simulations guiding 

experimentation then establish a virtuous cycle that accelerates materials design and innovation. The Materials 

Genome Initiative is one effort dedicated to bringing this new paradigm into fruition [4].  ICME methods to achieve 

computationally informed qualification and certification (Q&C) are also critical to actual infusion of these materials 

and processes into industrial and widespread use. A recently awarded NASA Space Technology Research Institute, 

the Institute for Model-based Quantification and Certification for Additive Manufacturing, seeks to advance the use 

of ICME tools for Q&C [5].  However, these goals require data that is high quality and computational methods that 

are verified and validated (V&V). These methods may be verified against BPS-supported research codes and 

validated using BPS-supported flight experiments providing validation datasets. 

 

 
Figure 1: The cycle of alloy development. 

 

Choose an alloy 

composition

Choose a 

processing path

Build

Test
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Figure 2: A systems design diagram for a notional material system indicates how models of processing, microstructural evolution 

(solidification, precipitation, etc.), and mesoscale phenomena like grain boundaries can be linked to enable model-based systems 

engineering of an optimized material system based on defined performance requirements and bottom-up constraints [2]. 

 

 
Figure 3: The interaction between process, part, and materials design in the context of powder-based additive manufacturing; 

examples of computational techniques used for each stage of product design [3].  Figure from T. Pinomaa et al., “Process-

Structure-Properties-Performance Modeling for Selective Laser Melting” licensed under CC BY 4.0. 

ICME has experienced a tremendous growth within the past few decades as computational resources and tools have 

greatly advanced. It uses physics-based simulations, statistical models, and materials property databases to better 

understand the response of materials to certain stimuli while minimizing costly experiments. For NASA, ICME has 

the potential to effectively predict and solve challenges with using, producing, or processing materials in space-

https://doi.org/10.3390/met9111138
https://doi.org/10.3390/met9111138
https://creativecommons.org/licenses/by/4.0/
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relevant vacuum, cryogenic, or microgravity conditions while reducing the investment in cost, time, and risk 

associated with performing experiments [2]. Its methodology can be used at any stage of the material’s life span, 

from material design to process simulation to property & performance simulation to recycling [2].  This flexibility is 

foundational to the “integrated” piece of ICME. ICME is a collection of tools with more than one that is often 

utilized to answer a specific question. A particular ICME tool may focus on a specific length scale: nanoscale 

(atoms), micro-scale (microns), or the meso-scale (centimeters). In addition, the time scales accessible with each 

approach vary widely, with atomistic methods on the pico- to nano-second timescales, to mesoscale methods on the 

microsecond to multi-year scale, to a timescale of years representing service life of components. Unfortunately, 

today’s computing resources constrain and limit in-built integration from the nanoscale to the macro-scale. Rather, 

ICME often employs an information passing strategy – wherein information on lower length scales and shorter time 

scales are passed to tools at the next higher levels [6]. 

Three illustrative applications of ICME tools follow: 

1. Soto-Medina et al. connected several ICME techniques to guide investigation of the stabilizing effect of 

manganese additions on a desirable intermetallic phase in the lightweight aluminum-iron-silicon alloy system 

[7]. First, the compositional range of the intermetallic phase was predicted using the Thermo-Calc® 

calculation of phase diagrams (CALPHAD) tool, narrowing the experimental range [8].  They then used 

density functional theory (DFT), a nano-scale ICME tool, to calculate the Gibbs free energy of various 

amounts of Mn additions and how manganese atoms substitute for aluminum, iron, and silicon atoms within 

the desired intermetallic phase. The crystal structures necessary for DFT were taken from open databases 

such as the Materials Project Database [9], highlighting the integration between accessible data and 

simulation. Thus, alloy compositions that increased stability of the desirable intermetallic were selected via 

data and simulation and then experimentally verified. The narrowing of the experimental range by 

CALPHAD and DFT tools allowed optimization of a lightweight, high-temperature alloy suitable for highly 

efficient combustion engines under an accelerated development cycle. 

2. A study by Keller et al. utilized a combination of phase field (PF), CALPHAD, and thermal predictions using 

finite element analysis (FEA) to assess the additive manufacturability of nickel-base superalloys [10]. A 

CALPHAD database was used to obtain the thermal properties of one such alloy, Inconel 625. These 

properties were fed into a thermal FEA model to predict the melt pool shape in an additive manufacturing 

process. A PF model was then used to simulate the microstructural evolution, with validation by comparing 

the simulated microstructure to the as-built microstructure. As such, multiple physical phenomena and length 

scales were bridged via ICME to understand the response of a certain superalloy to a novel additive 

manufacturing application. 

3. Prithivirajan et al. used crystal plasticity finite element (CPFE) simulations to study crack initiation at a 

surface-connected pore in an additively manufactured IN718 alloy [11]. The 3D microstructure of the alloy 

(at the gage section of the fatigue test coupon) was extracted by overlaying the multi-modal datasets obtained 

from near-field high-energy X-Ray diffraction (nf-HEDM) and X-Ray computed tomography (XCT) 

datasets. The dataset obtained from nf-HEDM experiment consists of the 3D microstructure of the gage-

section of the coupon, whereas the dataset from XCT measurement consists of the location of process-specific 

pores within the gage section. The high-fidelity microstructure obtained by overlaying the datasets is 

meshed/discretized and input into the CPFE solver to solve for the heterogeneous stress and strain fields 

within the high-fidelity microstructure. The location of failure predicted using the extreme values of failure 

metrics (plastic strain accumulation and plastic energy density) correlated one-to-one with the experimentally 

observed location of crack-initiation for the models. 

The key to making these connections for efforts such as materials design and performance predictions are the ICME 

methods that greatly reduce the need for lengthy and costly experiments. Capturing physics within verified and 

validated computational models will still require experimentation but with fewer overall experiments and 

experiments that focus on revealing fundamental mechanisms instead of rote data generation. Thus, no longer is 

materials research largely performed with conventional experiments and simplified mathematical models, but with 

experimentally informed computational models that accurately capture the underlying materials physics and 

interactions. The mechanisms involved in the processing and structural evolution of a material from the atomistic to 

macroscale levels can be represented by a virtual toolbox of data-anchored – validated against experimental data and 
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the uncertainties in both data and model quantified – models suitable for each length scale (Figure 4).  Thus, a 

material may be virtually evaluated first and then experimentally demonstrated. 

 

 
Figure 4: The continuum of computational material modeling organized by length scale [12]. Used with permission. 

1.2. Microgravity materials science 

With gaps in capability and validation of ICME tools, there is room for BPS to develop a niche vital to ICME using 

copious codes, expertise, and experimental data obtained historically and currently. The seminal 2008 report on 

ICME by the National Academies recognized a governmental role in ICME development and implementation as 

sources of unique datasets and as coordinating entities with long-term visions [13].  BPS is uniquely poised to 

champion and to spur progress in ICME approaches in microgravity materials science. BPS has both the datasets 

and the expertise to answer the questions pertinent to ICME topics such as thermophysical properties, alloy 

solidification morphology and kinetics, coupled fluid-solidification, and other structural evolutions such as 

coarsening. Throughout its history of flight experiments, BPS has consistently been a leader in atomistic to meso-

scale microgravity materials research. Lacking appreciable gravitational forcing and therefore buoyancy and 

sedimentation within a liquid or solid-liquid mixture, flight experiments provide a clearer view of fluid-solidification 

coupling. The greatly reduced gravity also enables higher quality and more materials viable for containerless 

processing for thermophysical property measurements. 

BPS historical data are housed in Physical Science Informatics (PSI) and are still relevant today to further scientific 

understanding. For example, a recent PSI grant re-analyzed Pore Formation and Mobility Investigation (PFMI) data 

housed on PSI. Two associated papers used PFMI data to validate the simulations [14], [15]. Despite these advances 

supported by historical data, the authors’ limited computational resources only allowed a two-dimensional phase 

field model without fluid flow coupling. It is possible that available high-performance computing (HPC) resources 

at NASA, such as the Pleiades supercomputer at NASA Ames Research Center, could further help ICME 

investigations and allow BPS to meet the needs of researchers in this field. Beyond re-analyzing historical data, gaps 

in data needed to validate computational models motivate future flight experiments. However, guidance in which 

experiments and datasets to focus on is needed. 

 

1.3. BPS Decadal Survey 

The BPS Decadal Survey re-imagined fundamental materials science as both supporting and being supported by 

space exploration efforts [16]. Historically, experiments were the dominant if not the only method employed to 

evaluate materials and processes in space environments. However, the adoption of ICME approaches across 

academia, government, and industry simultaneously with burgeoning computational resources allows prediction of 

the response of materials to conditions unique to space [2], [17], [18].  Understanding how the unique environmental 

conditions in space affect the “fundamental physics controlling material structure and properties” will allow us to 

“better predict and control material behavior for both terrestrial and space applications” [16].  One of the most 

promising areas in microgravity materials science is deepening understandings of “microstructure formation during 
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freezing or solidification of metals and metallic alloys, with space providing the necessary long duration, purely 

diffusive environment” [16]. This area increasingly leverages ICME tools in a bid to “shorten development time, 

optimize designs and reduce costs relative to more traditional strategies involving building prototypes, testing and 

redesigning philosophies” [16]. The BPS Decadal survey deemed “access to computational tools and databases” 

as critical to answer Key Scientific Questions such as “What are the fundamental principles that organize the 

structure and functionality of materials…?” and “What principles enable identification, extraction, processing, and 

use of materials found in extraterrestrial environments to enable long-term, sustained human and robotic space 

exploration?” [16]. The routes to answer these questions are, in one form, embodied by the Manufacturing Materials 

and Processes for Sustainability in Space (MATRICES) research campaign, which seeks to “to understand and 

harness the physical processes by which materials and complex fluids can be repeatably utilized in space, to enable 

sustainable exploration and circular lifecycles for the built environment on Earth and in space” [16]. This aligns well 

with the In-Space Manufacturing and Computational Materials Roadmaps being developed by NASA’s Space 

Technology Mission Directorate (STMD), where ICME tools are applied to enable further space exploration by 

enhancing structures and our ability to repair them in space along with in situ resource utilization. 

 

 
Figure 5: Description of the MATRICES research campaign proposed in the BPS Decadal Survey [16] 

One emerging field requiring deeper understanding of physical phenomena and more mature computational tools is 

in-space manufacturing (ISM), which includes a large focus on rapidly solidified metal alloys in additively 

manufactured parts, welds, solders, etc. ISM and repair will require the development and maturation of alloy 

solidification processes such as welding, brazing, and additive manufacturing. Physical processes governing the 

thermophysical properties, solidification, and microstructural evolution of these key terrestrial manufacturing 

processes are poorly understood in the space environment. Indeed, this incomplete understanding limits the utility of 

ICME tools and hinders the transition to a sustainable in-space materials ecosystem [16]. Fluid-solidification 

modeling accounting for thermophysical properties and scale bridging to process modeling length scales will 

improve our ability to predict the complex structure-property-processing relationships of solidification processes 

used in space for manufacturing. This study will consider the state-of-the-art solidification and related ICME 

modeling for space environments, providing guidance for future efforts.  
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1.4. What has been done, what remains to be done, and where does BPS fit in? 

BPS has access to unique datasets and unparalleled expertise in microgravity materials science after decades of 

innovative flight experiments [14], [19], [20], [21], [22].  NASA-managed open data repositories, such as PSI [23], 

provide publicly available datasets from materials science ground and flight experiments, which allows for 

validation of increasingly complex and realistic computational modeling and aids deeper understandings of material 

processing in microgravity [16].  As such, it is well positioned to continue engagement within the ICME community 

by, for instance, refining thermophysical and solidification simulations – especially elucidating fundamental studies 

under microgravity conditions where convective and sedimentary forces are negligible. To achieve this, BPS must 

first explore the state-of-the-art with respect to thermophysical, solidification, and additional validation dataset-

relevant modeling within ICME and then identify opportunities to continue contributing to the field.  

This report will address several examples BPS-relevant & BPS-supported experimental datasets and modeling 

efforts within the ICME ecosystem ranging from the atomistic to the mesoscale along with the application to the 

macroscale and eventual performance of materials systems. The unique contribution of microgravity conditions to 

generating useful data and models for ICME will be indicated by several examples. Engagement with the broader 

ICME community will be shown. Motivation for continued BPS involvement in the ICME space will be reinforced 

by the concept of uncertainty quantification & reduction as vital to industrial operations on Earth and in-space 

sustainability as noted by the MATRICES campaign. Finally, accomplishments, findings, and recommendations will 

be shared. This effort was, by necessarily of limited labor and time, a non-exhaustive review of the state-of-the-art 

and potential future paths for BPS in ICME. The activities were deliberately focused on a few relatively tractable 

examples to illustrate how detailed future work could be conducted with an appropriately broader focus on 

computational and experimental techniques and are not intended to limit future ICME explorations by BPS. 

First, atomistic simulations and experimental vignettes of thermophysical properties will be presented (Section 2) to 

demonstrate their criticality to longer length scale modeling.  Then solidification flight experiments useful as 

validation datasets will be reviewed along with a survey of the state-of-the-art in computational modeling of micro-

scale solidification processes (Section 3) via an example comparison of several academic and community codes.  

The required computational architecture to enable these simulations will also be discussed. Coupling of fluid flow to 

solidification is then reviewed and exercised using a benchmark case. Meso-scale models (Section 4) useful for scale 

bridging from atomistic and micro-scale to macro-scale lengths are discussed.  Following, uncertainty quantification 

is described (Section 5) with its importance to all ICME efforts emphasized and paths to closure indicated.  Finally, 

the report concludes (Section 6) with accomplishments, findings, and recommendations for future work. 

 

2. Thermophysical properties 

Atomic-scale thermophysical properties are foundational inputs to almost every type of computational materials 

simulation. Properties such as thermal conductivity, specific heat capacity, surface tension, and mass diffusivity 

have a critical influence during phenomena such as solidification that can lead to drastic changes in the final 

performance of large, bulk scale parts. As such, thermophysical properties are needed during the engineering design 

process, and substantial effort, cost, and time is spent determining them. However, measuring thermophysical 

properties with high accuracy and at a sufficient range of temperatures for engineering alloys is difficult. For 

computational materials simulations of engineering-relevant materials, it is crucial to characterize thermophysical 

properties from room temperature to beyond the melting temperature. Metallic engineering alloys typically melt at 

temperatures well above 1000 K and can be highly reactive. These high melting temperatures and high reactivity 

necessitate specialized equipment such as containerless levitation processing to measure relevant thermophysical 

properties. There are also additional effects that must be considered for their characterization, especially beyond the 

melting temperature. For example, melt pool convection due to gravity-driven effects such as buoyancy can 

significantly impact the measurements of the thermophysical properties. In addition to specialized experiments, 

atomic-scale simulations of interatomic interactions using techniques such as density functional theory (DFT), 

molecular dynamics (MD), and data-driven machining learning (ML) approaches provide substantial value 

supplementing traditional experimentation.  

The engineering-design process requires accurate measurements of thermophysical properties with well understood 

and characterized uncertainty. There is a need for well-integrated and well-designed experiments and atomic-scale 

simulations to correctly characterize thermophysical properties and account for confounding factors such as gravity. 

Gravity itself can be used to elucidate relevant phenomena by comparing the difference between gravity-bound 
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ground experiments on Earth and microgravity flight experiments in space. NASA has unique experimental and 

simulation capabilities to support the need for accurate thermophysical property measurements. There is also value 

provided to on-going NASA projects with acquiring accurate thermophysical properties, particularly for materials 

such as aluminum, nickel, titanium, and ferrous alloys. These materials are well suited to support space exploration 

and provide structural components for in-use space technology that can be applied to ISM, commercial space station 

construction, Lunar infrastructure for Artemis, and even prolonged operations in cislunar space. Accurate 

thermophysical properties may enable future in-space manufacturing opportunities such as in-space welding 

supported by ICME efforts.  

 

2.1. Experimental - Vignettes showcasing past BPS successes in thermophysical 

properties measurements and associated existing facilities 

Alloy solidification is a complex process where a liquified material under cooling experiences a transition to one or 

several crystalline phases with a subsequent rapid structure evolution in terms of crystal nucleation and growth at 

elevated temperature. The system behavior is governed by the thermodynamics and kinetics of the undergoing 

processes. While thermodynamic forces drive and direct the transition, kinetics define the outcome depending on the 

cooling rate, diffusivity, viscosity, and various interface energies of the newly developed solid-liquid and solid-solid 

interfaces. Modeling of consolidation processes and prediction of solidification phase selection relies on having 

accurate thermophysical properties such as surface tension and viscosity – especially to support modeling of additive 

manufacturing operations. A series of vignettes is presented to illustrate the broad range of thermophysical 

properties that are being evaluated to support the ICME community’s efforts to understand metallic alloy 

solidification, grain evolution, and other property/performance relationships. Examples include titanium alloys, 

nickel-based superalloys, structural ferrous alloys, and selected pure elements and intermetallic compounds. Various 

facilities exist to conduct experiments both on the ground and in space. This section concentrates on the use of 

containerless levitation processing techniques to minimize contamination of the highly reactive molten samples. Key 

parameters that are reported from each test include recording of the time-temperature profile using non-contact 

radiation pyrometry and monitoring of sample reaction to an applied stimulus using either high-speed digital 

imaging or observation of excitation electronics control parameters. These properties are of particular importance in 

that fluid flow during processing has a profound impact on microstructural evolution – this includes induced flows 

during welding, mold filling during casting, and surface tension driven Marangoni convection during additive 

manufacturing. A lack of understanding of the influence of property uncertainty directly transfers into errors in the 

predictive capability of flow modeling and results in an inability to properly control the manufacturing process. 

Titanium alloys, including the commercial titanium-6wt%aluminum-4wt%vanadium (Ti64) and the intermetallic 

gamma titanium aluminide (γ-TiAl) compound, belong to a family of materials that are used in high temperature 

aerospace applications. They are lightweight and exhibit good creep behavior while being resistant to high 

temperature oxidation. Not only are these alloys important for in-space manufacturing applications such as repair 

operations on damaged or worn space hardware but they are potential candidates for on-orbit or Lunar recycling 

activities. As such, it is important to further understand these materials and their properties. However, it is difficult 

to conduct thermophysical property evaluations due to the chemical reactivity of the constituents and the potential 

for shifting of composition due to preferential evaporation of volatile components [24].  A key success for 

measurement programs in space is the evaluation of the specific heat capacity of liquid and solid phases using a 

technique known as modulation calorimetry [25], [26]. Modulation calorimetry involves applying a sinusoidally 

modulating magnetic field which causes the sample to actively heat and then passively cool. The phase lag between 

application of the excitation field and the thermal response of the sample allows measurement of the specific heat 

capacity and thermal diffusivity of solid and liquid samples. These experiments are best conducted in an ultra-high 

vacuum to control heat transfer, and in space to minimize energy input to the sample, using the electromagnetic 

levitation facility on the ISS (ISS-EML). This facility [27] can position a conductive metallic sample using a 

quadrupole electromagnetic field while simultaneously controlling temperature using a dipole heating field. The two 

fields are selected from dramatically different alternating current radio frequencies and thus the total power input to 

the sample can be independently selected and measured by monitoring the heater oscillating circuit current. Non-

contact temperature measurement techniques are employed through use of calibrated infra-red radiation pyrometry 

and an example of testing results leading to analysis of measurement uncertainty in both solid and liquid phases can 

be seen in Figure 6 (left) [28]. Here, the red line represents a section of the time-temperature profile where the 

sample has been successfully melted and then cooled to an undercooled condition where the liquid exists at a 
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temperature below its equilibrium melting point. The blue line represents the induced thermal excitation power 

imposed by the heater field. After modulation is complete, the sample undercools an additional small amount and 

then there is a rapid temperature rise associated with the release of the heat of fusion during the formation of a 

metastable solid. A second rise is then seen during transformation to the stable phase. In Figure 6 (right), the specific 

heat for undercooled liquids and for the solid phase is shown. Of particular importance is the small measurement 

uncertainty shown in the data scatter. 

 

 
 

Figure 6: Specific heat measurements in space (left) thermal profile for a typical modulation calorimetry experiment using the 

ISS-EML facility [27]; (right) results for the specific heat of Ti-6-4 in the solid and undercooled liquid phase, as well as for γ-

Ti4Al48N [28].  Figure (left) from M. Mohr and H.-J. Fecht, “Investigating Thermophysical Properties Under Microgravity: A 

Review,” licensed under CC BY 4.0 and Figure (right) from M. Mohr et al., “Electromagnetic levitation containerless processing 

of metallic materials in microgravity: thermophysical properties,” licensed under CC BY 4.0. 

Measurement of properties of structural alloys used in aerospace applications often is complicated by the complex 

multicomponent nature of commercial alloy formulations. For example, the nickel-based Inconel superalloys have 

chemical specifications that control over ten elements; ferrochromium-based stainless steels often have up to nine 

elemental constituents. In both cases, the composition is specified as a limited range of each element in solution. 

Conducting measurements over the entire span of the range of possible compositions is economically infeasible. 

Thus, it is essential that ICME techniques are utilized. The approach employed is to conduct ground-based 

experiments, allowing rapid investigation of multiple samples to bound behavior, and then progress to space 

processing, to validate performance and quantify uncertainty for select compositions. By conducting multiple 

experiments over a range of temperatures, investigation of properties as a function of temperature and phase may be 

accomplished. Atomistic computational techniques can guide this experimentation as discussed in the following 

subsection. 

Nickel-based superalloys are heat-resistant materials used in the fabrication of turbomachinery and aerospace 

structural elements. They retain superior properties at high temperatures and are under investigation for use in the 

production of transformative propulsion technology components using additive manufacturing techniques. In this 

capacity, preferential evaporation of volatile components from the melt pool is of high importance. Evaporation can 

be modeled using the Langmuir equation, but key thermophysical properties such as species-specific chemical 

activity and surface segregation must be known as a function of temperature to accurately predict preferential 

evaporation. Computational thermodynamic calculations may be accomplished with commercial software such as 

Thermo-Calc, but these predictions need to be validated through experimentation [24].   

There is a need for both ground-based and space-based containerless processing facilities that use levitation. On 

ground, the weight of the sample must be counteracted, and metal alloy testing is typically accomplished in vacuum 

to prevent arcing - thus maximizing evaporation. In space, because gravity does not need to be countered, the field 

strength can be reduced, and testing can be accomplished using a protective inert gas shielding environment – thus 

minimizing evaporation. The combination of these two extremes provides experimenters with a powerful 

comparative perspective on system behavior. 

Ground-based testing can be accomplished at the NASA Marshall Space Flight Center using the electrostatic 

levitator (MSFC-ESL). Electrostatic levitation (ESL) uses Coulomb forces acting on an electrically charged sample 

to levitate it between two electrodes [29]. The electrostatic field is generated by six electrodes, which are positioned 

in pairs along three mutually orthogonal lines. This geometry provides an unobstructed view of the levitated sample 

https://doi.org/10.1002/adem.202001223
https://doi.org/10.1002/adem.202001223
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41526-023-00281-4
https://doi.org/10.1038/s41526-023-00281-4
https://creativecommons.org/licenses/by/4.0/
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from all directions in the horizontal plane of the sample. Heating is typically done by a laser, which decouples the 

heating from the position control. For metallic samples, the environment is high vacuum, and the system can also be 

run pressurized, which is useful for glass and ceramic samples. The environment of the ESL chamber can either be 

high vacuum or gaseous provided that the gas can withstand the electric field. The breakdown voltage is the voltage 

necessary for an electric arc to form between two electrodes in a gas - as a function of pressure and gap length. 

Arcing needs to be avoided, because it causes the sample to drop out of levitation and it can damage system 

hardware. 

An example of telemetry from space testing using the JAXA Electrostatic Levitation Furnace (ELF) facility is 

shown in Figure 7. In the first part of the figure, the live video feed for monitoring levitation stability and facility 

health is seen; the glowing molten sample is easily seen positioned between the top and bottom electrodes. In the 

second, there are three graphs showing, respectively, the raw oscillation amplitude during excitation, a plot of the 

filtered signal showing viscous damping where the decay constant is used to evaluate sample viscosity, and a 

Fourier transform used to identify the frequency spectrum obtained from sample response to external stimulation for 

surface tension analysis. In the third part of the figure, high-speed digital imaging is used to record a projected 

image of the sample for density and thermal expansion measurement. Finally, the location of the pyrometer target is 

shown on the sample surface in conjunction with a display of sample processing time. 

 

 
Figure 7: Electrostatic Levitation processing in space using the JAXA ELF facility (a) real-time video, (b) sample oscillation 

excitation, (c) high-speed digital video, and (d) image of the location of temperature measurement. 

Given that future transformational ground-based industrial and space manufacturing processes will rely on the 

development of new alloy systems, one powerful technique used in alloy design is to bound the compositional space 

with a series of analog alloys – compositions which contain a reduced set of alloying elements to define the 

influence of specific minor constituents. ICME techniques can then be used to predict behavior of any mixture at 

any composition within the family. After conducting extensive ground-based experiments using the MSFC-ESL at a 

variety of temperatures and at different compositions, on-orbit tests are used to validate results using the ISS-EML 

electromagnetic levitation facility and the space-based ELF [30]. 

In a similar manner, commercial ferrous alloys, with their complex mixture of multiple elemental constituents, and 

ferrous analogs are tested to support ICME modeling of behavior. Since the stainless steel family of alloys contains 

a significant quantity of chromium, they are highly reactive and require containerless levitation processing methods.  

a b 

c d 
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In addition to evaluation of thermophysical properties, testing of phase selection and transformation kinetics may be 

accomplished for use in developing isothermal time-temperature transformation (TTT) and continuous cooling 

transformation (CCT) diagrams used to control microstructural evolution and subsequent mechanical properties or 

limit development of defect structures. Behavior under far-from-equilibrium conditions may be investigated in a 

unique manner – using convection as a controlled experimental parameter. For example, during rapid solidification a 

metastable ferrite phase can form with subsequent transformation to the stable austenite. While investigating the 

kinetics of this transformation on a sample in microgravity, the thermophysical properties of that same sample may 

be measured simultaneously [31]. With the knowledge of the properties at the time of the test, 

magnetohydrodynamic modeling [32] can be used to predict sample stirring in order to accurately predict the 

dynamic changes in induced sample convection during the actual test as a function of time [33]. This approach 

avoids the problem of using generic values and introducing significant errors in predicting flow and its effect on 

solidification microstructural evolution. 

An important aspect of ICME is the need to quantify uncertainty in measurement accuracy (how close a value comes 

to the true value) and precision (evaluation of the reproducibility, or measurement scatter, of the results). Pure 

elements such as zirconium [34], an important material for development of space nuclear propulsion, are tested on 

ground and in space to provide a benchmark dataset for validation of analysis techniques and modeling activities. 

Binary systems are tested in order to support validation of computational thermodynamics predictions of functions 

such as excess volume in the prediction of density [35] and excess free energy in the prediction of surface tension 

[36]. 

These vignettes illustrate how thermophysical property experimentation is used to address several of the key themes 

identified in the Decadal Survey. First, modeling of far-from-equilibrium behavior such as process control during 

rapid solidification from an undercooled liquid often require an understanding of metastable phase thermophysical 

properties which are best evaluated using containerless levitation techniques. Second, benchmark solidification and 

phase selection experiments can be run to anchor subsequent computational solidification modeling; in parallel with 

these experiments the thermophysical property measurements of that sample at that time can be measured to select 

the level of convection as a controlled experimental parameter. Third, with the potential for developing simplified 

analog systems, investigations may focus on the contribution of minor alloying species in solution within the 

complex multi-component commercial alloy and enable use of computational thermophysical property predictions 

across a wide range of compositions without the need for a protracted experimental program. The approach 

employed is a progression from ground testing to space testing. On ground, multiple tests may be conducted over a 

wide range of compositions and test conditions to leverage the ability to achieve high turnaround while accepting the 

potential for gravity-interference and the associated measurement uncertainty. Then space testing is used to validate 

the results with a selected few high-fidelity microgravity experiments to anchor predictions from computational 

simulations. 

 

2.2. Computational thermophysical properties 

Modeling thermophysical properties and their interrelations is not always possible at continuum level as they could 

be strongly affected by the discrete atomistic nature of the materials. Theoretically, thermodynamics and kinetics of 

large atomic system are well understood, but practical calculations for a specific alloy system are still challenging 

mostly due to the complex interatomic force fields, governed by quantum mechanics, and the limited time and size 

scales accessible in these calculations. What follows is an explanation of several computational techniques that may 

be used to predict thermophysical properties, which can be anchored to validation datasets collected using the 

facilities and methods of the previous subsection. 

Multiscale approaches help bridge the time and size scale gaps between modeling and experiment. Capturing 

quantum mechanics complexity in feasible computations requires different approaches as quantum fields have been 

found to be too complex to approximate satisfactorily with analytical semiempirical relations, such as the embedded 

atom method (EAM) force field [37], [38],  that are suitable for fast computations. Instead, machine learning 

methods are becoming more widespread in representing atomic force fields that can closely follow quantum 

mechanics-based calculations [39], [40], [41], [42].  At NASA Langley Research Center (NASA/LaRC), in 

collaboration with George Mason University, a novel machine-learning force field method has been developed and 

successfully tested. The approach is based on the so called physically informed neural network (PINN) [43] 

interatomic potential. In this approach, a neural network is extensively trained on a sufficiently large atomistic 

database solved by the quantum mechanics-based density functional theory (DFT) method. The trained neural 
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network is used to accurately tune the parameters of a selected functional form, which represents different aspects of 

the interatomic behavior, such as the nucleus repulsion and chemical bond formation. The resultant interatomic 

potential, tested on a pure aluminum system, was found to reproduce very closely both, the solid-state crystalline 

material properties, such as elastic constants, phonon spectrum, various types of defect energies, as well as the 

melt’s thermophysical properties, such as melting temperature, density, diffusivity, viscosity, and surface tension. 

Figure 8 shows comparison of predicted properties versus those experimentally measured, indicating relative 

agreement between PINN and experiment compared with much poorer agreement for a conventional EAM potential. 

 
Figure 8: (a) PINN calculated melt density at a range of temperatures above the melting point, Tm, compared to experimental 

data, and with a semi-empirical potential based on the embedded atom method (EAM); (b) PINN calculated melt viscosity 

compared to experimental, DFT, and EAM data [43].  Used with permission. 

The close overlap between the PINN and the DFT values on Figure 8 demonstrates the efficiency of the DFT 

training of the neural network. In addition, the PINN derived potential allowed the calculation of the energy of the 

liquid-solid interface, which has never been measured experimentally or calculated through the DFT method. 

Precise estimation of the melt properties through molecular dynamics, based on a neural network machine learning 

potential, allows for their use in a PF model of solidification at grain scale in a hierarchical multiscale approach. 

The described above approach reduces the need of highly computationally expensive and time-consuming DFT 

calculations to only calculating the energies of a prebuilt training database of atomic structures of limited size of no 

more than few hundred atoms each. After this database is used to develop an accurate PINN force field, classical 

MD simulations can replace ab-initio MD simulations without a noticeable loss of accuracy (of less than 5 meV per 

atom potential energy). A comparison between a DFT-MD and a classical MD using both PINN and EAM force 

fields, given on Figure 9, shows that the ML-based PINN force field, while being 150 times slower than the 

semiempirical EAM force field is much faster than the DFT-MD, which becomes impractical to use for systems of 

more than few hundred atoms. While there is still a need for a large amount of DFT calculations to create the 

training database, containing tens of thousands of atomic clusters and crystal structures, this is a one-time effort. 

After that classical MD and atomistic MC simulations can be used to predict the thermophysical properties of 

materials in solid and liquid state using advances statistical mechanics and thermodynamic integration methods on 

large systems (of 104 to 106 atoms) unachievable by DFT, but essential in modeling highly disordered systems, such 

as alloy melt, liquid-solid interfaces, phase-boundaries and grain-boundaries formed during solidification in 

multicomponent alloy systems. Apart from training ML-based force fields, DFT calculations could be restricted only 

to calculating properties unobtainable by classical MD methods, such as electronic properties and bandgaps. 
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Figure 9: Time comparison between DFT, PINN, and EAM MD simulations on a single crystal of aluminum performing 100 

integration steps.  The DFT was used for up to 512 atoms and extrapolated for 72,000 atoms. 

In atomistic simulations, using either DFT-MD or classical MD, estimating melt properties requires special 

techniques based on statistical mechanics and thermodynamics. For example, obtaining the melting temperature of a 

material requires finding the system state where the two phase, liquid and solid, coexist in thermodynamic 

equilibrium (Figure 10).  This requires performing either a series of simulations at various temperatures to get the 

temperature where the interface boundary is stationary or simulating the system under the so-called constant 

enthalpy thermodynamic ensemble, where the enthalpy of the system is fixed, and the system acquires by its own 

the temperature where the two phases are in equilibrium. The later method resembles putting a cube of ice in an 

isolated thermos full of water and measuring the temperature approaching 0oC as the ice melts. 

 
Figure 10: Molecular dynamics simulation of crystal-liquid interface for γ-TiAl. 

Finding the excess free energy of the liquid-solid interface, or the liquid-vacuum interface (equivalent to the surface 

tension of the liquid) is best done by the capillary fluctuation method (CFM)  [43], [44], [45], [46], [47]. The CFM 

is an accurate method to compute the weak anisotropy of the interface free-energy (same 4 refs) that plays a crucial 

role in dendritic microstructure formation and is a key input parameter in PF simulations (corresponding to 𝜖4 in 

Table 1 of Section 3.2). In this method, one uses the capillary fluctuations of the interface position during a 

sufficiently long simulation under equilibrium conditions. The power spectrum of these fluctuations, obtained 
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through a Fourier transform for different crystal orientations, can be related through the equipartition theorem of 

statistical mechanics to the interface free-energy for each orientation, thereby enabling to calculate both its 

magnitude and anisotropy. The CFM can also be successfully applied to grain boundaries where experimental 

measurements are notoriously difficult [48].  By use of the fluctuation-dissipation theorem, the CFM can also be 

used to extract non-equilibrium properties of interfaces such as the atomic attachment kinetics coefficient for solid-

liquid interfaces, which influences microstructure formation at high solidification rate (Hoyt et al 2003 in 4 refs 

above) or the grain-boundary mobility (Karma et al, PRL 2012). The same fluctuation-dissipation theorem is also 

used to estimate viscosity of the melt by using the fluctuations of the stress tensor (or the internal pressure 

variations) of the liquid in equilibrium at a given temperature. One code, for instance, is the combined molecular-

dynamics Monte Carlo code, ParaGrandMC, developed at NASA/LaRC [49].  Exquisitely understanding and 

modeling these interfaces will be vital to proper ICME workflows of processes involving tightly coupled 

interactions between various phases, such as additive manufacturing and welding especially in the keyholing regime 

that involves gas-liquid-solid interactions and in the vacuum of the space environment. 

Employing the CALPHAD method, Thermo-Calc is another ICME tool that can predict thermodynamic parameters 

relevant to solidification; its DICTRA module can predict solute rejection and segregation effects [50], [51].  The 

PRISMA component of Thermo-Calc can also use Kampmann-Wagner Numerical (KWN) models to predict 

precipitate kinetics [52].  A challenge in using PF methods in ICME is that most alloys of engineering importance 

are multicomponent. Thus, it is necessary to couple PF methods to CALPHAD databases. While the multi-order 

parameter approach is designed to accommodate multicomponent alloys, the challenge is to determine the virtual 

compositions at all points in the system. This requires many calls to a CALPHAD database that are needed to 

determine the free energies and chemical potentials, as well as solving a nonlinear set of equations at each mesh 

point. This remains a challenge for widely available community-based CALPHAD codes such as pycalphad. The 

advantage of CALPHAD is that a more readily accessible database can be called to instead of a more 

computationally intensive and complex atomistic simulation, thus demonstrating scale bridging between atomistic 

and micro-scale solidification. 

 

2.3. Future 

Experimental 

To support the future needs of the ICME community, ground-based and space testing facilities will be needed to 

continue the ongoing work to establish benchmark experimental verification of process modeling and computational 

prediction of how thermophysical properties vary with temperature and composition. It is not feasible to test all 

possible alloying element combinations and ICME techniques will be required to fill in the knowledge gaps and 

guide selection of profitable future research activities. Since the systems of interest are often highly reactive and 

sensitive to oxidation, containerless levitation techniques will need to be employed. 

To validate computational thermodynamic predictions for both liquid and solid complex multi-component alloy 

systems using computational thermodynamics tools, a two-step approach is envisioned. First, a series of experiments 

are run on simplified analog alloy systems to define binary and then ternary interactions. Once model inputs are 

defined, the thermodynamic predictions can be refined and used to predict multi-component behavior. Second, 

experiments can be run on a limited series of commercial multicomponent mixtures to validate predictions and 

quantify uncertainty. These results can then be employed to simulate real-world processes based on results of 

benchmark microgravity demonstrations. 

Supporting these testing activities requires access to a variety of experimental platforms. Ground-based facilities 

allow rapid screening of behavior. Space facilities enable researchers to eliminate the confounding impact of 

gravity-driven phenomena. ESL techniques can decouple the electrostatic positioning and laser heating of a sample. 

Thus, processing can be accomplished on quiescent liquids. They also have the added advantage of being able to 

process non-conductive materials, including oxides and ceramics, thus expanding the envelope of materials that may 

be investigated. Levitation using EML techniques involves application of a dynamic magnetic field which induces 

some limited amount of liquid flow. A major advantage of this technique is the ability to independently apply 

simultaneous heater-induced flows to allow investigation of the influence of convection on solidification 

phenomena. Together, these two techniques enable investigations spanning the range of behavior across the laminar 

to turbulent regimes. These techniques are particularly attractive in that current investigations on – for example – 

light-weight titanium alloys, structural nickel-based superalloys, steels, metallic glasses, and novel high entropy 
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alloys have shown that researchers are able to evaluate properties for deeply undercooled molten metal alloys and 

properties of metastable phases to allow modeling of far-from-equilibrium conditions. 

 

Computational 

Computational resources required to perform PINN development for simulating multicomponent alloy systems will 

still be substantial despite lower than conventional techniques. This includes DFT calculations on the order of 105 

atomic configurations containing between 2 and 200 atoms, training the ML-based PINN force field, and using it to 

predict the thermophysical material properties. This would likely be a multi-year effort. 

 

2.4. BPS role in future 

Historical datasets 

Historical thermophysical property measurement datasets may be useful not only to provide validation data for 

traditional, deterministic ICME tools but also to provide training data for ML-based models like PINN. Thus, the 

investment in open-science repositories such as PSI is vital. 

 

Support existing ground and flight facilities 

Existing ground and flight facilities are still producing critical data on thermophysical properties needed for ICME 

tools, so their continued support will continue providing valuable validation datasets and will also bridge the gap to 

future flight facilities. 

 

Advocate for new flight facilities on commercial LEO destinations 

With the impending close-out of science on the ISS and decommissioning of its containerless processing facilities – 

ISS-EML and ELF – there will be no permanent facilities to perform thermophysical property measurements in the 

high-quality microgravity environment of space. To provide benchmark data for thermophysical properties modeling 

efforts and to support uncertainty reduction in longer length scale models by reducing that uncertainty inherent in 

thermophysical property data, permanent facilities for containerless processing in space should be design, 

developed, fabricated, and manifested for post-ISS space station. For instance, commercial LEO destinations 

(CLDs) would be suitable platforms for evolved versions of the ISS-EML or ELF, perhaps with enhancements or 

improvements learned over their decades of productive operations on the ISS. 

 

Invest in HECC via SMD allocations to support PINN/DFT of thermophysical properties 

Advancing the high-end computing of thermophysical properties will require sustained efforts over several years 

with at least a small, focused team consisting of ideally postdoctoral scholars and established technical experts. A 

substantial allotment of compute time on a supercomputer would be required.  If one were to use the NASA 

Advanced Supercomputing (NAS) resources at NASA Ames Research Center, this would approach 400,000 

Standard Billing Units (SBU) per year. These are rough estimates to give a sense of the scale and investment 

required. 

 

3. Solidification & fluids 

Solidification processes in metal alloys are highly relevant to both in-space sustainability efforts encompassed by the 

MATRICES campaign and to industrial manufacturing on Earth. However, even with fully determined 

thermophysical properties, modeling microstructures formed on the part scale remains extremely challenging due to 

the geometrically complex evolution of the solid-liquid interface shape during the solidification process. This 

evolution is controlled by a delicate balance between the stabilizing effect of surface tension and the destabilizing 

effect of solute transport in the liquid. This modeling challenge is compounded by the large disparity of length scales 

associated with these competing effects, from surface tension acting on the nanometer width of the solid-liquid 
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interface to solute transport taking place on the diffusion length ~D/V (where D is the solute diffusivity in the liquid 

and V is the solidification rate), which varies from ten to hundred microns for typical low solidification rates. 

Overcoming this challenge is a central goal of ICME to accurately predict PSP/P. As noted in the BPS Decadal 

Survey, NASA has unique infrastructure to cope with this challenge by generating benchmark data sets that can 

serve to validate ICME tools while, at the same time, dissecting the effects of gravity-driven fluid flow and surface-

tension-driven fluid flow that persists in a microgravity environment in the presence of free surfaces.      

BPS has already supported several flight experiments that have generated important datasets, from historical flights 

such as IDGE that focused on the dendrite tip operating state to more recent flight experiments (such as DECLIC, 

CETSOL, and PFMI) studying larger-scale dendritic array and grain structures more directly relevant to PSP/P 

prediction. While existing data sets have already played a key role in helping to validate ICME computational tools, 

they span a very limited set of binary alloys, growth conditions, and geometries. Therefore, there is a critical need 

for future experiments that investigate both, the same alloys (with already well-characterized thermophysical 

properties) under a broader range of conditions and geometries, and that investigate both binary and more complex 

alloys under rapid solidification conditions relevant for additive manufacturing. In addition, while ICME tool 

development and validation for alloy solidification has advanced considerably, it is still in relative infancy in 

comparison to CFD. For example, while PF tools have often been used in microgravity solidification simulations 

[14], [22], [53], a 3D open-source code to model directional solidification flight experiments (such as DECLIC, 

CETSOL, or PFMI) has just become available. Moreover, the predictions of this open-source code are compared 

quantitatively to a well-developed academic research code for the first time as part of the present study (cf., Section 

3.b). In parallel to making codes more broadly available, further work is also needed to extend PF code capability to 

larger length and time scales in a purely diffusive growth regime, to couple interface dynamics to fluid flow, and to 

bridge PF predictions to more coarse-grained approaches such as cellular automaton and the dendritic needle 

network to make predictions on the part scale [54].  

Importantly, ICME computational tools can now model more practically relevant transient growth conditions that 

require shorter flight experiments in comparison to historical studies that focused on testing analytical theories 

limited to steady-state growth conditions. This creates a positive iterative feedback loop in which computational 

models can help design shorter flight experiments that can in turn serve to validate the predictions of these models 

and improve their accuracy.  

 

3.1. Experimental 

Historical flight datasets 

Dendritic growth patterns and solidification kinetics can be evaluated in pure substances where compositional 

differences are negligible, simplifying the analysis. These are benchmark experiments, where the experimental space 

is purposely reduced to focus on investigating a particular mechanism in detail while reducing confounders. A series 

of landmark flight experiments, the Isothermal Dendritic Growth Experiment (IDGE), studied pure succinonitrile 

(SCN) and pivalic acid (PVA) dendritic evolution aboard Shuttle flights in the 1990s and on early ISS expeditions 

[55], [56].  These optically transparent organic materials allowed in situ imaging of dendrite tip velocity (Figure 11) 

for conditions representative of ferrous and non-ferrous alloys, respectively. It is apparent how the microgravity 

condition more closely tracks the ideal, theoretic case – especially for low supercooling (proxy for solidification 

rate) and tip velocity – than the ground condition. Ostensibly, the reduction in gravity-driven buoyant and 

sedimentation convective flows leads to a sufficiently quiescent environment where the underlying principles of 

slower solidification can be investigated less the confounding influence of gravity. IDGE gives a basis for 

understanding the complexity of previous computational benchmark cases. 
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Figure 11: SCN dendrite tip velocity by supercooling in terrestrial and microgravity conditions [55].  Used with permission from 

M. E. Glicksman, M. B. Koss, L. T. Bushnell, J. C. Lacombe, and E. A. Winsa, “Dendritic Growth in Terrestrial and 

Microgravity Conditions,” MRS Proc., vol. 367, p. 13, 1994, Springer Nature, doi: 10.1557/PROC-367-13. 

Previous computational benchmarks can be used to assess the accuracy and efficiency of publicly available codes to 

simulate the dendritic solidification of a pure substance [57], [58], [59], [60].  For example, a quantitative PF  

approach for pure substances employed the thin-interface limit [58].  This analysis enables quantitative simulations 

of the experimentally relevant limit of local thermodynamic equilibrium at the solid-liquid interface (i.e. negligible 

kinetic undercooling) with a computationally tractable width of the spatially diffuse solid-liquid interface region. 

This study contains both 2D and 3D steady-state growth results for the dendrite tip operating state and tip shapes. 

The dimensionless undercooling range is typically larger than the range studied experimentally in IDGE, but the 

benchmark results can be used to test 2D and 3D dendritic growth simulations. A second set of benchmarks [57], 

[59] modeled the transient growth regime of equiaxed growth in 3D – specially, the case when primary branches 

emerge from a crystal seed but have not yet reached a steady-state growth regime where the tip velocity and tip 

radius are constant. In this transient growth regime, the tip velocity and tip radius follow power laws in time and the 

interface shape also follows a scaling law. The undercooling range can overlap with that of IDGE experiments and 

can also be used to test modeling codes in the transient regime. A third set of benchmarks provides results for 

steady-state growth over an undercooling range corresponding to the upper range of IDGE experiments and provides 

a detailed characterization of the non-axisymmetric 3D dendrite tip shape that can also be used to benchmark 

dendritic growth simulations in a steady-state growth regime [60].  These will give initial indications of the 

capabilities and V&V of a code. 

 

Modern benchmark cases using flight experimental data 

Several recent flight experiments have datasets and processing parameters suitable for use as benchmark cases to 

test various ICME tools, especially the PF approach. One such flight experiment, DEvice for the study of Critical 

https://link.springer.com/journal/43582
https://doi.org/10.1557/PROC-367-13
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LIquids and Crystallization - Directional Solidification Insert (DECLIC-DSI), used a transparent organic alloy 

analogue of SCN-0.46wt%camphor to study directional solidification, specifically dendrite spacing and local drift, 

under microgravity conditions [21].  Pulling velocity is varied to study how interface curvature affects primary 

dendrite spacing, local drift, and invasion by stray grains during the experiment. A 3D PF research code was used to 

simulate primary dendrite spacing, drifting, and pattern evolution over time using temperature, curvature, and 

composition as inputs [61].  Figure 12 summarizes these results. 

 

 
Figure 12: Graphical abstract of a combined experimental and PF simulation study of SCN-camphor dendritic solidification 

under microgravity [61].  Figure from F. L. Mota, K. Ji, L. S. Littles, R. Trivedi, A. Karma, and N. Bergeon, “Influence of 

macroscopic interface curvature on dendritic patterns during directional solidification of bulk samples: Experimental and phase-

field studies,”licensed under CC BY-NC-ND 4.0. 

The ongoing international NASA-ESA collaboration in the framework of the Columnar-to-Equiaxed Transition in 

Alloy Solidification (CETSOL) project has produced several benchmark datasets for modeling the ubiquitous 

transition from columnar to equiaxed grain structures, which is of well-recognized practical importance for 

controlling the mechanical behavior of structural alloys produced by a wide range of solidification processes. An 

example dataset in aluminum-(4,10,18)wt% copper was obtained in microgravity by the (SUBSA-CETSOL) 

experiment Effect of Convection on the Columnar-to-Equiaxed Transition in Alloy Solidification. The solidified 

microstructure has been correlated to the experimental thermal history for ground and flight-based samples with a 

CET obtained only in the ground based samples for the conditions attained [20]. Grain structure (Figure 13), eutectic 

fraction, and macrosegregation were all reported as a function of gravitational forcing and associated thermal 

profile. This case is important for scale bridging as the overall grain structure can be analyzed at a larger scale than 

individual dendrites. 

 

https://doi.org/10.1016/j.actamat.2023.118849
https://doi.org/10.1016/j.actamat.2023.118849
https://doi.org/10.1016/j.actamat.2023.118849
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 13: Optical micrographs of etched aluminum-4wt%Cu specimens solidified under a) microgravity and b) 1 g in SUBSA-

CETSOL [20].  Used with permission from T. J. Williams and C. Beckermann, “Benchmark Al-Cu Solidification Experiments in 

Microgravity and on Earth,” Metall Mater Trans A, vol. 54, no. 2, pp. 405–422, Feb. 2023, Springer Nature, doi: 

10.1007/s11661-022-06909-6. 

Resolving dendritic microstructures within individual grains is currently at the limit of the computational capability 

of the PF method in 3D for dilute binary alloys [61]. As a result, scale-bridging computational strategies based on 

cellular automata (CA) [62], [63], dendritic needle network (DNN) [64], [65], [66], [67], or other mesoscale 

methods  are needed to resolve dendritic microstructures within individual grains in concentrated alloys as well as to 

resolve the large scale multi-grain structure in both dilute and concentrated alloys. Both DNN [66] and CA [63] 

approaches have already been used to predict grain structures in a related set of CETSOL directional experiments in 

the MSL aboard the ISS, which used aluminum-7wt%Si alloys without and with grain refiners [68]. Those 

approaches have proven successful in predicting basic characteristics of grain structures such as grain size and 

elongation factor and the character of the columnar-to-equiaxed transition (CET), whether abrupt or progressive. 

However, they need to be further validated by comparison with more recent MSL CETSOL data sets in aluminum-

copper alloys. In addition, recent studies have highlighted the need of selecting the cell size in CA simulations based 

on the results of PF simulations to correctly resolve the growth competition of dendritic grains and the large-scale 

grain structure [69], [70]. The rich variety of CETSOL experimental data sets in metallic aluminum-Si and 

aluminum-Cu alloys and transparent Neopentyl Glycol (NPG)-D-Camphor (DC) alloys [71], [72] (Figure 14) 

provide a valuable resource for validating the predictions of ongoing computational studies using PF, CA, and DNN 

methods. 

 

 

 

Figure 14: Experimental observation of the CET from the low-gravity experiment “TRACE” (TRAnsparent Alloys in Columnar 

and Equiaxed Solidification) for a transparent organic model system Neopentylglycol (NPG)-37.5 wt.-% (d)Camphor (DC), 

executed on the sounding rocket mission TEXUS-47 in 2009 with about 7 minutes of low-gravity time [72].  Figure from L. Sturz, 

M. Wu, G. Zimmermann, A. Ludwig, and M. Ahmadein, “Benchmark experiments and numerical modelling of the columnar-

equiaxed dendritic growth in the transparent alloy Neopentylglycol-(d)Camphor” licensed under CC BY 3.0. 

 

https://link.springer.com/journal/11661
https://doi.org/10.1007/s11661-022-06909-6
https://iopscience.iop.org/article/10.1088/1757-899X/84/1/012086
https://iopscience.iop.org/article/10.1088/1757-899X/84/1/012086
https://creativecommons.org/licenses/by/3.0/
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The fragmentation of dendrites also has important consequences during the solidification of alloys. These fragments 

can be transported by convection ahead of the tips of columnar dendrites into the undercooled liquid region, and 

form equiaxed grains (CET). Dendrite fragments can lead also to misoriented grains (freckles) within the columnar 

region, an important casting defect in single crystal turbine blades, and result in equiaxed grains, and thus more 

homogeneous mechanical properties, during additive manufacturing. The fragmentation process has been studied 

under isothermal conditions in the microgravity environment, thus ensuring that the fragmentation process is driven 

solely by interfacial curvature. The experiments were performed using a binary Pb-Sn alloy on the ISS as part of the 

Coarsening in Solid-Liquid Mixtures (CSLM) experiment [22].  The Pb-Sn alloy system is ideal since the interfacial 

energy and solute diffusion coefficient have been measured accurately, and thus quantitative comparison between 

PF computations and experiment are possible. To determine the fragmentation rate, three-dimensional 

reconstructions of the microstructure were employed. These three-dimensional reconstructions provide unambiguous 

initial conditions for calculations of the evolution of the dendritic two-phase mixtures, see Figure 15. In this case the 

Echebarria et al., 2004 [73] PF model was employed. Reasonable agreement between simulation and experiments 

were obtained. However, since the Pb-Sn alloys are not dilute solutions, the role of non-dilute non-ideal 

thermodynamics remains to be investigated.  

PF calculations of the evolution of these structures can be challenging. They must be performed in three dimensions, 

since an important fragmentation mechanism, the Rayleigh instability, does not occur in two dimensions. Moreover, 

the representative volumes used in the calculations must be sufficiently large to reduce the influence of boundary 

conditions. However, since the evolution of the structure is driven by composition gradients in the liquid induced by 

interfacial energy, the velocities of the solid-liquid interfaces are typically slow, and thus the computationally time-

consuming interface anti-trapping term is not needed for coarsening simulations [74]. 

 

 
Figure 15: Dendritic structure after 1.6 hours of coarsening seen a) as simulated and b) as measured experimentally. 

Another potential dataset comes from the Pore Formation and Mobility Investigation (PFMI) flight experiment, 

which investigated dendritic growth and solidification in the microgravity environment of the ISS. A SCN-

0.24wt%water binary alloy analogue was remelted and then allowed to re-solidify with negligible convective 

forcing. Since the alloy is transparent, direct visualization of the solidification process is possible. A key feature of 

this experiment was intentional injection of nitrogen bubbles into the sample tube, to investigate the influence of 

such defect sources on the resulting solidified microstructure. Examination of video recordings of the solidification 

process has shown clear indication of small ‘tracer’ bubble movement due to Marangoni-driven convection within 

the liquid alloy, which is still active in a microgravity environment and becomes dominant in the absence of 

buoyancy-driven convection. Video recordings have also revealed the appearance of larger bubbles pinned to the 

solidifying dendrites and movement of dendrite fragments within the melt. Although direct observation of such 

convection was not possible in the microstructure formation in casting (MICAST) microgravity experiments, 

misoriented “spurious” grains and surface pores resulting from the sample detaching from the tube have been 

observed. Recently, publicly available data from PFMI was analyzed and simulated via CA and PF models [14].  

Experimental findings on dendrite morphological evolution and tip velocity were compared against the same from 

simulations, which are shown in Figure 16. 
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Figure 16: Dendrite evolution of SCN-0.24wt%water in microgravity simulated at the same time step by CA (left) and PF (right) 

models [14].  Figure from S. A. Nabavizadeh, R. Lenart, M. Eshraghi, S. D. Felicelli, S. N. Tewari, and R. N. Grugel, “Dendritic 

solidification of Succinonitrile-0.24 wt% water alloy: A comparison with microgravity experiments for validating dendrite tip 

velocity” licensed under CC BY-NC-ND 4.0. 

With buoyant and sedimentation convective forces being negligible in microgravity, mass transport phenomena such 

as Marangoni and Soret effects dominate and thus influence fluid flows in solidifying material systems. Such flows 

can dramatically alter the morphology and kinetics of dendritic solidification. A gradient in surface tension such as 

due to chemical or compositional gradients can drive mass transport, the Marangoni effect, and has been observed to 

alter dendritic and solidification structures in microgravity [15].  The thermophoretic, also known as Soret, effect 

additionally alters solidification dynamics in the presence of a thermal gradient [75], [76] and is also pronounced in 

microgravity [77].  These effects can be captured with solidification dynamics combined with Computational Fluid 

Dynamics (CFD) approaches. Combined PF – Lattice Boltzmann (PF-LB) coupled models have been recently 

employed to capture fluid effects on dendritic growth including solute ejection and subsequent transport [78], [79], 

[80], [81].  CA techniques have also been combined with Lattice Boltzmann (CA-LB) to model dendritic growth 

[82].  Results from these coupled models indicate the drastic influence of microgravity on convection and thus 

dendritic morphology during solidification [83]. 

There is also a need to understand the influence of convection on the evolution of rapid solidification 

microstructures, phase selection, and the kinetics of metastable phase transformations such as in AM and welding. 

One such investigation is using the ISS-EML facility in a NASA/ESA/DLR interagency collaboration. Testing under 

microgravity conditions focuses on a wide range of metallic alloys including binary alloys, pure elements, and 

complex industrial alloys such as stainless steel, nickel-based superalloys, high-entropy alloys, and glass forming 

alloys. These experimental datasets may be used to anchor magnetohydrodynamic (MHD) melt flow modeling, PF 

models, and evaluation of dendrite growth theory. One key component of this work is the ability to conduct 

concurrent solidification and melt flow experiments in parallel with thermophysical property measurements [28].  

The BPS Decadal Survey notes that property measurements in microgravity are vital to understanding fundamental 

processes, including solidification, and may be combined in situ with an accurate measurement of the sample itself 

using the same apparatus [16]. 

On earth, gravity-related phenomena dominate with sedimentation and buoyancy-driven flow and severe 

thermomechanical deformation. In contrast, during directional solidification on-orbit the deformation shrinkage is 

dominated by surface tension forces allowing investigation of behavior relevant to modeling of additive 

manufacturing process optimization. A recent flight experiment looked at producing benchmark experiments for the 

analysis of continuous casting operations by conducting chill casting experiments on steel alloys [84]. Experiments 

conducted on the ISS complement both ground-based experiments and other microgravity platforms such as 

parabolic flight and sounding rocket experiments. Figure 17 [85] shows how a steel sample solidifies when 

intentionally put into contact with a chill plate affixed to the top of the sample holder in experiments conducted 

using the ISS-EML. 

 

https://doi.org/10.1016/j.actaastro.2020.05.059
https://doi.org/10.1016/j.actaastro.2020.05.059
https://doi.org/10.1016/j.actaastro.2020.05.059
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 17: Evolution of structure during chill casting showing (a) a sequence of images of a Fe-0.9C-0.2Si steel solidifying in 

microgravity and (b) modeling of the fluid dynamics and thermal history of the resulting solidification front. [85].  Figure from 

D. M. Matson et al., “Electromagnetic levitation containerless processing of metallic materials in microgravity: rapid 

solidification” licensed under CC BY 4.0. 

3.2. Computational 

Modeling microgravity experiments, especially those pertaining to solidification, requires computational tools 

capable of describing phenomena on extremely varied length and time scales from the microscale of the dendrite tip 

radius (Figure 15) to the intermediate micro/macro scale of dendritic arrays (Figure 16) to the macroscale of a 

casting processed by directional solidification (Figure 17).  These computational tools are currently in use in 

parameter selection to control and select convective experimental conditions during electrostatic levitation (Figure 

7) and electromagnetic levitation (Figure 17) [85]. There are almost no validated open-source tools available for 

macroscale modelling of coupled solidification and fluid flow, while a few tools described in what follows are 

actively being developed for microscale modeling. As a result, modeling of simultaneous fluid flow with 

solidification is an active area for ICME research to optimize processing conditions and control microstructural 

evolution. For example, surface tension-driven Marangoni convection can be seen to influence chill casting 

dynamics in the electromagnetic droplet example of Figure 17 based on linking a level-set diffuse-interface 

macroscale solidification model to a coupled solute segregation and heat transfer model  [84], [86], [87].  An 

unexplored potential opportunity to refine these predictions is to merge magnetohydrodynamic modeling (MHD) of 

the levitation field-induced convection [88] with predictions from surface tension driven flow. This requires linking 

microscopic and macroscopic modeling approaches. 

Before modeling coupled solidification-fluid flow, solidification alone must be properly described and refined in a 

computational model. This report focuses on BPS-supported academic research codes and free, open-source 

community codes due to their accessibility and the open science drive embodied by the Transform to Open Science 

(TOPS) initiative at SMD. There are multiple open-source tools available for PF modeling. One under active 

development is PRISMS-PF, which is a parallel matrix-free finite element code that performs PF modeling and 

microstructural evolution, including solidification, grain growth, and solid-state phase transformations [89], [90].  It 

is currently formulated to solve 2D problems, and a 3D version is under development. PRISMS-PF is developed by 

the PRedictive Integrated Structural Materials Science (PRISMS) Center, supported by the Department of Energy 

(DOE) and University of Michigan. It can run on multiple CPUs, with GPU-based development underway by the 

PRISMS team. 

The Multiphysics Object-Oriented Simulation Environment (MOOSE) tool is another actively developed open-

source multi-physics finite element code primarily developed by Idaho National Laboratory (INL) with over a 

https://doi.org/10.1038/s41526-023-00310-2
https://doi.org/10.1038/s41526-023-00310-2
https://creativecommons.org/licenses/by/4.0/
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hundred contributors [91], [92].  The framework is scalable to over 300,000 cores, and has seen recent development 

for GPU capabilities [93].  MOOSE consists of many modules, including chemical reactions, fluid-structure 

interaction, peridynamics, optimization, heat conduction, tensor mechanics, and others. The PF module has 

capabilities for two-phase models, the Kim-Kim-Suzuki model, the Sublattice KKS model, multiphase models for N 

phases, and the Grand Potential Multi-Phase, Multi-Order Parameter Model [94], [95], [96].  It also includes multi-

physics coupling to mechanics and can solve some 3D problems. 

The equations governing linear elasticity and the flow of Newtonian fluids are well accepted. By comparison, PF 

methods for solidification are still under active development. Thus, the challenge in using PF models is two-fold: 

choosing a particular PF model, and then ensuring that the equations are solved to a desired accuracy. Benchmark 

experimental data sets are essential in determining both the proper PF method for a given application, and the 

fidelity of the simulation. It is then not surprising that two of the publicly available community-based PF codes, 

PRISMS-PF and MOOSE, employ different PF formulations.  

One of the principal challenges with the PF method is the need to employ diffuse interfaces that are much thicker 

than those in reality; this is necessary to have a computationally tractable model. This can be a challenge when the 

interfacial free energy is coupled to both the interfacial thickness employed in the simulation and the bulk free 

energies. The Kim, Kim, and Suzuki multiorder parameter model [94], that builds upon the work of Tiaden et al. 

[97], assumes that the interface is composed of a mixture of two phases with a volume fraction that varies across the 

interface. This decouples the magnitude of the interfacial energy from the interface thickness and the free energies 

of the bulk phases. However, the approach employs fictious compositions whose values are fixed by requiring local 

equilibrium at every point in the system. These local equilibrium conditions must be determined at each mesh point 

and every timestep, a considerable computational burden. An advantage of this approach is that it has been extended 

to model multiple phases, multicomponent alloys, and many grains [98]. Thus, it is a very flexible model and is 

incorporated in MOOSE. An approach that also addresses the need to use larger than realistic interface thicknesses 

is the grand-potential model by Plapp [99]. In this case the evolution of the chemical potential, not the concentration, 

is computed, removing the need for fictious compositions.  The grand potential formulation has also been 

incorporated in MOOSE. 

Aside from the accurate description of the interfacial free-energy, the choice of a computationally tractable interface 

width on the micron scale generates solute trapping in the solid phase at low solidification rate, an effect that only 

occurs physically at high solidification rate with a physical nanometer scale interface width. Historically, this 

difficulty was overcome in one formulation by the introduction of an “anti-trapping” solute flux to ensure that the 

PF equations capture the well-accepted sharp interface formulation for solidification in the limit where the solid-

liquid interface is in local equilibrium and the solute diffusivity in the solid is vanishingly small [100].  This 

approach has been for directional solidification of dilute binary alloys [53]. An “anti-trapping” solute flux is not 

typically employed in the multiorder parameter models, but they are in the MOOSE code. However, this approach 

employs a dilute solution model for a binary alloy, unlike the previously mentioned approaches that can employ 

general free energy functions and cannot treat multiple grains. Nevertheless, the dilute solution assumption is 

satisfied by the DECLIC experiments, and thus this model can be tested against this benchmark dataset. The model 

of Echebarria et al. is used in the PRISMS-PF code.  

Thus, the two major community codes do not use the same PF formulation for solidification of alloys. The MOOSE 

code uses the grand potential and multiorder parameter models, but it has not employed the asymptotic method of 

Echebarria et al. whereas the PRISMS-PF includes the Echebarria et al. model but not the grand potential or 

multiorder parameter models. In view of the highly nonlinear nature of interfacial evolution during solidification, the 

different formulations may diverge if the underlying physics is not exquisitely captured, thus indicating where gaps 

remain in the codes or formulations and intimating the need for validation datasets to provide anchoring views of the 

underlying physical phenomena. 

 

PRISMS-PF 

As a demonstration of the possibility of BPS-supported and validated research codes finding utility in the context of 

the broader ICME community, the Northeastern University Karma group worked closely with the PRISMS-PF code 

developers to assess to what extent graphics-processing-unit (GPU) based research codes (developed in the Karma 

group) and publicly available codes for binary alloy solidification such as PRISMS-PF can be used to model flight 

experiments such as IDGE, PFMI, CETSOL, and DECLIC-DSI. These experiments provide unique benchmark data 

for validating currently available and future codes under well-controlled diffusive growth conditions with negligible 

buoyancy-driven convection. The Karma group’s GPU-PF code was both supported in development by BPS and 
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used BPS-funded and -relevant datasets from microgravity materials science flight experiments for validation. The 

question was then whether this code could converge with an open-source, community code – PRISMS-PF in this 

demonstration. This establishes a verification approach that could be extended to other codes as well. 

Publicly available 2D “alloySolidification” test case 

As a first step, a direct comparison was made between the results of a 2D research code in the Karma group and the 

PRISMS-PF code for the publicly available “alloySolidification” application in PRISMS-PF corresponding to the 

2D directional solidification of an aluminum-3wt%copper alloy under additive manufacturing conditions (i.e., large 

isothermal velocity V=188 mm/s and large thermal gradient G=265 K/cm). This example uses a very small 2D 

system size of ~10 𝜇𝑚 x 30 𝜇𝑚 and total physical simulated time of ~0.02 seconds with a width W=0.098 𝜇𝑚 of the 

spatially diffuse interface thickness in the PF model. It was chosen for public release by PRISMS-PF developers to 

enable users to run this example with a typical execution time less than about 15 minutes with a limited number of 

cores as in a common desktop or laptop workstation. The 2D research code (referred to hereafter for brevity as 

GPU-PF code) uses a finite-difference discretization on a regular square mesh [1] of the partial differential equations 

(PDEs) corresponding to the quantitative PF model of directional solidification with anti-trapping [20]. This 

discretization is ideally suited to take advantage of the massively parallel capability of GPUs but does not provide 

adaptive meshing to dynamically reduce the number of grid points. The PRISMS-PF code uses a finite element 

method (FEM) discretization of the identical partial differential equations parallelized with Message Passing 

Interface (a parallelization framework) on a more traditional multicore architecture but enables adaptive meshing. 

The comparison of the GPU-PF and PRISMS-PF codes shows that the two codes yield essentially the same 

dynamical evolution of the solid-liquid interface starting from a small circular crystal seed to an almost completely 

solidified sample (top of Figure 18). Performance wise, with a 1.24 sec wall time on a single V100 GPU, the GPU-

PF code is about 30 times faster than the PRISMS-PF code with adaptive meshing executed on all 128 cores of a 

compute node at 2.45 GHz on a 3rd Gen AMD EPYC CPUs (AMD EPYC 7763) architecture (bottom of Figure 18).   

The deviation from ideal scaling behavior is due to the overhead in communication between cores, which is 

expected in simulations with a small number of degrees of freedom. The deviation is more pronounced as the 

number of degrees of freedom per core decreases, which occurs when more cores are used. 
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Figure 18: Top: comparison of solid-liquid interfaces (ϕ= 0 PF contours) at the late stage of solidification predicted by GPU-PF 

and PRISMS-PF codes for the 2D directional solidification of an aluminum-3wt%copper alloy under additive manufacturing 

conditions. Bottom: execution time vs. number of cores of the PRISMS-PF code using uniform (red) and adaptive (blue) meshes 

and running on 3rd Gen AMD EPYC CPUs (AMD EPYC 7763) compute nodes at 2.45 GHz. The dotted lines represent ideal 

scaling behavior. Both PRISMS-PF and GPU-PF use a mesh spacing dx = 0.78125 W and time step dt=2 10-3 𝜏0 with interface 

thickness W=0.0524 𝜇m and time constant 𝜏0 = 2.7 1034 s in the PF model. 

DECLIC DSI-R flight experiment in 2D 

In a second step, the above comparison was extended to parameters of the DECLIC DSI-R flight experiments (Table 

1) corresponding to a transparent succinonitrile (SCN)-0.46wt% camphor alloy directionally solidified at a low 

isotherm velocity (V=6 𝜇𝑚/s) and thermal gradient (G=12 K/cm). Modeling this second case is computationally 

more demanding due to the considerably larger system size of ~0.648 mm x 3.89 mm and total physical simulated 

time of 500 s. The computational cost of simulating larger length and time scales is partially mitigated by using the 

quantitatively efficient PF formulation with anti-trapping referenced above. This formulation makes it possible to 

choose the width of the spatially diffuse interface thickness (W=1.265 𝜇𝑚) as a fraction of the dendrite tip radius 

and the characteristic time scale of the PF evolution (𝜏0 = 0.363 second) on an experimentally relevant time scale. 

The comparison of GPU-PF and PRISMS-PF results (Figure 19) shows that the solid-liquid interfaces overlap 

perfectly at t=500 s, except deep in the liquid groove region. This difference reflects a transient sidebranching 

instability during the initial destabilization of the perturbed planar interface that is seen to have a negligible 

influence on the subsequent morphological development of the interface that is controlled by the growth kinetics of 

the dendrite tips. This kinetics is well-resolved by both codes and, as a result, the interfaces overlap perfectly at later 

stages of solidification as shown in Figure 19. 
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Figure 19: Comparison of solid-liquid interfaces (ϕ= 0 PF contours) predicted by 2D GPU-PF and PRISMS-PF codes for 

DECLIC DSI-R parameters of Table 1 (SCN-0.46wt% camphor alloy, V=6 µm/s, and G=12 K/cm) and with mesh spacing dx = 

0.984375 W and time step dt=5 10-4 𝜏0. 

 
Table 1: Parameters of 2D and 3D PF simulations for DECLIC DSI-R flight experiments. 

Symbol                  Value        Unit 

c0    camphor concentration                0.46        wt% 

DL   diffusion constant                2.7 × 10−10         m2/s 

k     partition coefficient              0.1          - 

m    liquidus slope             -1.365         K/wt% 

Γ     Gibbs-Thomson coefficient               6.478 × 10−8         K m 

𝜖4   crystalline anisotropy              0.011           - 

G    temperature gradient              12         K/cm 

V    isotherm velocity 

W   PF interface thickness   

 𝜏0  PF time constant     

             6 

            1.265  

            0.363 

         𝜇𝑚/𝑠 

         𝜇m 

           𝑠  

 

DECLIC DSI-R flight experiment in 3D. 

The above 2D simulation study was extended to the 3D case of direct experimental relevance using the same 

parameters listed in Table 1. The 3D study was aimed at i) evaluating the convergence of the GPU-PF and PRISMS-

PF codes as a function of grid spacing and time step, and ii) assessing their performance as a basis to estimate the 

computational resources needed to model flight experiments on a full sample scale as will be discussed further 

below. The PRISMS-PF developer team graciously agreed to accelerate the development of their 3D binary alloy 

solidification code for the purpose of this report. This 3D code will soon become publicly available and has already 

been made available to NASA scientists. The simulations were carried out in a 0.194 mm x 0.194 mm x 2.332 mm 

domain size with two different mesh spacings, dx=0.8 W and dx=1.2 W with W listed in Table 1, corresponding to 

128 x 128 x 1536 and 192 x 192 x 2304 grid points, respectively, on the fixed regular mesh used in the GPU code. 

In the PRISMS-PF code, which uses adaptive meshing and second-order elements, those same dx values represent 

the minimum mesh spacings used to resolve the rapid variation of the PF in the spatially diffuse solid-liquid 

interface region.  

The results pertaining to the convergence of the GPU-PF and PRISMS-PF codes are shown in Figure 20. The results 

show that the two codes converged as a function of grid spacing and yield essentially identical results. Small 

differences in the results can only be resolved by superimposing 2D cross-sections of the 3D results at a higher 

magnification on the scale of the dendrite tip radius as shown in Figure 21.  
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Figure 20: A) Comparison of solid-liquid interfaces (ϕ= 0 contours) predicted by 3D GPU-PF and PRISMS-PF codes for 

DECLIC DSI-R parameters of Table 1 in a 0.194 mm x 0.194 mm x 2.332 mm computational domain at time t=424 𝜏0 (~154 s). 

B) Interfaces at different times for the same red GPU-PF simulation of A). 

 

 
Figure 21: Comparison of 2D cross-sections of 3D PRISMS-PF and GPU-PF interfaces shown in Figure 20.  Small differences 

on the tip scale are only visible at higher magnification. 

The results pertaining to the performance of the two codes are shown in Figure 22..  The GPU-PF simulations were 

carried out with 1 and 2 V100-SXM2 GPUs. The PRISMS-PF simulations were carried out with 128, 256, 512 and 

1024 cores (corresponding to 1, 2, 3 and 4 3rd Gen AMD EPYC CPUs AMD EPYC 7763 compute nodes at 2.45 

GHz with 128 cores per node). The performance was assessed by comparing the wall time to execute the 3D 

simulation of Figure 20. Optimizing the performance (i.e., minimizing the total number of computations that 

determines the wall time) is generally achieved by choosing the mesh spacing and the time step as large as possible. 

Performances tests were carried out with dx=1.2 W that was found to be the largest mesh spacing that provides 

adequate resolution (Figure 20). GPU-PF uses a finite-difference discretization with an explicit time-stepping 

scheme that makes it possible to use a larger time step than PRISMS-PF that also uses an explicit time stepping 

scheme, but second order elements that impose a more stringent constraint on the time step. Therefore, the GPU-PF 

simulations were carried out both with the same time step 𝑑𝑡 = 𝑑𝑡0 used in PRISMS-PF and with a seven times 

larger time step 𝑑𝑡 =  7𝑑𝑡0, which is below the limit of numerical stability of the explicit scheme and still provides 

a good resolution of the 3D solution as shown in Figure 23. Choosing a larger time step is made possible in the 

GPU-PF code using a preconditioner that enables to resolve the variation of the PF in the spatially diffuse interface 

region with a grid spacing (dx/W=1.2) that is comparable to the mesh size with second order elements in PRISMS-
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PF. Performance of PRISMS-PF was optimized by adjusting the remeshing frequency and thickness of the region of 

maximum refinement around the interface while ensuring solution accuracy, as shown in Figure 24.  

 
Figure 22: Comparison of wall times of GPU-PF code (bottom: filled squares for 1 or 2 GPUs) and PRISMS-PF code (top: filled 

circles for 128, 256, 512, and 1024 cores) for the DECLIC-DSI-R simulations of Fig. #3 with the largest grid spacing dx/W=1.2 

and a time step 𝑑𝑡 in units of 𝑑𝑡0=5 10-4 𝜏0. The fitted red dashed line in the top plot has a slope of -1.04 that is very close to 

ideal scaling behavior. The performance of GPU-PF is improved by increasing the time step.  

 

 
Figure 23: Comparison of GPU-PF interfaces showing convergence as a function of time step (2D cross-sections of 3D for 

𝑑𝑡 = 𝑑𝑡0 and  𝑑𝑡 = 7𝑑𝑡0). 
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Figure 24: Comparison of PRISMS-PF interfaces showing convergence as a function of remeshing frequency. 

The comparison in Figure 22 shows that, for the same time step 𝑑𝑡 = 𝑑𝑡0, GPU-PF with a single GPU has a wall 

time (3.06 h) comparable to PRISMS-PF with reduced remeshing frequency using 8 nodes (1024 cores) (3.14 h). 

GPU-PF wall time can be further reduced by a factor of 7 using larger time step (0.68 h) and a factor of ~17 using 

both a larger time step and 2 GPUs (0.18 h). It is worth noting that PRISMS-PF wall time could be potentially 

further reduced by the implementation of a preconditioner to enable a use of a larger time step or by porting the code 

onto a GPU architecture, which is currently being pursued by PRISMS-PF developers.  

 

MOOSE 

To further understand how open-source, community codes relate to BPS-supported research codes, the Multiphysics 

Object Oriented Simulation Environment (MOOSE) non-linear solver developed by Idaho National Laboratory was 

compared in its phase field implementation to that of PRISMS-PF. The example problem chosen was an alloy 

solidification simulation. While exploring the fundamental equations used in each framework, it was established that 

PRISMS-PF and MOOSE use different PF formulations, as previously described. Thus, the comparison may 

indicate how the different formulations capture the same undergirding physics and point the way to further 

refinements of the codes and formulations. 

In PRISMS-PF, the alloySolidification example was solved, using the parameters provided in Table 6 and Table 7 of 

the Supplementary Material. These values were chosen based on the DECLIC-DSI-R experiments. This PRISMS-PF 

alloySolidification case was used as the basis for MOOSE exploration. The initial MOOSE example chosen was 

called GrandPotentialSoldification, located in the PF module example directory anisotropic_interfaces. Results from 

that example problem given by the MOOSE documentation can be seen in Figure 25, where again blue represents 

the liquid region and red the solid. 
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Figure 25. Results from initial MOOSE solidification example over time, where red represents solid and blue is liquid. 

This problem was gradually changed to mirror more closely the PRISMS-PF example. First, the initial condition, a 

circle representing an initial solid region, was moved from the middle of the domain to the bottom left corner. Then, 

the dimensions were adjusted such that the x-y aspect ratio and relative initial condition radius matched. Multiple 

other configurations were simulated, including significantly shrinking the height (y-dimension) to force a different 

behavior at the corner. With each change, results remained essentially the same. Figure 26 shows a comparison of 

the final PRISMS-PF phase contour versus various MOOSE results. MOOSE and PRISMS-PF results diverge, 

showing opportunity for further investigation and enhancement of either or both via V&V supported by flight 

experimental datasets. 
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Figure 26. Summary comparison of MOOSE (top three images) and PRISMS-PF (bottom image) solidification results. 

Next, focus shifted to the simulation parameters. Assessment of the parameters in the PRISMS-PF and MOOSE 

simulations found few similarities, which was unsurprising, given the difference in formulations. There was little 

elaboration in the MOOSE documentation to explain the meaning of most of these parameters. The known overlap 

can be seen in Table 2. Further simulations were run in MOOSE to ensure parameters were the same in both cases, 

but this did not result in meaningful progress toward like comparison. 

 
Table 2. Equivalent simulation parameters in PRISMS-PF and MOOSE. 

 
 

Other considerations regarding simulation differences included the reference phase diagram being used by each tool, 

the interface width (between solid and liquid), and again, the formulation itself. As mentioned, a significant problem 

when trying to compare the two cases is the lack of MOOSE parameter documentation. Information about the 

formulation is available via MOOSE provided documentation but the parameters used in input files do not correlate 

in any predictable way to the variables in the listed equations. Members of the team were in contact with the 

MOOSE developers, but there was no time to follow up for more details before the writing of this report. This work 

indicated that tight coordination is required with the developers of open-source, community codes to ensure their 

convergence with validated, BPS-supported codes and other open-source codes. 

Other codes can also be compared to PRSIMS-PF similarly to MOOSE. One intercomparison is the community 

benchmark 3a.1 from PFHub, which models dendritic morphology and evolution in a 2D space [101], [102].  This 

benchmark was developed with input from multiple ICME community sources, including the influential Center for 

Hierarchical Materials Design (CHiMaD) and the MGI. As seen in Figure 27, various popular codes show general 

agreement in this simplistic case. However, divergence in this simplistic case is likely magnified in more complex, 

realistic cases as with the DSI-R parameters as seen for PRISMS-PF and MOOSE previously. This is an opportunity 
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for BPS to provide validation datasets that can anchor these models beyond the inter-code comparison that only 

provides verification as demonstrated here. 

 
Figure 27: Intercomparison of various PF codes against the PFHub 3a.1 benchmark case [102].  Figure generated from PFHUB 

3a.1 benchmark results under the NIST License. 

An example case of fluids-solidification coupling using historical datasets from BPS-funded flight 

experiments 

As aforementioned, fluid flows in solid-liquid mixtures like those seen during solidification influence the micro- and 

meso-scale structures and thus final properties of the material. Previous work has used BPS-funded flight 

experiments to understand the coupling between fluid flow and solidification. 

The Marangoni force has been hypothesized as a potential source of the observed convection in the PFMI 

experiment and the spurious grains near surface pores in the MICAST samples. This force arises from temperature-

dependent surface tension in conjunction with the temperature gradient driving the solidification process and would 

induce convective flow across the surface of any bubbles. An initial analysis of the strength of the Marangoni 

convection [15] supported the Marangoni force as the source of the convection observed in the PFMI experiments. 

That analysis did include several simplifying approximations, most significantly fixing the location of the bubble 

within the computational domain and neglecting flow within the bubble itself. Here, the feasibility of simulating a 

more realistic representation with the initial bubble free to move within the domain was evaluated. 

The schematic of the two-dimensional model domain for the PFMI experiment used by Nabavizadeh et al. is shown 

in Figure 28 below [15].  The 1.3 mm diameter bubble was partially surrounded by solidified dendrites, which were 

modeled as a porous continuum material with low permeability to reduce fluid flow via Darcy drag. The fluid flow 

was solved using the continuum Navier-Stokes equations, with the Marangoni force applied through an additional 

source for the total stress at the bubble-fluid interface. Other boundary conditions were not specified, although they 

can be inferred to be no-slip at the boundaries of the computational domain and an imposed temperature gradient 

from the solidus to liquidus. The right-hand boundary was treated as a wall. (n.b. this is an imposed temperature 

gradient and should not be taken as entirely physical; it is imposed to assist in fluid flow modeling) 

 With a free boundary, the bubble simply moved completely out of the model due to the initial acceleration from the 

Marangoni forces. Realistic simulation of similar effects requires a more rigorous treatment of coupled fluid 

dynamics, heat transfer, and solidification. Coupling with a solidification model is necessary for a realistic 

representation of the initial transients as the gases trapped in solidified alloy are freed during melting, move and 

merge to form the observed voids, then are trapped by solidifying material. Although approximate models such as 

https://pages.nist.gov/pfhub/results/benchmark3a.1.ipynb/
https://pages.nist.gov/pfhub/results/benchmark3a.1.ipynb/
https://github.com/usnistgov/pfhub/blob/nist-pages/LICENSE.md
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these are adequate to screen for the possibility of physical effects such as Marangoni forces inducing observed 

defects in solidification experiments, a more fully coupled model with appropriate boundary conditions is necessary 

for predictive analyses. Finally, the model must be extended to three-dimensional space. Only with a truly 

volumetric fluids analysis that extends from solid to solid within the evolving dendritic structure can coupled effects 

be fully shown. 

 

 
  

 
Figure 28. Schematic of Model Domain for Bubble and Marangoni Effects on PFMI Experiment SCN-H2O Alloy Solidification, 

left, and Simulated Temperature Distribution with Stream Traces at 6.6 secs, right [15].  Figure from S. A. Nabavizadeh, S. 

Upadhyay, M. Eshraghi, S. D. Felicelli, S. N. Tewari, and R. N. Grugel, “Spurious grain formation due to Marangoni convection 

during directional solidification of alloys in µ-g environment of International Space Station” licensed under CC BY-NC-ND 4.0. 

 An equivalent computational domain was used for this study, with the region inside the bubble also discretized. The 

alloy properties were reported by Nabavizadeh et al. were used, and bubble thermophysical properties were taken as 

nitrogen. The CFD-ACE+ Multiphysics software used for the simulation, with the following key distinctions in the 

model formulation: solution of fluid dynamics and heat transfer within the bubble, and incorporation of surface 

tension and Marangoni effects via a local (to each computational cell) surface integral of the forces due to the 

surface tension-curvature product. As seen in Figure 29, during the early stages of the simulation the presence of the 

solidified dendrites minimized motion of the bubble but there was sufficient distortion of the bubble shape for 

surface tension and the Marangoni force to drive more complex flow distributions to occur than predicted in the 

simplified analysis. As a result, the temperature profiles are also more distorted than seen in the simpler analysis. At 

5 seconds simulated time, Figure 30, the solution has stabilized to be like the prior work with the fixed bubble 

location. 

 
Figure 29. Predicted Streamlines and Temperature Distribution at 3 secs for Bubble and Marangoni Force Effects on SCN-H20 

Solidification. Bubble-Alloy Interface Location shown as black Curve, Stream Traces and Velocity Vectors in white. 

https://doi.org/10.1016/j.jcrysgro.2021.126334
https://doi.org/10.1016/j.jcrysgro.2021.126334
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 30. Predicted Streamlines and Temperature Distribution at 5 secs for Bubble and Marangoni Force Effects on SCN-H20 

Solidification. Bubble-Alloy Interface Location shown as black Curve, Stream Traces and Velocity Vectors in white. 

The schematic of the model domain for the MICAST samples and the predicted temperature distribution at 2 

seconds simulated time from Nabavizadeh et al. are shown in  Figure 31 below. Although the bubbles and dendrite 

fragment recirculation could not be visualized, as this is an opaque alloy, the experimental samples included several 

surface voids with nearby misoriented grains that could be caused by dendrite fragments being transported in the 

melt. For this model, the fixed bubble began 1 mm from the solidified dendrites ahead of the mush zone and fully 

within the liquid. As the surface tension flow developed, the predicted streamlines transitioned from a single large 

recirculation zone to a large primary recirculation above the bubble and a smaller induced secondary cell. Due to the 

larger Marangoni number, relative to the PFMI simulation with a smaller bubble, the predicted convection is 

sufficiently strong to distort the temperature profiles in the melt.  

 

  
 

 

Figure 31. Schematic of Model Domain for Bubble and Marangoni Effects on MICAST2-12 Experiment aluminum-Si 7wt% Alloy 

Solidification, left, and Simulated Temperature Distribution with Stream Traces at 2 secs, right [15].  Figure from S. A. 

Nabavizadeh, S. Upadhyay, M. Eshraghi, S. D. Felicelli, S. N. Tewari, and R. N. Grugel, “Spurious grain formation due to 

Marangoni convection during directional solidification of alloys in µ-g environment of International Space Station” licensed 

under CC BY-NC-ND 4.0. 

The equivalent model with solution of the gas bubble velocity field and free movement of the bubble within the 

domain demonstrates the importance of bubble movement in these analyses. As anticipated, the Marangoni force 

drives a relatively large velocity at the bubble-liquid alloy interface in the early stages of the simulation, Figure 32. 

With the bubble free to move, it is rapidly transported across the domain to the right-most boundary where it stops 

due to the wall (zero velocity) boundary condition, Figure 33.  After 5 seconds, Figure 34, the bubble shape has 

relaxed to match the specified contact angle and a flow field like the simplified model has emerged. The main 

recirculation cell is in approximately the same relative position with respect to the bubble, however it is clearly 

several millimeters farther from the original bubble location. The temperature field is distorted near the bubble, 

although not as severely as in the referenced model that fixes the bubble location farther from the solidified alloy 

and the right-most boundary.  

https://doi.org/10.1016/j.jcrysgro.2021.126334
https://doi.org/10.1016/j.jcrysgro.2021.126334
https://creativecommons.org/licenses/by-nc-nd/4.0/
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   Figure 32. Predicted Streamlines and Temperature Distribution at 0.1 secs for Bubble and Marangoni Force Effects in 

MICAST2-12 aluminum-Si Solidification. Bubble-Alloy Interface Location shown as black Curve, Stream Traces in white. 

 
   Figure 33. Predicted Streamlines and Temperature Distribution at 0.4 secs for Bubble and Marangoni Force Effects in 

MICAST2-12 aluminum-Si Solidification. Bubble-Alloy Interface Location shown as black Curve, Stream Traces in white. 

 
   Figure 34. Predicted Streamlines and Temperature Distribution at 0.4 secs for Bubble and Marangoni Force Effects in 

MICAST2-12 aluminum-Si Solidification. Bubble-Alloy Interface Location shown as black Curve, Stream Traces in white. 

This demonstration shows how both temperature fields and fluid flow – even motion of entrapped bubbles – can be 

different when simulated using more complex computational tools. The changes in temperature, fluid flow, and even 

physical location will influence the solidification process.  

 

Computational architectures and infrastructure currently available 

The performance benchmarks of Figure 22 provide a useful basis for evaluating the computational resources needed 

to model a flight experiment such as DECLIC DSI on a full sample scale. The crucible diameter is d=5 mm and the 

solidification length L that needs to be simulated to follow the full morphological development of the interface is 
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typically tens of mm as illustrated in Figure 35.  Using L=50 mm as a guide, the computational domain volume is 

~𝜋𝑑2𝐿/4~103 mm3 and the physical time ~ 5 103 s. In contrast, the computational domain used for the benchmark 

of Figure 20 is ~0.1 mm3, or104 times smaller, and the total simulation duration (500 s) is 10 times smaller.  For a 

wall time in the range of hours to several days, this would require a massively parallel multi-GPU platform with 

~103 to 104 GPUs assuming an optimal linear scaling with the number of GPUs. This estimate is supported by the 

result of a previous  study demonstrating the feasibility to simulate directional solidification of a dendritic 

aluminum-3wt%copper alloy in a ~ 1 mm3 domain size with older 144 K20X GPUs that are at least an order of 

magnitude slower than current V100 or A100 GPUs [103]. With PRISMS-PF, ~106 to 107 cores (~104 to 105 

compute nodes) would be required if the red dashed line of Figure 22 is extrapolated to more cores.  The above 

estimates are upper bounds of computational resources needed to simulate an entire sample domain, which are not 

currently available. It should be emphasized, however, that microstructure formation is predominantly controlled by 

the growth competition of cells and dendrites that are unaffected by the slow evolution of the mushy zone far behind 

the solidification front. Hence, in the frame of the moving isotherms, microstructure formation can be studied in a 

computational domain with a solidification length L comparable to a few times the primary cellular/dendritic array 

spacing [103]  or approximately 1 mm or less [104]. This reduces by a factor of 50 the estimate of the computational 

domain size, which could then be simulated with 10 to 100 GPUs.  This is achievable but still requires a large 

dedicated multi-GPU computational infrastructure.  

 

 
Figure 35: In situ observation of microstructure formation in DECLIC DSI over a cylindrical volume 5 mm in diameter and ~ 50 

mm in length. 

The PRISMS-PF software was compiled using the included instructions along with the default GNU compiler 

(version 8.5.0) and MPI library supplied by the NAS facility. The benchmark application was executed using the 

standard methods recommended by the NAS facility. Seven different CPU architectures, six Intel-based and one 

AMD-based, were evaluated for performance as a function of CPU core count; PRISMS-PF did not require 

recompilation to execute on these different architectures. The different architectures assessed along with their 

performance are shown in Figure 36. Consistent speed-ups with increasing core count are evident, even when the job 

begins to span multiple nodes. This contrasts with the fall-off seen in Figure 36 when the job spans across more than 
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one Core Complex (8 CPU cores) in that architecture; further attention should be paid to variation by compute 

architecture, especially that of interconnects within and between nodes, on the performance of ICME tools such as 

PRISMS-PF.  On the NAS compute architectures, attempts to use OpenMP for parallelism were noticeably slower 

than MPI and are not reflected in this figure; this difference is also seen in other applications such as production-

mode finite volume CFD tools.  Additional detail is available in the Supplementary material. 

 

 
Figure 36: Wall clock time versus number of cores by compute architecture of NAS facilities for the PRISMS-PF benchmark 

case. 

3.3. Future 

Experimental 

Similar to the future work described for thermophysical properties measurements, ground-based and reduced-gravity 

experimental facilities are needed to generate benchmark data sets that fill critical gaps in the basic understanding 

and the prediction of key solidification phenomena. The advent of additive manufacturing in metallic alloys and 

computationally informed alloy design have spurred a renewed interest in the fundamental underpinnings of 

solidification processing. The relatively quiescent microgravity environment affords a unique capability to 

rigorously interrogate physical phenomena providing validation datasets otherwise unavailable. Such data sets 

would enable the further development of a nascent ICME framework that iteratively utilizes unique data sets 

obtained for specific alloys to validate computational models that can in turn guide experimental design and make 

efficient and reliable predictions for a wide range of alloys and solidification processes.  

Flight and ground experiments that provide in-situ observation of microstructural evolution continue to offer 

essential insight into the complex interplay of physical phenomena during solidification processing. Ground-based 

solidification experiments can be used to bridge flight experiment datasets to industrially relevant alloy systems and 

complex manufacturing environments. As well, manufacturing technology demonstrations in microgravity 

environments can be interpreted through invoking models anchored through these fundamental materials science 

investigations. Microstructure evolution phenomena are critically important for any metal manufacturing process 

including additive manufacturing and joining processes. In all these processes, a melt pool of metallic elements is 

transformed to a polycrystalline state by the advance of a solidification front in a positive temperature gradient, for 

example, when cooler crystalline grains nucleating on the outer walls of a casting or at the bottom of a weld or 

powder-bed-fusion melt pool grow toward a hotter molten zone. Microstructure formation in a positive temperature 

gradient is distinct from solidification dynamics of crystal growth from an undercooled melt.  

The rarity of flight experiments necessitates complementary ground experiments with reduced convection in a 

positive temperature gradient to be performed prior to flight, during initial post-flight data analysis and even years 

later as experimental techniques and instrumentation as well as simulation capabilities generate additional insights 
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that were not possible at the time of the initial investigation. Historically, solidification flight experiment complexity 

was driven by the need to impose carefully constrained steady-state growth conditions to compare with analytical 

theories. This constraint dramatically reduced the cadence of solidification flight experiments. Significant recent 

advances in computational capabilities offer ever-increasing abilities to model complex dynamic processes such as 

coupled fluid-solidification and dynamical evolution of interface morphologies under highly transient and complex 

processing conditions. With advanced instrumentation capabilities such as infrared thermography, transient and 

complex boundary conditions can be recorded on-orbit and included in benchmark datasets used for validation of 

computational models. Leveraging these capabilities can dramatically increase the flight cadence and the 

experimental yield. Flexible small experimental platforms that offer in-situ observation of solidification in a positive 

temperature gradient such as MARVIN, PFMI, and ESA-TA can provide fast-turnaround access to validation 

datasets relevant to numerous processes involving solidification of a melt pool. Depending on the molten zone size, 

which can vary from meter-size castings to powder bed particles of tens of microns, the heat extraction rate can 

increase by several orders of magnitude resulting in temperature gradients G in the range of 1–106 K/m and 

solidification velocities V spanning μm/s in conventional to m/s or higher in rapid solidification processes. Rapid 

solidification experiments performed in parabolic and suborbital flights are critically needed to generate benchmark 

datasets in this high velocity range. 

 

Computational 

Major computational challenges in solidification modeling include accurate atomistic scale modeling of 

thermophysical alloy properties, scale bridging between microstructural and part scales, and coupling of 

solidification and fluid flow.  

On the atomistic scale, further development of machine learning interatomic potentials (MLIP) using emerging 

methods such as PINN (see Section 2.2), the atomic cluster expansion (ACE) [105], and the Ultrafast Interpretable 

Machine Learning Potentials [106] are critically needed to predict thermophysical properties needed as input 

parameters in PF models for continuum scale simulations of alloy solidification microstructures, in particular the 

energetic and kinetic properties of the solid-liquid interface that have a crucial influence on microstructure formation 

but are notoriously difficult to determine experimentally. 

Even armed with accurate atomistic-simulation-derived input parameters, PF codes are presently limited to running 

a small number of GPUs on a single CPU node, which significantly constrains the simulation domain size. Given the 

rapid increase in availability and utility of GPU parallelism, further developments are needed to implement PF codes 

on many CPU nodes each running multiple GPUs. Ultimately, such improvements would unlock orders of 

magnitude greater computational power than presently applied to solidification simulations – proffering the chance 

to simulate the entire flight experiment sample volume in three dimensions under diffusive growth conditions as a 

major first step towards bridging from the microstructural scale to the larger part scale. Such development requires 

close coordination between developers and users along with benchmark datasets to validate results.  

In addition, significant further work remains in validating coupled fluid-solidification models that couple 

solidification methods appropriate to a given simulation domain size, ranging from PF to DNN to CA with 

increasing size, to a fluid dynamics method of appropriate accuracy such as LB or CFD.  

 

3.4. BPS role in future 

Historical datasets 

As seen with the solidification modeling using DSI-R parameters and the coupled fluid-solidification modeling 

using PFMI & MICAST datasets, existing BPS-funded datasets remain highly relevant and useful in the modern 

context. In fact, these datasets represent untapped potential with advanced modeling tools and computational 

resources available now that were not available when originally conducted and analyzed. Considering BPS 

investments in open science data infrastructure such as PSI and the SMD’s TOPS initiative coupled with recent 

upgrades of the high-end compute capabilities via NAS, there exists an immediate and continuing opportunity to 

fund re-analysis and extended analyses of historical flight datasets. Potential avenues include but are not limited to 

expanding the simulated volume through massive parallelism enabled by GPUs, three-dimensional studies enabled 

by recent improvements in research & community codes, and additional coupled fluid-solidification analyses via 

advanced fluids modeling tools. 
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Community, open-source codes 

Continued engagement with developers of community, open-source codes will be highly fruitful considering the 

rapid advances during this study. Within months, interactions with the PRISMS-PF developers yielded substantial 

engagement with code capabilities relevant to BPS datasets such as DSI-R and enhanced capabilities. Verifying 

PRISMS-PF with the GPU-PF code using DSI-R parameters demonstrates how BPS involvement – including both 

expertise and providing validation datasets – is critical to the further development of PF solidification models within 

the broader ICME community. 

Beyond verification, BPS engagement could also expand the capabilities of community codes. Since the link 

between the grand potential model and the Echebarria et al. model is clear [73], modifications necessary for the 

MOOSE code to use the Echebarria et al. model are known. After contacting one of the principal developers of the 

MOOSE PF code, Larry Aagesen, there is interest in modifying the MOOSE code to facilitate a comparison to the 

PRISMS-PF code. Some progress has been made. An isotropic, isothermal version of the Echebarria et al. 

formulation has recently been posted on GitHub. Given more time and funding both PRISMS-PF and MOOSE can 

be modified to incorporate the same PF formulation, allowing for intercomparison based on code architecture 

differences alone. This would indicate whether the divergences are arising from the formulations capturing different 

aspects of the physical phenomena or whether differences in the code architecture and execution are leading to 

differing results. 

 

“Can Do” science with existing equipment and facilities 

Previous experimental campaigns – including but not limited to the CSLM series, SUBSA-CETSOL, and DECLIC-

DSI series for solidification and numerous uses of the MSFC-ESL, ELF, and ISS-EML – have demonstrated the 

utility of existing flight hardware to produce world-class science. Not only did these campaigns produce unique data 

and results but also they, explicitly or implicitly, indicated paths forward to resolve remaining uncertainties and 

unanswered questions for scientific questions relevant to ICME. There are still numerous materials science questions 

that can be answered using these existing, known facilities if the proposed experiments can be performed with 

minimal modifications to reduce expense and lead time. To leverage these existing equipment and facilities while 

they are still available, see RECOMMENDATION 1.B: Champion “Can Do” science with existing ground and 

flight facilities and hardware. 

 

Fund further solidification investigations 

One opportunity for further BPS involvement in ICME fluids & solidification work is a flight experiment that 

involves rapid solidification. Existing datasets from BPS-funded flight experiments mostly involve slower 

solidification rates representative of casting (and most affected by gravitational forces & effects). However, the 

increasing interest in both additive manufacturing (AM) and welding for in-space applications motivates flight 

experiments with high solidification rates. These could be dedicated solidification experiments or could be 

experiments-of-opportunity within technology demonstrations of AM and welding. Ultimately, the data collected 

would be highly relevant to improving the nascent computational models of rapid solidification processing methods 

like the AM Module in Thermo-Calc, which is just one example of a commercially available ICME tool that could 

benefit from V&V using validation datasets from flight experiments. 

Another flight experiment opportunity would be expanding beyond binary alloys into engineering alloys. Most 

solidification flight experiments to date have been conducted with binary alloys with atomically rough solid-liquid 

interfaces. In contrast, most commercial alloys use several components. There is therefore a crucial need to carry out 

future flight experiments with well-characterized ternary metallic and transparent alloys that can provide benchmark 

data to validate the predictions of computational models of multicomponent alloys.  

In addition, even within the realm of binary alloys, there is a critical need for flight experiments to generate 

benchmark data for a large class of alloys that solidify with faceted solid-liquid interfaces growing under far-from-

equilibrium conditions, from structural Al-Si two-phase eutectic alloys [107] to templated structures formed by 

freeze casting [108]. Recently performed ground-based experiments for freeze casting have yielded promising 

results requiring further validation in a microgravity environment [109].  
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Fluids and coupling to solidification 

In the MICAST investigation of coupled fluid-solidification evolution, different pore-wall contact angles were 

found. This could have been caused by minute changes in the sample holder material or the wall surface finish. 

More complex void-wall-material interactions may also be causing these alterations in angles, but it deserves further 

investigation to enable more repeatability between experimental runs. Updated design of the sample holder and 

sample loading process could reduce any unintended variability in sample holder, wall, and sample material initial 

conditions. If differences remain, then the tantalizing possibility of discovering new fluid-solidification physics is 

uncovered. 

 

4. Meso-/macro-scale 

There is also substantial value in scaling models to length-scales above solidification that approach the final part 

scale. By simulating representative volume elements of sub-regions of parts, the initial forming process can be 

linked to the mechanical performance of parts during realistic loading scenarios. Such approaches frequently utilize 

analytical or numerical solutions of the temperature field during processing and solidification and link those 

temperature fields to microstructure evolution models that can simulate the grain-scale microstructure during and 

after processing. Various approaches, including the cellular automata (CA), dendritic needle network (DNN), and 

kinetic Monte Carlo (kMC) methods enable the prediction of large-scale structure in feasible timescales [69], [110], 

[111], [112]. The DNN approach has been used to model practically relevant geometries such as a sudden change of 

sample cross-section perpendicular to the thermal axis, which can generate highly transient dendritic array structures 

[99]. Defects such as porosity also substantially impact the performance of parts and are important to predict. There 

are various methodologies capable of predicting porosity [113], [114] that can be linked alongside grain evolution 

techniques to simultaneously predict mesoscale microstructures and defects. 

Once processing conditions are linked to mesoscale microstructures and defects from the models, computational 

methods, such as the finite element method, enable the simulation of local thermomechanical fields to determine 

part performance metrics; much work continues to link these to processing conditions. Accurate prediction of the 

mechanical performance of parts in space, under a variety of loading considerations, is critical to the viability of the 

manufacturing method. Space environments present unique challenges due to the environmental and loading 

considerations that drive mesoscale failure mechanisms. These space environment effects should be considered 

while developing microstructure-and-defect-dependent constitutive models. Crystal plasticity models are well 

established [115] and can take these factors into consideration when modeling the deformation and degradation of 

additively manufactured polycrystalline alloys.  

 

4.1. Computational 

Dendritic Needle Network (DNN) 

A scale bridging alternative already discussed above is to use the DNN method that makes it possible to simulate 

microstructure formation on orders of magnitude longer length and time scales than the PF method but is restricted 

to growth conditions or alloy concentrations favoring the formation of highly branched dendritic microstructures. 

The ability of the DNN method to simulate DECLIC DSI-R on the full scale of the crucible is illustrated in Figure 

37. Scale bridging is achieved by using PF simulations to characterize the dendrite tip operating state as a function 

of the strength of crystalline anisotropy, which is used as an input parameter in the DNN simulation. PF simulations 

are also used to validate DNN predictions of the minimum and maximum stable primary spacings. DNN simulations 

can then make predictions of microstructure formation and on the sample scale with several dendritic grains. The 

DNN method is therefore ideally suited to model flight experiments in concentrated alloys such as the CETSOL 

experiments using metallic aluminum-silicon and aluminum-copper alloys or transparent neopentyl-glycol – 

(D)Camphor (NPG-DC) alloys.  
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Figure 37: Results of Dendritic Needle Network (DNN) simulations of DECLIC DSI-R on the entire crucible scale of Fig. #8 for 

V=3 𝜇m/s and G=19 K/cm. A) Simulation snapshot showing the dendritic array. B) Voronoi tessellation of the dendritic array 

with black nodes representing dendrite tips and red links between tips used to measure the distribution of primary dendrite 

spacings shown in C). 

Cellular automata - finite element (CAFE) 

Cellular automata-finite element (CAFE) simulation tools are widely used to model polycrystalline materials with 

reduced computational burden compared to PF methods but with increased fidelity compared to stochastic methods 

(although kinetic Monte Carlo has shown substantial interest in recent years) [62], [63], [69], [116], [117], [118], 

[119].  CAFE models work by simulating a homogenous voxel around advancing dendrites and applying a physical 

state (e.g. liquid, mushy, solid) to said voxel, terminating when all voxels are solid, and it readily applied to a 

number of solidification processes such as laser power bed fusion AM [120]. 

 

Hybrid Potts PF - kinetic Monte Carlo with SPPARKS  

Another mesoscale tools to be considered is the open-source code SPPARKS developed by Sandia National 

Laboratory [121] which relies on atomistic diffusion calculations as well as coarse scales (voxels) kinetic Monte 

Carlo calculations in order to model grain growth during melt-solidification. The melt-pool is modeled in the Monte 

Carlo case via Potts spins indicative of fluid or solid and where randomized spins in region indicate the molten state 

whereas the aligned neighbor spins indicate a grain or solidified region. More detailed diffusion atomistic 

simulations and even Hybrid PF-Potts are available (Figure 38), and in the instances of diffusion the alloy may 

include both several elements/atom types as well as pinned particles, although these are not coupled to other 

modules such as welding. In the case of the hybrid PF and Potts module, the hybridization is made via the addition 

of limited PF via the gradient of the concentration in the liquid. This reduced order incorporation of PF does not 

approach the level of detail which can be obtained via 2D and 3D PF modeling as previously discussed. Any 

eventual truly hybrid model would have to delve deeper into the dendritic growth modeling – whether via PF or 

some other method – to truly couple such effects even to the scale bridging via the kinetic Monte Carlo modeling. 

Therefore the software is useful now or as-is for specific instances of solidification such as directional solidification 

and hybrid PF Monte Carlo solidification [122], [123], and for limited/approximate modeling of welding and 

additive manufacturing [119], [124], [125], [126], [127]. 



 

46 
 

 
Figure 38: Grain growth and cellular structures are evident from the PF-MC solidification hybrid model [123].  Reprinted from 

E. R. Homer, V. Tikare, and E. A. Holm, “Hybrid Potts-phase field model for coupled microstructural–compositional evolution,” 

Computational Materials Science, vol. 69, pp. 414–423, Mar. 2013, doi: 10.1016/j.commatsci.2012.11.056 with permission from 

Elsevier. 

Still, even the available software modules are limited in scope. For example, directional solidification is performed 

via a temperature or mobility gradient yet is limited to a single chemical species and only for those conditions. 

Welding modules relying on Potts Monte Carlo methods (and variations) also limit to a single chemical species and 

include no other boundary applied forces (gravity for instance), externally introduced mass (filler wire for example), 

or externally applied thermal or pressure and their gradients. The Additive Manufacturing Modules (Figure 39), 

however, have seen extensive modification by NASA scientists and have been applied to various complex super-

alloys terrestrial AM [127] .  A similar coupling approach for welding and directional solidification incorporating 

more detailed PF is now being sought. 

https://doi.org/10.1016/j.commatsci.2012.11.056
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Figure 39: Additive Manufacturing (AM) Laser Powder Bed Fusion (L-PBF) is modeled with experimental and simulated results 

compared. [127].  Figure from T. M. Rodgers, J. D. Madison, and V. Tikare, “Simulation of metal additive manufacturing 

microstructures using kinetic Monte Carlo” licensed under CC BY 4.0. 

Crystal plasticity 

Mesoscale (polycrystalline) plasticity models simulate the mechanical behavior of metallic materials with explicit 

representation of grain geometries and additional microstructural descriptors. Key micromechanical modeling tools 

in the ICME research community for polycrystals include molecular dynamics, discrete dislocation dynamics, 

continuum dislocation dynamics and crystal plasticity, where each method balances computational cost with the 

incorporation of the highest fidelity physics possible for the primary deformation mechanisms of interest. 

Crystal plasticity is one of the most widespread of these mesoscale modeling techniques and has demonstrated great 

success in capturing the effects of microscale phenomena while retaining the ability for one-to-one comparison to a 

vast set of experimental work performed at the same length and time scales. It has excellent versatility in simulating 

complex loading states, such as tensile, multi-axial, creep, and fatigue, over a range of thermal and corrosive 

environments [115], [128].  Crystal plasticity models determine the 3D micromechanical response by accounting for 

(either implicitly or explicitly) grain geometries, crystallographic orientations, phase content and evolution, 

annealing and deformation twinning, grain boundary motion, porosity configurations, surface roughness, crack 

nucleation and propagation phenomena, and more. Most of these features are either derived directly from mesoscale 

process simulations, e.g. from solidification modeling, [129] or measured from a combination of 2D and 3D 

characterization techniques, e.g. from electron backscatter diffraction and X-ray computed tomography. A typical 

example of output from a crystal plasticity simulation is provided in Figure 40 to demonstrate how the precise grain 

configuration and grain attributes play a critical role in the localization of mechanical fields, leading to precursors 

for crack nucleation events. From this example, it is observed that the accurate simulation of the polycrystalline 

microstructure through multi-scale process modeling pipelines, i.e. molecular dynamics to dendritic growth to 

solidification models, is critical for achieving accurate performance predictions from crystal plasticity simulations. 

https://doi.org/10.1016/j.commatsci.2017.03.053
https://doi.org/10.1016/j.commatsci.2017.03.053
https://creativecommons.org/licenses/by/4.0/
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Figure 40: Crystal plasticity simulation results of (a) a polycrystalline microstructure with randomly assigned grain IDs loaded 

under uniaxial tension to demonstrate representative (b) normal stress fields and (c) plastic strain fields. 

Depending on the computational resources available and the fidelity of the underlying material behavior desired, 

state-of-the-art crystal plasticity modeling can solve for the local micromechanical behavior of 3D microstructures 

that contain thousands of grains (millimeter scale), using finite element or spectral numerical methods [130], [131]. 

Out of numerous crystal plasticity codes, examples include that from Los Alamos National Laboratory using 

spectral solution methods [132] and that from NASA/LaRC that is an internal crystal plasticity finite element 

software such as the SCalable Implementation of Finite Elements by NASA (ScIFEN) [133].  There is a vast and 

active domain of research using crystal plasticity to bridge mesoscale microstructural information to higher 

macroscale (component / structural scale) simulations. The multi-scale approaches are typically categorized under 

the field of computational homogenization and use a combination of physics constraints and machine learning to 

upscale material behavior. Some examples of computational homogenization techniques include reduced order 

modeling, asymptotic homogenization methods, hierarchical methods, and concurrent modeling [134], [135]. This 

final homogenization stage completes the full multi-scale modeling pipeline to translate the rich information of the 

microstructural scale to relevant performance predictions of components in application. 

4.2. BPS role in future 

There are several NASA Centers with interest and experience towards the discussed aims of materials 

characterization modeling as well as, for instance, weld predictive modeling with an interest in microgravity and 

vacuum environments. For example, NASA/LaRC has extensively used SPPARKS for additive manufacturing 

simulations while NASA/MSFC is pursuing its use for welding simulations. Supporting flight experiments or 

experiments-of-opportunity and their analyses that include microstructural & mesostructural investigations will 

provide validation datasets to perform V&V on these types of models, especially those with high solidification rates 

such as AM and welding. 

 

5. Uncertainty quantification 

Successfully bridging length-scales also requires uncertainty quantification (UQ) in the models and their inputs, 

associated experiments, and model linkages. There are two major categories of uncertainty as applied to modeling 

and simulation: epistemic – associated with lack of knowledge or limited data for specifying model parameters, 

form, etc. – and aleatoric – associated with inherent randomness or natural variability [136].  Recent studies on UQ 

[78,79] show the need for an acknowledgement of both sources of variability. Uncertainty in model inputs (e.g. 

parameters of an interatomic potential) is often significant and can be quantified using probabilistic calibration 

approaches [80]. Also helpful is to vary model inputs and physical parameters to observe the impact of propagation 

of uncertainty and identify key parameter interrelationships. This guides prioritization of subsequent validation 

testing. Properties obtained by such numerical prediction may vary based on technique chosen – computational 
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thermodynamics or molecular dynamic simulation, for instance – and inherent randomness, which may be difficult 

to deconvolute. Property and other predictions need experimental validation, which introduces its own set of 

uncertainties that are reducible if carefully controlled but ultimately unavoidable. Figure 4 shows how different 

computational methods differ amongst themselves and against experimental results. Model linkages are a particular 

concern for uncertainty: assumptions must be made to homogenize material behavior across length- and timescales, 

resulting in uncertainty and model discrepancies [81]. Propagating this input uncertainty through the simulations 

using sampling methods enables model validation and sensitivity analysis, which cannot be accomplished using only 

best-fit parameters [82]. Finally, multi-fidelity UQ approaches can be useful for propagating uncertainty through 

high-fidelity ICME models, which are often computationally expensive. By including uncertainty in model 

predictive capability, appreciation of the potential for a range of possible outcomes allows process designers to 

quantify margins of safety and better assess reliability. Thus, models may find increasing use for real-world design 

and performance predictions, infusing into not only in-space sustainability as with the MATRICES campaign, but 

also industrial manufacturing optimization and development on Earth.  

 

5.1. Typical UQ tasks 

Common UQ tasks that will be useful for ICME models relevant to BPS include probabilistic calibration, 

uncertainty propagation, multi-fidelity UQ, and sensitivity analysis. 

Probabilistic calibration generally involves solving an inverse problem for the probability density function of a set of 

input parameters given experimental measurements (i.e. the posterior distribution for the input parameters). The 

inverse problem is posed by Bayes’ rule and is typically solved using Markov chain Monte Carlo, which produces 

samples from the posterior distribution. Implementations include PyMC [101] and the NASA/LaRC developed 

Sequential Monte Carlo with Python (SMCPy) [137].  Alternatively, likelihood-free inference (also known as 

simulation-based inference) methods are available for estimating the posterior in cases where a model is inherently 

stochastic [138] , such as kinetic Monte Carlo-based solidification models. For models that are expensive to sample 

from, which is common in ICME, surrogate models (e.g., machine learning models built using a library like 

PyTorch [103]) can be used in the calibration procedure. 

The workhorse method for uncertainty propagation is Monte Carlo simulation, in which simulations are completed 

with many samples from uncertain input parameters to build up distributions on one or more output quantities of 

interest (QoIs). Computational expense is again a significant concern and can be mitigated by using a more efficient 

surrogate model.  However, surrogate models are less accurate than their high-fidelity counterparts, giving rise to 

multi-fidelity strategies that seek to balance the accuracy of high-fidelity models with the efficiency of low-fidelity 

models [139]. Dakota [102], a package developed by Sandia National Laboratories, includes both surrogate model 

training capabilities and multi-fidelity optimization. NASA/LaRC-developed Multi-model Monte Carlo with Python 

(MXMCPy) includes implementations of several multi-fidelity optimization strategies with an arbitrary number of 

models and QoIs [140]. 

 

Sensitivity study using PRISMS-PF (2D) and DSI-R parameters 

A sensitivity analysis (SA) involves determining the most important input parameters to a model based on their 

influence on an output QoI. Local sensitivity analysis (LSA) methods are typically derivative-based and provide a 

deterministic measure of the influence of fluctuations around nominal input values [141]. Recently, LSA has been 

applied to a model of the columnar-to-equiaxed transition of an additively manufactured nickel-based superalloy 

[142]. On the other hand, global sensitivity analysis (GSA) methods are probabilistic and consider how the statistical 

distribution of each input parameter relates to a QoI distribution [141]. The QoI distribution is estimated by running 

the model with many input samples, like Monte Carlo simulation. The outputs are values like Sobol’ indices that 

relate summary statistics for the QoI and the inputs. Several GSA methods are implemented in the Python package 

SALib [143], [144].  Example results for GSA carried out for an analytical solidification model are shown in Figure 

41. 
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Figure 41: First-order Sobol’ indices with uncertainty bounds (red lines) for the absolute stability limit in solidification of an 

aluminum-Mo alloy. The stability limit is found to be most sensitive to the Mo partition coefficient, kMo [145]. Used with 

permission. 

Output QoIs for PF models like PRISMS-PF include primary and secondary dendrite morphology and spacing. SA 

would involve linking variations in these QoIs to variations in input parameters, including interfacial energy, 

thermophysical properties, and interface thickness. In the case of directional solidification, which is relevant to 

additive manufacturing, the thermal gradient and cooling rate can also be considered. LSA would require point 

estimates of each input, as well as a method for calculating appropriate perturbations. On the other hand, GSA 

would require distributions on the inputs determined from, for example, domain knowledge or a calibration 

procedure. A benefit of GSA is that the results can be used to target parameters for probabilistic calibration if they 

cause substantial uncertainty in the QoI estimates. The GSA can then be repeated with new posterior distributions on 

one or more parameters. However, before drawing quantitative conclusions from a PF SA, the model discrepancy 

issues addressed in previous sections should be more deeply understood. 

 

Directed acyclic graphs 

Directed acyclic graphs (DAGs) can be used to understand and visualize how uncertainty is characterized at 

different points and through a system [146], [147] and have been previously applied to materials science [148].  

Examples are shown below for how a PF model using DECLIC-DSI-R-like parameters would be set up (Figure 42) 

and for overall uncertainty flow through a scale bridged system (Figure 43). 
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Figure 42: A notional directed acyclic graph for uncertainties in a PF model of dendritic solidification. 

 
Figure 43: A notional directed acyclic graph showing uncertainty propagation for laser powder bed fusion from processing to 

mechanical properties. 

CALPHAD as an example of a technique requiring UQ 

Receiving more attention in the literature recently is UQ for CALPHAD techniques. While CALPHAD software 

often outputs phase diagram with defined lines and materials constants without uncertainty reported, this is 

ostensibly an incomplete understanding of the results from the method. Instead, recent work by CHiMaD and 
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NASA/JPL [149], [150] demonstrates, as in Figure 44, how uncertainty is truly present in CALPHAD results – for 

example, phase diagrams contain inherent uncertainty expressed graphically as “fuzziness” along the phase 

boundaries.  Expressing such uncertainty reinforces the need for more accurate and precise thermophysical 

properties measurements and modeling, which can reduce the uncertainty in CALPHAD results and thus reduce the 

uncertainty propagated to longer length scales. 

 

 
Figure 44: Probability map of the aluminum-Zn phase diagram based on likelihood of the FCC phase existing, where light 

represents likely and dark represents unlikely [150].  Reprinted from R. Otis, “Uncertainty reduction and quantification in 

computational thermodynamics,” Computational Materials Science, vol. 212, p. 111590, Sep. 2022, doi: 

10.1016/j.commatsci.2022.111590 with permission from Elsevier. 

5.2. Future and BPS role 

Modeling methods & tools across multiple length scales require quantification and reduction in uncertainty. BPS-

funded flight experiments, both historical and current, can provide the benchmark datasets useful to not only reduce 

uncertainty in inputs to models but also the reduce the uncertainty in the models themselves by providing anchoring 

data points to refine model assumptions, formulations, and parameters. Two examples are now provided to indicate 

the value of thermophysical property measurements and solidification experiments to uncertainty quantification & 

reduction for ICME, which BPS historical and current datasets can support. 

 

6. Conclusion: accomplishments, finding, and recommendations 

This study was a beginning, necessarily limited by labor and time, and does not address all possible avenues or 

methods. The focused work is meant to convey a sense of what is and what can be done provided sufficient 

attention, effort, funding, and time. Despite these limitations, this study group was able to: 

• explore the motivation for BPS to continue engagement within the ICME community with a focus on 

thermophysical properties and solidification dynamics in microgravity 

• identify several experimental benchmark cases to compare modeling results against 

• identify relevant modeling tools 

• engage with the developers of such tools 

https://doi.org/10.1016/j.commatsci.2022.111590
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• investigate required computing architectures and resources 

• outline the means and necessity of uncertainty quantification and reduction 

• discuss how thermophysical properties and solidification simulations are situated within the ICME 

ecosystem, and 

• indicate how scale bridging using thermodynamical and mesoscale plasticity models offers a route to full-up 

computational simulation of realistic materials. 

Initial results from comparisons of research and community PF codes along with their performance on various 

architectures have also been shared. This shows that a synergistic approach using computational methods combined 

with experimental validation provides valuable information on quantification of statistical variability in model 

predictions, thus reducing risk and assessing safety margins. This uncertainty reduction in both model inputs and 

modeling tools themselves will bring BPS-supported ICME datasets and models from investigational science to 

practical use in in-space exploration sustainability as with the MATRICES campaign and in industrial 

manufacturing on Earth. 

 

6.1. Accomplishments arising from this study group 

1. Convened experts from academia, Agency, & industry; across all length scales from atomistic to macroscale; 

computational and experimental backgrounds 

This study converged experts from academia (Northeastern, Northwestern, and Tufts University), from the Agency 

(LaRC and MSFC), and industry (CFDRC). Experimentalists and modelers from the atomistic (thermophysical 

property measurements, density functional theory/DFT, etc.) to microscale (solidification, fluid coupling) to 

mesoscale (crystal plasticity) and more (calculation of phase diagrams/CALPHAD, uncertainty quantification, etc.) 

contributed to the technical content and recommendations. While not exhaustive, this represented a broad swathe of 

BPS-relevant experience and expertise in microgravity materials science and was suited to provide an overview of 

the ICME state-of-play and future path with respect to BPS. 

 

2. Produced the present survey report describing flight experiments and BPS unique capabilities & role in the 

broader ICME context 

In fiscal year 2023 (September 2023), a survey report highlighting several microgravity materials science 

experiments and computational tools relevant to ICME was released internally to BPS. The experiments reviewed 

were both heritage and current BPS-funded and BPS-relevant studies, mostly focused on solidification to 

demonstrate the need for benchmark experiments that provide validation datasets for those computational models. 

The computational tools reviewed included both BPS-supported academic, research codes and community, open-

source codes. This survey report formed the basis for this final report. 

 

3. Exercised BPS-supported academic research codes against BPS flight datasets and benchmarked against 

open-source or commercial codes widely used in ICME community 

As extensively detailed in Section 3.2, BPS-supported academic research solidification codes using the PF method – 

previously validated against datasets from microgravity materials science flight experiments – were compared to 

two commonly used community open-source codes.  The influences of differing code architecture (PRISMS-PF) and 

mathematical formulation (MOOSE) were shown, with the need for parameters taken from flight experiments and 

opportunities for future development indicated. Additional comparisons of academic research codes, community 

open-source codes, and validation datasets derived from flight experiments were briefly conducted for 

thermophysical properties in Section 2.2 and for fluid dynamics during solidification in Section 3.2. 

 

4. Interacted with developers of open-source codes (PRISMS-PF, MOOSE); yielded extensions of codes – 

alternate formulations that support validation datasets, treadmill simulation, and 3-dimensional capability 

Several of the academic and industry researchers in this study group leveraged their collegial relationships with the 

developers of two community, open-source PF codes, MOOSE and PRISMS-PF, to compare those codes against 

BPS-supported academic research codes and to benchmark against validation datasets from flight experiments 
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(Section 3.2).  Beyond demonstrating the ability of community, open-source codes to converge with BPS-supported 

academic research codes, these interactions resulted in definite enhancements to said community, open-source 

codes. The MOOSE developers are looking to implement the dilute alloy solidification approach of Echebarria et al. 

[53] in addition to their existing Grand Potential formulation, which would enable more straightforward comparison 

with GPU-PF and PRISMS-PF.  The PRISMS-PF developers were able to achieve convergence of their 3-

dimensional version with GPU-PF, demonstrating the utility of BPS support of such PF codes for solidification 

modeling. Further interaction with the PRISMS-PF developers resulted in the addition of a treadmill mode, easing 

comparison with GPU-PF and other PF codes. 

 

5. Implemented PRISMS-PF (CPU-bound) and GPU-PF (GPU-bound) on NASA supercomputer 

As detailed in Section 3.2, the NASA Advanced Supercomputing (NAS) facility available through the NASA High-

End Computing Capability Portfolio has both CPU and GPU compute resources available.  Through an out-of-cycle 

allocation sponsored by the NASA Science Mission Directorate, the study group ran academic research codes (DNN 

and GPU-PF) and community, open-source codes (PRISMS-PF) on NAS hardware. 

 

6.2. Findings 

1. BPS datasets are foundational anchoring/benchmark datasets used to validate modeling efforts 

The accomplishments would not have been feasible without validation datasets from microgravity materials science 

flight experiments. Thermophysical properties measurements and dendritic solidification experiments anchored 

computational models, while similar efforts are possible for coarsening, columnar-to-equiaxed transition, etc. The 

repository of high-quality microgravity materials science datasets supported by BPS and stored in PSI is an 

unparalleled resource for validating computational models now and into the future. 

 

2. Interaction with code developers using BPS/microgravity datasets for validation is critical for continued 

progress 

Within a few months, this study group had a substantial impact on enhancing and validating community, open-

source codes such as MOOSE and PRISMS-PF. Besides making the validation datasets available, the two-way 

communication between code developer and scientific experts was necessary for rapidly iterating and demonstrating 

these new capabilities and validations. Understanding both the computational and experimental aspects of ICME is 

required to make best use of the flight experimental datasets and expertise that BPS supports. 

 

3. Generation of useful meso/macro-scale property models via scale bridging requires accurate, precise 

thermophysical properties and solidification- & fluids-coupled data & models emphasized by the 

microgravity environment 

As shown most acutely by a directed acyclic graph (Figure 43), longer length scale and higher order models depend 

on lower length scale models and data. Thus, any errors or uncertainties in the lower length scales will propagate up 

to the longer length scales, potentially invalidating them or causing a lack of convergence. Refining lower length 

scale data and models is thus needed to fully implement the highest fidelity property and performance models. 

Fortunately, the microgravity environment provides an ideal setting to perform such experiments and thus to provide 

validation datasets for more accurate and precise models.  

 

4. Computational infrastructure is rapidly evolving from CPU-bound to GPU, increasing throughput and 

enabling increasingly useful modeling efforts. 

The implementation of GPU-PF and PRISMS-PF on NAS hardware demonstrates that such codes can take 

advantage of world-class supercomputing resources, especially that of rapidly advancing GPU resources. Currently, 

multi-GPU academic research codes used to model BPS datasets have been developed for a single compute node, 

limiting the number of GPUs used. For example, the NASA Advanced Supercomputing facilities recently added the 

Cabeus cluster of one hundred Nvidia A100 GPUs which has either four or eight GPUs per node. If such multi-GPU 
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codes could run on multiple compute nodes, then this could enable simulating entire sample volumes or substantially 

increasing throughput. 

 

5. Models can be made relevant to industry by reducing and reporting uncertainty 

Uncertainty quantification requires knowledge of both the accuracy and precision of relevant model inputs and 

parameters, the identification of which requires flight experimental data. The same data can also validate said 

models. Once industry can be assured that a model is reliable and its uncertainty properly constrained, then it will be 

more straightforward for them to make greater use of ICME tools to enhance their productivity and to mitigate risk. 

 

6.3. Recommendations 

RECOMMENDATION 1: Accelerate flight experiments to collect critical validation datasets to: 

RECOMMENDATION 1.A: Quantify and drive down uncertainty in inputs and models for 

engineering-relevant data to: 

Perform validation assessments of specific computational models using available flight datasets, identifying gaps in 

said datasets and models. Follow-on work to identify where validation datasets are incomplete or could be improved 

will identify which flight experiments are most needed to provide anchoring data for computational models. The 

validation assessment is not a new process in the broader world of computational models & engineering; 

computational fluid dynamics formalized the process with the 1998 AIAA G-077 report [151] and NASA employs 

verification & validation processes through NASA-STD-7009 [152].  What is new would be the rigorous 

applications of these validation assessment to microgravity materials science, highlighting which gaps are most 

salient on a model-by-model and length-scale basis. 

Specific to the BPS flight experiments described in this report, a combined theoretical-computational effort 

reviewing the results of previous experiments in coarsening, columnar-to-equiaxed transition, directional 

solidification, and measurement of thermophysical properties would yield a more precise understanding of 

remaining unknowns and uncertainties shown by these solidification and microstructural experiments. A similar 

effort could be made for thermophysical property models and experiments. 

Conduct materials property and processing experiments unique to microgravity to collect validation datasets. Based 

on gaps identified in validation assessment, flight experiments can be developed and flown to collect the relevant 

data to be incorporated back into computational modeling efforts. 

Enable progression of experiments from ground to parabolic to suborbital to on-orbit. At each step of increasing 

complexity and effort, the most representative data can be collected to ensure that computational models can 

properly incorporate said data. The fundamental materials science mechanisms involved can be finely tuned by each 

successive level of experimentation. 

Validate materials property and processing computational and theoretical models. These new flight datasets based 

on specifically identified and well-defined gaps would be invaluable to achieving greater levels of model validation 

and thus confidence in their ability to represent materials processes, finally enabling a virtual toolbox to design and 

predict materials performance across all length scales. 

 

RECOMMENDATION 1.B: Champion “Can Do” science with existing ground and flight facilities 

and hardware 

To maximize scientific output from the rapidly closing window of opportunity for microgravity materials science on 

the ISS, BPS should implement an aggressive plan to use existing facilities and flight-qualified equipment to close 

discrete, clear gaps in the materials science domain indicated by previous experimentation. First, these gaps must be 

identified by the validation assessment of RECOMMENDATION 1.A.  Then the currently available experimental 

resources can be mapped with gap closures. This activity is an ideal follow-on for the present study.  
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RECOMMENDATION 1.C: Investigate rapid solidification, concentrated alloys, multicomponent 

engineering alloys, etc. to close science gaps and reduce uncertainty via anchoring datasets 

Substantial work in microgravity materials science has focused on slow solidification rates and reduced order (e.g. 

binary) alloys or alloy analogues because this heightens the impact of the reduced gravity environment and 

simplifies analysis, respectively. Such experiments have provided valuable datasets for regimes that cannot be 

accessed out of the nearly quiescent microgravity environment. However, emerging processes such as wire-fed in-

space additive manufacturing and in-space welding that involve rapid solidification now deserve further study. 

Additionally, complex, industrially relevant alloy systems like aluminum 2219 instead of an aluminum-copper 

binary are of increasing interest. These unique problems of rapid solidification and complex alloys are being 

computationally tractable, highlighting the need for validation datasets that could be provided by future flight 

experiments. 

 

RECOMMENDATION 1.D: Engage with STMD and ESDMD to identify "experiments of 

opportunity” and ensure proper instrumentation for validation dataset collection 

Upcoming laser beam welding flight experiments funded by MSFC and STMD are presently targeting complex, 

engineering alloys to achieve technology demonstration goals.  However, stretch goals for these flight campaigns 

could also see welds performed on reduced order, binary and ternary, alloys suitable for validation datasets 

incorporating both thermophysical properties and solidification dynamics. Other upcoming experiments supported 

by STMD, ESDMD, or even other government agencies (OGAs) could be methods to collect validation datasets 

provided the experiments are properly instrumented. Thus, BPS ICME could invest in instrumentation development 

and data analysis complementary to these already funded experimental efforts. 

 

RECOMMENDATION 1.E: Identify facilities requirements for future experimental platforms (i.e. 

CLDs) 

Future microgravity experimental platforms such as commercial low Earth orbit (LEO) destinations (CLDs) may be 

routes to perform microgravity materials science after ISS retirement. As their designs and timeframes are in flux, 

specific investigations cannot yet be selected or even recommended. However, BPS should be aware of the 

capabilities planned by these platforms and share previous workshop reports & recommendations [153]. However, 

this should not divert attention or resources from the closing window of opportunity to perform “can do” science 

using existing flight facilities as described in RECOMMENDATION 1.B. 

 

RECOMMENDATION 2: Invest in human capital and computational resources by: 

RECOMMENDATION 2.A: Contributing to and leveraging open-source codes 

BPS should continue engagement with open-source computational tool developers. During this report, examples of 

successful engagement included MOOSE and PRISMS-PF for PF solidification studies. Considering the newly 

established authority of NASA to contribute to open-source projects2, BPS should encourage civil servants, 

contractors, and grantees to engage with and even contribute to open-source computational tools relevant to 

microgravity materials science. One specific means of engagement is performing simulation verification and 

validation using BPS flight datasets and BPS-supported research codes as was done during this report. 

 

RECOMMENDATION 2.B: Becoming a visible and trusted partner in the ICME community 

Beyond engaging with open-source computational tools, BPS should pursue consistent, sustainable engagement with 

the broader ICME community. As part of the MATRICES research campaign, ICME applied to microgravity 

materials science can be integral to answering the Decadal Survey’s Key Scientific Questions. Engagement should 

be both internal and external to the Agency (such as with other governmental agencies and non-governmental 

 

 
2 NPR 2210.1E - Chapter3 (nasa.gov) 

https://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_2210_001E_&page_name=Chapter3
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entities). For example, both LaRC and MSFC were heavily involved in this report. However, the well-established 

groups performing ICME work at Ames Research Center and Glenn Research Center should be more involved in a 

broader, follow-on effort. NASA opportunities may, for example, include harmonizing with the EPSCoR Research 

Infrastructure Improvement program to ensure ICME researchers are eligible for such awards. The recommendation 

of Vision 2040 [2] for an inter-agency ICME technical working group is repeated with added urgency as the need 

for useful computational models of materials increases.  There is certainly a convergence of interests for ICME 

across the federal government, especially for additive manufacturing. For instance, the Department of Energy (DOE) 

has provided funding for PRISMS-PF. BPS could participate in a combined technical endeavor with the DOE, 

National Science Foundation, National Institute of Standards and Technology, and other interested parties, greatly 

advance ICME with BPS bringing valuable datasets, codes, and expertise.  The Materials Genome Initiative is on 

the vanguard of ICME-relevant computational materials research [154] and is one route to further connecting with 

the ICME community.  One early example of this is the Physical Science Informatics open-science database that 

publicly shares BPS flight datasets. 

 

RECOMMENDATION 2.C: Support the transition of legacy codes to modern architectures with 

enhanced capabilities and ease-of-maintenance (e.g. CPU-bound to GPU-bound, multi-GPU multi-

node) 

Evident from the example of GPU-PF and PRISMS-PF during this report is that the transition from CPU-bound to 

GPU-bound computation drastically increases model throughput and speed. This will be especially needed as model 

domains and dimensionality increase – going from two to three dimensions and from simulating a cluster of 

dendrites to substantial volumes approaching that of an entire sample cartridge. While current GPU-bound codes are 

limited to one compute node controlling multiple GPUs, further development could see such codes expanded to 

allow multiple compute nodes to each control multiple GPUs, leading to nearly unlimited scaling of throughput.  

BPS should actively support the development of atomistic, solidification, and mesoscale codes – whether academic 

or community – that yield computational models relevant to microgravity materials science and can be transition to 

multi-node, multi-GPU capabilities. 

 

RECOMMENDATION 2.D: Explore opportunities to employ cognitive (i.e. AI/ML) computing rather 

than traditional algorithmic (von Neumann) computing 

Section 2.2 in this report described the use of a physically informed neural network that used training datasets from 

computationally intensive models like DFT. BPS should consider how datasets from computation and flight 

experiments could be used to train artificially intelligent or machined learning models, which could reduce the time 

and expense associated with predicting materials properties and the like from these datasets.  However, BPS is not 

the lead on cognitive computing capabilities at NASA and will have to work in partnership with internal and 

external efforts to understand the benefits and drawbacks of this emerging technology. 

 

RECOMMENDATION 2.E: Support/mentor research teams across multiple academic partners and 

NASA Centers 

BPS should develop NRAs and other funding mechanisms to sustainably support and expand the BPS ICME 

community. This includes both internal and external research teams. One example already underway is the recruiting 

of a postdoctoral researcher funded by BPS through the NASA Postdoctoral Program. This postdoc will focus on 

exploring mesoscale (grain structure) models of welding, accounting for the unique space environment. 

 

These recommendations have been categorized in Table 3 by the level of engagement any BPS-associated ICME 

effort should consider according to those categories suggested in the most recent Decadal Survey [16].  BPS ICME 

should lead in direct, actionable fundamental materials science investigations (1.A, 1.B, and 1.C) and in supporting 

intermural & extramural ICME teams (2.E) to collect, analyze, and implement computational models based on 

collected flight datasets. BPS ICME should collaborate on experiments-of-opportunity with other NASA Mission 

Directorates (1.D) and on maturing the ICME ecosystem using BPS heritage codes and datasets (2.A, 2.B, and 2.C). 

BPS ICME should watch the development of cognitive computing (2.D), recognizing that it is a rapidly developing 

arena offering substantial opportunities for accelerating materials science. BPS ICME should also watch detailed 
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studies of future flight facilities, including commercial LEO destinations, until more certainty in their timeframe and 

capabilities becomes available. 

 
Table 3: Recommendations categorized by level of BPS engagement. 

Recommendation  Brief description Action 

1.A 
Validation assessment and conducting gap-closing 

fundamental microgravity material science 
Lead 

1.B “Can Do” science Lead 

1.C Next-generation materials science experiments Lead & Collaborate 

1.D Experiments-of-opportunity Collaborate 

1.E Future experimental platforms Watch 

2.A Leverage open-source codes Collaborate 

2.B Become visible partner in ICME community Collaborate 

2.C Transitioning and enhancing legacy codes Collaborate 

2.D Cognitive computing Watch 

2.E Support multi-partner, multi-Center research teams Lead 
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Supplementary material 

Further investigation is warranted as to the effect of differing compute architectures – including node CPU core 

count, interconnect bandwidth and speed, and memory bandwidth and speed – and operating parameters – including 

output options and complier optimizations – on code performance.  For example, on the NAS hardware, the 

PRISMS-PF simulation used OpenMPI (a distributed-memory paradigm) and was set to output restart checkpoint 

files at the beginning, halfway through the simulation, and at the end.  Solution files are written every 4,000 

timesteps for a total of fifty solution files.  The performance, as indicated by wall clock time, was substantially 

slower for the same CPU count than for the PRISMS-PF developers (compare Figure 45 to Figure 36).  As the 

PRIMS-PF developers did not output results files, this discrepancy was investigated by turning off file output for the 

NAS facility runs.  However, no substantial speedup was noticed, indicating that file transactions were not 

responsible for the difference.  The PRISMS-PF code was also run without adaptive meshing on the Northeastern 

University HPC Discovery Cluster in OpenMP (a shared-memory paradigm) using Intel Cascade Lake CPUs 

(Intel(R) Xeon(R) Platinum 8276 @ 2.20GHz) and yielded comparable execution wall times no matter the choice of 

file outputs as seen in Figure 45. The relative fraction of time taken up by file output did not vary with increasing 

CPU core count.  One possible explanation for the differences in execution times on various systems is the complier 

optimizations available and selected.  Re-compiling ICME tools for high-performance computing resources is not a 

straightforward task and our efforts have shown much variability.  Therefore, attention should be focused on 

understanding the aspects of compute architecture and model parameters that influence code performance. 

 

 
Figure 45: Influence of file output settings on PRISMS-PF performance using the Discovery Cluster. 

Attention should also be paid to how computing costs are charged.  For example, at NAS the cost per Standard 

Billing Unit (SBU) of the architecture in terms of node-hours is per node, not per CPU core.  The fastest CPU core 

architecture is not necessarily the best option.  For example, using sixteen cores of the Sandy Bridge architecture 

currently costs 0.105 SBUs.  Using sixteen cores of Cascade Lake costs 0.292 SBUs because the charge is as if the 

entire node was occupied; however, using the entire node (40 cores for Cascade Lake) only costs 0.128 SBUs as the 

simulation completes more quickly and releases the node sooner, limiting total charged time.  Using 128 cores of the 

AMD Rome node, meanwhile, costs 0.184 SBUs.  Consideration should be taken to placement for balancing cost 

and turn-around time.  For comparison, typical CFD simulations being currently conducted by NASA Marshall’s 

Fluid Dynamics Branch for the Artemis Program are routinely requiring upwards of 20,000 SBUs, five orders of 

magnitude greater than this benchmark.  Any ICME tools requiring high-performance computing should be 

cognizant not only of performance optimization but also of computing expense optimization. 

DSI-R parameters using PRISMS-PF: This case was run two ways to benchmark for time: (a) on four cores on a 

NASA issued laptop, and (b) on 40 cores on the NASA AMES supercomputer Pleiades.  A summary of timing can 

be seen in Table 4.  Note that there was only a 6.8x speedup for 10x the cores on a machine designed for fast-

250

350

450

550

650

750

4 8 16

W
al

l t
im

e 
[s

]

CPU core count

With output Without output



 

70 
 

running simulations.  This pointed toward some issues with implementation, but this was not further explored during 

this initial period of performance.  Simulations results were identical between the two computers. 

 
Table 4.  Benchmarking of PRISMS-PF example: laptop versus HPC. 

 
 

Table 5: Comparison of PRISMS-PF running on various NAS architectures and CPU core counts. 

Architecture Mode of Parallelism CPU Cores Elapsed Time [s] 

Sandy Bridge 

(0.47 SBU/node-hr) 

Simulation Cost=0.105 

SBUs 

MPI 1   

MPI 2   

MPI 4   

MPI 8 2260 

MPI 16 810 

OpenMP 16 1480 

Sandy Bridge 

(0.47 SBU/node-hr) 

MPI 2x16 463 

MPI 3x16 405 

Ivy Bridge 

(0.66 SBU/node-hr) 

Simulation Cost=0.105 

SBUs 

MPI 1   

MPI 2   

MPI 4 2940 

MPI 8 1820 

MPI 16 752 

MPI 20 576 

OpenMP 20 Not attempted 

Ivy Bridge 

(0.66 SBU/node-hr) 

MPI 2x20 346 

MPI 3x20 271 

Haswell 

(0.80 SBU/node-hr) 

Simulation Cost=0.106 

SBUs 

MPI 1   

MPI 2   

MPI 4 3330 

MPI 8 1920 

MPI 16 749 

MPI 24 480 

OpenMP 24 Not attempted 

Haswell 

(0.80 SBU/node-hr) 

MPI 2x24 301 

MPI 3x24 259 

Broadwell 

(1.00 SBU/node-hr) 

Simulation Cost=0.108 

SBUs 

MPI 1   

MPI 2   

MPI 4 2920 
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MPI 8 1290 

MPI 16 698 

MPI 28 392 

OpenMP 28 Not attempted 

Broadwell 

(1.00 SBU/node-hr) 

MPI 2x28 249 

MPI 3x28 228 

Skylake 

(1.59 SBU/node-hr) 

Simulation Cost=0.128 

SBUs 

MPI 1   

MPI 2   

MPI 4 2940 

MPI 8 1350 

MPI 16 709 

MPI 32 372 

MPI 40 292 

OpenMP 40 Not attempted 

Skylake 

(1.59 SBU/node-hr) 

MPI 2x40 191 

MPI 3x40 160 

Cascade Lake 

(1.64 SBU/node-hr) 

Simulation Cost=0.128 

SBUs 

MPI 1   

MPI 2   

MPI 4 2190 

MPI 8 1030 

MPI 16 641 

MPI 32 356 

MPI 40 281 

OpenMP 40 Not attempted 

Cascade Lake 

(1.64 SBU/node-hr) 

MPI 2x40 181 

MPI 3x40 140 

AMD Rome 

(4.06 SBU/node-hr) 

Simulation Cost=0.184 

SBUs 

MPI 1   

MPI 2   

MPI 4   

MPI 8   

MPI 16 1120 

MPI 32 379 

MPI 64 221 

MPI 128 164 

OpenMP 128 VERY SLOW-Aborted 
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Table 6.  PRISMS-PF computational parameters for solidification example. 

 
 
 

Table 7.  PRISMS-PF material parameters for solidification example. 
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