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ROBUST TRAJECTORY OPTIMIZATION FOR NRHO
RENDEZVOUS USING SPICE KERNEL RELATIVE MOTION

David A. Cunningham*, Ryan P. Russell†, and David C. Woffinden‡

In this paper, robust optimization is performed on trajectory correction maneuvers
during the lunar lander return phase of an Artemis mission, treating the trajectory
from one hour after low lunar orbit departure to arrival in the vicinity of the lunar
Gateway as a relative motion problem. To enable rapid stochastic optimization
techniques requiring many candidate trajectories, SPICE kernel relative motion
as implemented by the Quadratic Interpolated State Transition (QIST) system is
used as the underlying dynamics propagation. The optimization is performed with
a genetic optimizer using linear covariance (LinCov) software in a simplified op-
erational context, taking into account the availability of navigation sensors with
varying measurement models, ranges, and accuracies. No numerical integration is
used, since the relative motion around Gateway is fully characterized with the a
priori computation of the QIST coefficients. Maneuver placements are computed
to optimize the minimum 3σ delta-v of the trajectory, the position dispersion at a
target point, and a convex combination of these two metrics. An order of mag-
nitude runtime improvement is provided over legacy methods with less than 10%
error introduced. All QIST results are shown to be in-family with legacy methods.
The tradespace for optimal delta-v design is found to range from 77.0 to 93.9 m/s,
while the range of optimal dispersion is between 1.4 and 11.7 km.

INTRODUCTION

The goal of the present research is to demonstrate the utility of nonlinear relative motion model-
ing for the solution of operationally representative robust nonlinear optimization problems. Since at
least the foundational work of Pitkin in 1966, higher order partials of the dynamical flow around an
orbit have been recognized to have utility for a range of spaceflight problems.1 Although mathemat-
ical techniques outside the traditional engineering curriculum can be required for keeping track of
higher order partials of the dynamical flow, the theoretical, methodological groundwork for the use
of state transition tensors (STTs) was further advanced after Park’s doctoral work in 2007.2 How-
ever, recent developments have focused on improving the feasibility of using second- and higher-
order solutions in practice, as the curse of dimensionality plagues these techniques with slowed
integration times and increased memory demands.3–6 The distinctive feature of the Quadratic In-
terpolated State Transition (QIST) model is that a minimum necessary set of the STTs needed to
compute arbitrary motion between any two times are computed once and interpolated. The resulting
motion model is relative to a reference trajectory provided in a SPICE kernel, using a generalized
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dynamics model incorporating a wide range of gravitational perturbations.7 It is possible to use
QIST for targeting in at least two modes: first, a target spacecraft’s trajectory can be used as the ref-
erence kernel. A chaser spacecraft’s trajectory is then computed, targeted, and/or optimized relative
to the target. This first mode represents a relative motion problem and is the one used here. Ad-
ditionally, a QIST model can be used to compute, target, and/or optimize updates to the trajectory
stored within the kernel itself, treating the relative trajectories computed by QIST as alternatives to
the reference. This mode is similar to a higher-order extension of the Generalized Reference Target-
ing paradigm.8 Of course, the region of validity is limited in both modes to the region of quadratic
convergence around the original reference trajectory.

Navigation errors, disturbance accelerations, burn execution biases and misalignments, and orbit
insertion dispersions, are only a few examples of the host of uncertainty sources affecting a space
mission. Incorparating this uncertainty into the design of a trajectory profile to make it robust to
unknown perturbations is becoming more feasible, particularly with the maturation of linear covari-
ance analysis (LinCov)9, 10 for closed-loop GN&C systems. LinCov is an analytic technique for
predicting stochastic behavior of dynamical systems. Previous studies interfaced a genetic algo-
rithm (GA) with a linear covariance analysis tool to provide the initial demonstration of applying
this non-traditional approach to robust trajectory optimization. These robust trajectory design tech-
niques were originally developed for rendezvous applications in low Earth orbit.11 It was then
extended to cislunar outbound trajectories to a Near Rectilinear Halo Orbit (NRHO)12 and intro-
duced for a simple rendezvous approach trajectory in the NRHO for mid-course correction place-
ment.13 Recently, these robust trajectory optimization principles have been applied to solve cislunar
transfers to low-lunar orbit,14 NRHO rendezvous and docking,15 angles-only navigation for NRHO
rendezvous,16 lunar powered descent and landing,17 along with Mars aerocapture18 problems. They
were also utilized to determine the optimized trajectory correction burn placement for the upcoming
Artemis II free-return cis-lunar trajectory profile19 and exercised to determine the optimized trajec-
tory correction burn placement for NRHO orbit maintenance anticipated for the Artemis III mis-
sion.20 Alternate robust trajectory optimization techniques that use a sweeping gradient method for
ordinary differential equations with events (SGM) have been demonstrated.21, 22 SGM is a method
for computing the gradient of trajectory analyses defined by performance indices over initial value
problems with events with respect to static parameters.23 A key to all these applications is having
a fast yet reliable method to generated the integrated GN&C performance data. QIST is introduced
here to provide this role for a wide spectrum of spaceflight missions.

The demonstrated problems in this paper include robust optimization scenarios that incorporate
the trajectory dispersion due to both measurement and process noise through LinCov techniques. In
particular, the return profile from the lunar surface to a Near Rectlinear Halo Orbit (NRHO) planned
for future Artemis missions is modeled starting from one hour after the low lunar orbit departure
(LLOD) burn to docking with a target vehicle representing the Gateway (GW), all in a relative mo-
tion context. First, the validity region of the QIST model in this scenario is examined. Second,
a baseline trajectory including maneuver, covariance, and dispersion data is presented. Next, the
optimization of trajectory correction maneuvers (TCMs) along this trajectory is performed with re-
spect to two objective functions: Minimum maneuver magnitude only and minimum dispersion at
a target point only. Finally, optimization with respect to objective functions consisting of convex
combinations of maneuver magnitude and minimum dispersion are considered, and the sensitivity
of the optimal trajectory to the objective function is examined. the primary contribution to the liter-
ature is the use of a kernel-referenced nonlinear relative motion model to perform robust trajectory
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optimization in an operationally relevant context.

PROBLEM DESCRIPTION

After departing the surface of the Moon, Artemis astronauts in the human landing system (HLS)
will return to a low lunar orbit (LLO). The Orion vehicle for returning to Earth will be in a near-
rectilinear halo orbit (NRHO), specified by NASA.24 The HLS will depart the LLO to rendezvous
with the station, using one major LLOD maneuver and two optional mid-course TCMs to target an
NRHO insertion point (NRI) located at the coordinates

rNRI =
[
0 100 100

]T
km (1)

in the Gateway Sun-referenced local vertical-local horizontal (S-LVLH) frame. The TCMs are
nominally zero, so they are only carried out to correct trajectory errors introduced by LLOD or
unmodeled dynamics/process noise, or to incorporate navigation information obtained during the
pre-NRI phase. This operations concept is depicted in Fig. 1. The NRI point remains constant in

Figure 1. Nominal Lunar Departure Phase for Artemis with Optimization Domain in
Shaded Green Bar. Left: Earth-Moon synodic frame. Center: GW centered S-LVLH,
Y-Z plane. Right: GW centered S-LVLH, X-Z plane.

the S-LVLH frame regardless of the epoch of the scenario. Additionally, the time of arrival at NRI
is fixed by mission constraints to LLOD + 24 hours. Subsequent to NRI, a series of rendezvous and
proximity operations maneuvers will bring the HLS to docking with the Gateway. Since it occurs
so far from perilune and at small relative distances and velocities, the post-NRI flight phase is well
modeled by traditional linear relative motion methods. However, in the present study this part of the
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flight phase is still modeled to demonstrate that QIST enables the consideration of the entire flight
phase from shortly after LLOD in a single, unified dynamics framework.

Thus, the problem at hand is to design the two TCMs that will cause the HLS to arrive at NRI at
a pre-specified epoch minimizing both delta-v and navigation dispersion errors. The timing, magni-
tude, and direction of the two TCMs are free variables. Recall that propagation of the QIST relative
motion model across a ballistic segment is performed with a few vector-matrix-tensor operations in
lieu of an ODE solution method.25 Therefore, the QIST model of SPICE kernel relative motion pro-
vides the accuracy and speed necessary to carry out this optimization as part of the mission design
process.

Measurement Model

The GN&C system uses a simplified measurement model intended to be representative of real-
istic conditions, yet not overly cumbersome for the current purpose. All of the measurements are
relative between the HLS vehicle and Gateway. Four sensor types are modeled, with their properties
summarized in Table 1. The ground navigation derived relative position and velocity measurements

Table 1. Relative Measurement Types During HLS Return RPOD

Sensor Relative Min Max Measurement Measurement

Type Measurement Range Range Accuracy (σ) Interval (∆t)
Ground Position 400 km N/A 1167 m per axis 30 min

Navigation Velocity 400 km N/A 0.25 m/s per axis 30 min
S-band Range 0.5 km 400 km 16.7 m 60 sec

Communication Range-rate 0.5 km 400 0.167 m/s 60 sec
Camera LOS angles 0.1 km 200 km 0.025 deg per axis 60 sec
Lidar Position 0.0 km 2 km 10.0 m per axis 30 sec

are grouped into a relative state measurement. This group emulates a lower accuracy relative mea-
surement but they have a longer operational range to support the relative state estimation. The range
and range-rate measurements that represent a radio-based navigation system are in a group with a
reduced operational range but have increased accuracy. The LOS angle measurement modeling an
onboard optical navigation camera, compliments the S-band communication range and range-rate
data in this second group available at hundreds of kilometers. Lastly, the relative position mea-
surement from a Lidar provides the greatest accuracy but the range of operation is within several
kilometers. Fig. 1 b. shows the points at which the S-band communication and optical camera are
engaged.

Dynamics Model

The HLS dynamics are modeled using QIST.7 The force model captures the second order effects
of Moon, Earth, Sun, and Jupiter gravity including an 8× 8 spherical harmonics gravitational field.
As previously reported, QIST generates quadratic relative motion models based on a reference tra-
jectory relative to a SPICE kernel.7 In this case, the reference trajectory is the NASA Gateway
reference kernel.24 Two equations used by the QIST model are relevant for the purposes of the ro-
bust optimization considered here. First, the relative state δxa at a time ta is propagated to a relative
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state δxb at a time tb using a quadratic update

δxb = Φbaδxa +
1

2
δxT

aΦbaδxa (2)

where Φba and Φba are the state transition matrix (STM) and second order state transition tensor
(STT) of the Gateway dynamical flow between ta and tb. The STM and STT are obtained from
precomputed interpolation coefficients from the reference orbit, along with transformations to map
between two specific times. The tensor multiplication is a product over the last two indices of the
STT. Eq. 2 is used to propagate the nominal trajectory. Second, the covariance matrix of the relative
state P is propagated using

P (tb) = Ψba(δxa)P (ta)Ψ
T
ba(δxa) +Q (3)

where Q is a process noise matrix, constant in this model, and Ψba(δxa) is the STM of the relative
trajectory δx(t) computed using

Ψba(δxa) = Φba +Φbaδxa (4)

The quantity Ψba(δxa) is also used for linear maneuver targeting by LinCov. For greater depth on
the topic of kernel relative motion and STT models, the cited references provide full details.2, 7, 25

The process noise model is Gaussian, zero mean, and with covariance given by:

Q = qr

(∆t3

4

)
I3×3

(
∆t2

2

)
I3×3(

∆t2

2

)
I3×3 (∆t) I3×3

 (5)

where qr = 1.5× 10−7 m2/s3. Additionally, thruster firings are also subject to zero mean Gaussian
noise with covariance matrix:

S = sI3×3 (6)

where s = 0.044 m/s. The parameters qr and s were intended to be operationally representative of
a crewed vehicle with realistic thrusters.

Performance Metrics

To perform robust trajectory optimization on trajectory correction maneuvers during a lunar lan-
der return phase, several key performance metrics must be defined to objectively quantify acceptable
performance. These metrics are derived from four states illustrated in Figure 2. The first is the true
state x which is an n-dimensional vector that represents the real world environment or actual state.
The nominal state x̄ is another n-dimensional vector that represents the desired or reference state.
The navigation state x̂ is an n̂-dimensional vector (n̂ < n) that represents the filter’s estimated state.
The design state x, often assumed to be the true state, is used to design the onboard navigation filter.

The variations between these states constitute the actual performance metrics considered in this
analysis, also depicted in Figure 2. These include the true trajectory dispersions δx, the naviga-
tion dispersions δx̂, the true navigation error δe, and the onboard navigation error δê. The true
dispersions δx are defined as the difference between the true state x and the nominal state x̄. The
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Figure 2. GN&C performance metric variables

covariance matrix of the true dispersions, D, indicates how precisely a GN&C system can follow a
desired trajectory.

δx
∆
= x− x̄ D = E

[
δxδxT

]
(7)

The navigation dispersions δx̂ are defined as the difference between the navigation state x̂ and
the nominal state x̄. The covariance of the navigation dispersions, D̂, reflects how precisely the
onboard system thinks it can follow a prescribed reference trajectory.

δx̂
∆
= x̂−Mxx̄ D̂ = E

[
δx̂δx̂T

]
(8)

The matrix Mx is an (n̂× n) matrix that maps the estimated state in terms of the true and nominal
state. This matrix is necessary to account for the differences in vector length for x̂ and x̄.

The true navigation error δe is the difference between the true state and navigation state. It can
also be calculated using the difference between the true dispersions and navigation dispersions. The
covariance of the true navigation error, P, quantifies how precisely the onboard navigation system
can estimate the true state.

δe
∆
= Mxx− x̂ = Mxδx− δx̂ P = E

[
δeδeT

]
(9)

The onboard navigation error δê itself is never computed, but it is used to develop the onboard
navigation filter equations. It is defined as the difference between the design state, x, and the
navigation state x̂. The covariance of the onboard navigation error, P̂, quantifies how precisely
the onboard navigation system expects it can determine the actual state. The performance of the
onboard navigation system is determined by comparing P̂ to the actual navigation performance P.

δê
∆
= x− x̂ P̂ = E

[
δêδêT

]
(10)

If the true states and the design states are assumed to be the same (such as in this paper), then the
true navigation covariance will equal the onboard navigation covariance.

The covariance matrices of the true dispersions, navigation dispersions, true navigation error, and
the onboard navigation error are ultimately used to analyze and assess the performance of a proposed
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GN&C system. A common approach to obtain these performance metrics is to use a Monte Carlo
simulation outlined in Figure 3, where the sample statistics of hundreds or thousands of runs, N ,
are used to numerically compute the desired covariance matrices.

D =
1

N − 1

∑
δxδxT D̂ =

1

N − 1

∑
δx̂δx̂T P =

1

N − 1

∑
δeδeT (11)

The onboard navigation error covariance P̂ is the navigation filter covariance for each run. This

Figure 3. Extracting GN&C performance metrics using Monte Carlo techniques

same statistical information can be obtained using linear covariance analysis techniques. Linear
covariance analysis incorporates the non-linear system dynamics models and GN&C algorithms to
generate a nominal reference trajectory x̄ which is then used to propagate, update, and correct an
onboard navigation covariance matrix P̂ and an augmented state covariance matrix C,

C = E
[
δXδXT

]
(12)

where the augmented state δXT = [δxT δx̂T] consists of the true dispersions and the navigation
dispersions. Pre- and post-multiplying the augmented state covariance matrix by the following
mapping matrices, the covariance matrices of the trajectory dispersions, navigation dispersions, and
the navigation error can be obtained with a single simulation run.

D = [ In×n, 0n×n̂ ]C [ In×n, 0n×n̂ ]T

D̂ = [ 0n̂×n, In̂×n̂ ]C [ 0n̂×n, In̂×n̂ ]T (13)

P = [ In̂×n, −In̂×n̂ ]C [ In̂×n, −In̂×n̂ ]T

Eq. 2 and Eq. 3, along with LinCov analysis equations not summarized here, are used to propa-
gate, update, and correct the augmented state covariance matrix and the onboard navigation covari-
ance matrix. For a deeper analysis of the construction, development, and application of the LinCov
simulation, see the cited references.9, 10, 26–29
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Optimization Problem and Method

Consistent with previous research, a genetic algorithm (GA) is used in order to conduct the non-
linear optimization of the maneuvers. A GA is a type of optimization solver which employs evolu-
tionary processes to search a solution space.30 A population of candidates is generated, evaluated,
and based on their performance a new generation is created by combining and mutating them. Dur-
ing each iteration, candidate values of the optimization variables are passed to the LinCov simula-
tion, which is then evaluated to determine the values of the cost and penalty functions. The TCM
burns are error-correction burns, so the expected value of their magnitudes is defined to be zero,
i.e. no TCMs are required along the nominal trajectory. Thus, the optimization variables for this
problem are t1 and t2, the ignition time (tig) of the first and second TCMs. The objective functions
for optimization are a family of functions Jw : R2 × [0, 1] → [0,∞):

Jw(t1, t2) = J(t1, t2;w) = wnv∆v3σ(t1, t2) + (1− w)nd |δrNRI(t1, t2)| (14)

where ∆v3σ is the accumulated 3 standard deviation bound of delta-v across all maneuvers, ac-
counting for process and measurement noise in the LinCov model, δrNRI =

[
σxx σyy σzz

]T is
the position dispersion vector at NRI, nv and nd are velocity and dispersion normalizing parame-
ters, and w is a weighting parameter to indicate preference to give to either the burn magnitude or
position dispersion at NRI. In general, the optimization problem for a given value of w is:

minimize
t1, t2

Jw(t1, t2)

subject to t2 − t1 ≥ 1 hr

t1 − t0 ≥ 0

tf − t2 ≥ 1 hr.

In the case where w = 0 and only position dispersions are considered, the optimal time of the
TCMs is expected to move as close to NRI as possible to take maximum advantage of the more
accurate navigation information. On the other hand, when w = 1 and only the ∆v3σ is considered,
the optimal TCMs location is expected to move as close to LLOD as possible in order to achieve
the greatest change to the final state for a given amount of delta-v.

The GA process is summarized in Figure 4. For each of the optimization runs performed using

Figure 4. Functional relationship between the LinCov simulation and Genetic Algorithm.
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the genetic algorithm, a population size of 500 was selected along with a maximum generation of
200.

RESULTS

First, the QIST model is validated for the Artemis Lunar ascent rendezvous scenario. Next, the
edge cases for the optimization are shown, namely the delta-v optimal and NRI-dispersion optimal
trajectories are detailed. Finally, the weighting parameter w is varied from 0 to 1 and the behavior
of the optimal TCM locations is discussed.

Validity Region of QIST model

Since the optimization is performed entirely within the context of QIST dynamics, it is useful
to understand how accurately the QIST model replicates an HLS baseline trajectory numerically
integrated in an inertial ephemeris model. The force model used for both numerical integration and
QIST propagation of HLS trajectories is as close as possible to the model used for the Gateway
reference kernel, i. e. it includes the Keplerian gravitational influence of the Moon, Earth, Sun, and
Jupiter Barycenter along with an 8× 8 spherical harmonics gravity model based on GRAIL data.24

From the baseline HLS state at the NRI point, the QIST trajectory is propagated backwards in
time using both a linear and a quadratic propagation step. Disagreement between the baseline and
QIST propagated position and velocity are normalized by their baseline values and plotted as a
function of time in Fig. 5. The results are considered to have diverged from each other when they
disagree by more than 10% in either relative position or relative velocity.

Figure 5. Performance of free-drift QIST and Linear Relative Motion Models vs.
Baseline. a: Deviation of QIST and linear relative position from baseline. b: Deviation
of QIST and linear relative velocity from baseline. c: S-LVLH View of Baseline, QIST,
and Linear NRI Approach Trajectories.

As Fig. 5 shows, the QIST model remains in-family with the baseline model for all times after
LLOD + 1 hour. Note that exquisite accuracy of the QIST model is not needed or expected in order
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to produce valid optimization results–The goal is to obtain the qualitative behavior of the TCM
timing in a quadratic relative motion model that can provide information to mission planners. In
consideration of these validity results, and taking into account that time is likely needed for orbit
determination after a large LLOD maneuver, the optimization scenarios considered in this work
start at LLOD + 3 hours.

Scenario Baseline

The end-to-end nominal rendezvous trajectory in the relative Sun-referenced LVLH (S-LVLH)
frame starting two hours following LLOD to docking contact using QIST is illustrated in Fig. 6.
The far-field rendezvous profiles in both the YZ-plane and XZ-plane are captured in Fig. 6(a) and
Fig. 6(b) respectively with the arbitrary baseline correction burn locations for C1 (3 hours following
LLOD) and C2 (5 hours prior to NRI) indicated with solid red dots. The arrival time at NRI is
LLOD + 24 hours at a relative distance of 141 km from the Gateway. Following the NRI burn, the
plane of motion is the YZ-plane and the subsequent relative profile is fixed regardless of the lunar
ascent epoch. Details related to the in-plane rendezvous profile following NRI to dock are captured
in Fig. 6(c) and Fig. 6(d). The docking axis of Gateway is acquired at 1 km which initiates the final
approach and docking sequence. The nominal delta-v to complete the rendezvous sequence is 64.3
m/s with a total duration of 29.5 hours.

An overview of the integrated GN&C performance for the NRHO rendezvous is provided in
Fig. 7 with a snap shot of the total delta-v captured in the top-left portion of the figure, the sensor
measurement scheduling illustrated in the middle-left plot with dashed vertical lines indicating the
various burn epochs, position and velocity navigation errors summarized in the bottom-left plots,
position and velocity magnitude dispersions shown on the bottom-right images, and the in-plane
trajectory profile with the 3-sigma performance ellipses in the top-right.

The unoptimized placement of the correction burns produces a total delta-v (nominal + 3-sigma)
of 78.3 m/s with 3-sigma NRI position magnitude dispersions of 9.6 km. The arbitrary placement
of the baseline correction burns placed C2 prior to any relative range, range-rate, or angle mea-
surements being available. The timing of when burns are performed with regards to the navigation
system ability to process accurate relative measurements plays an important role in identifying op-
timized burn epochs.

Optimization Results

Depending on the objective criteria, the optimized solution can have a large contrast of correction
burn times as illustrated in Fig 8. For example, in Fig 8(a) the optimization is first carried out
setting the weighting factor to zero, w = 0, optimizing only for the total delta-v. Consequently
C2 is performed earlier to reduce the total delta-v by about 1 m/s to 77.0 m/s from the baseline of
78.3 m/s at the expense of larger NRI dispersions that increased by 2 km from 9.6 km to 11.7 km.
Interestingly, the first correction burn, C1, is performed almost 2 hours later than the baseline time.

The other extreme is examined in Fig 8(b) where the weighting factor is set to one, w = 1,
optimizing performance only for the position magnitude dispersion at NRI. To reduce the NRI
dispersions, the C2 burn is delayed to the latest possible time interval where both the relative S-
band and optical camera measurements become available to execute it more precisely. The impacts
due to disturbance accelerations on the vehicle are also limited with a shorter transfer time between
the last correction burn and NRHO insertion. The NRI dispersions are reduced by an order of
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(a) LLOD YZ Profile (b) LLOD XZ Profile

(c) NRI YZ Profile (d) M3 YZ Profile

Figure 6. NRHO Nominal Rendezvous Trajectory Scenario

11



Figure 7. LinCov Summary Plot for Scenario Baseline

magnitude from about 10 km to a little over 1 km. Although the delay helps the NRI performance,
it comes at a significant delta-v cost of almost 15 m/s. The delta-v impacts are largely experienced
with the C2 and NRI burns.

This simple exercise highlights the needed balance between improving accuracies at NRI to sup-
port rendezvous and crew safety, while minimizing that necessary propellant to complete the mis-
sion. What is the proper balance? Or what is the appropriate weighting factor of priorities between
these two opposing ideals? A natural and intuitive insight to the optimization problem emerges
when investigating the sensitivity of the performance metrics as a function of different correction
burn times, referred to as mission maps and illustrated in Fig 9.

The results of 10,000 different combinations of C1 and C2 times are depicted in Fig 9(a) as
indicated with small blue dots. Since C1 occurs prior to C2, the trade space of options is limited to
the top left triangle portion of the plot. The baseline burn times on the mission map are indicated
with the solid red dot. The optimized burn placements with different weighting factors are marked
with varying gray scale colors from white (w = 0, minimize total delta-v) to black (w = 1, minimize
NRI position dispersions) circles.

Fig 9(b) gives context to the resulting correction burn placement with regards to the trajectory
itself and the other baseline burn locations (marked with solid red dots). In general, the trend
is to delay the correction burns, particularly C1, to both minimize delta-v and NRHO insertion
dispersions relative to the notional baseline specifications.

The mission map highlighting the sensitivity of burn placement to total delta-v is provided in Fig

12



(a) Optimized Correction Burn Placement Results for Minimum 3σ ∆v Magnitude

(b) Optimized Correction Burn Placement Results for Minimizing NRI position dispersion

Figure 8. Optimization Results for NRHO Transfer Correction Burn Placement
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(a) Mission Map Trade Space (b) Mission Map Trajectory Profile

(c) Mission Map for Total Delta-v (d) Mission Map for NRI Position Dispersions

Figure 9. NRHO Rendezvous Mission Map

9(c). The contours and the numerical markings indicate bands of total delta-v (m/s) given different
burn times. The baseline and optimized burns with different weights are also included with large
solid filled dots. The optimization trends observed previously begin to have greater meaning given
the delta-v mission map. With a weighting factor of zero when total delta-v is minimized (solid
white circle), the placement is at the center of the minimum contour lines as expected.
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A more complete understanding emerges as the mission maps for the NRI position dispersions
in Fig 9(d) are also considered. As the weighting factor increases, it forces the objective function
to also strive to minimize the position dispersions, not just total delta-v. As a consequence the burn
time for C2 is delayed more and more along the NRI dispersion contour lines as the weighting
factor increases. Even though the NRI dispersions are rather insensitive to the first correction burn
placement, they are directly dependent on the timing of the second correction burn.

Given both mission maps in Fig 9(c) and Fig 9(d) the optimized placement of the correction burns
becomes rather intuitive, even without a formal optimization algorithm. The mission maps highlight
the sensitivities such that a mission designer or trajectory operations can instinctively identify the
best burn placement given a myriad of mission priorities and factors that must be accounted for
based on priorities. As the priority shifts from minimizing total delta-v (w = 0) the time of both C1
and C2 are delayed such that NRHO position dispersions are reduced while following the delta-v
contours that require the least delta-v.

The extraction of these mission maps and the enabling technology that facilitates these robust
trajectory optimization techniques is having a fast yet reliable method to produce the integrated
GN&C performance metrics, such as total delta-v (nominal + 3-sigma) and trajectory dispersions.
Several factors influence the speed of the process, but one aspect is having the means to capture the
impact of the state dynamics, both on the nominal trajectory propagation, covariance propagation,
and targeting. QIST provides a viable solution to providing an extremely fast solution and this
research has begun to explore its potential and limitations.

The problem formulated for this study was selected for its simplicity. It allows these concepts
to be demonstrated while allowing the complexity of the problem formulation to cloud the intuitive
nature that can come to more sophisticated problems. These techniques can easily be scaled, but
that scaling will require more time and resources, or techniques like QIST that can generate the
performance metrics faster yet reliably.

CONCLUSION

The first application of motion relative to a SPICE kernel is presented. Starting with relative
separation distances greater than the Lunar radius and relative speeds on the order of hundreds of
meters per second and continuing to final docking approach, QIST enables almost the entire lunar
ascent rendezvous phase to be considered as a unified whole. The accuracy needed for such an
approach is provided by the second-order ephemeris dynamics of the QIST model. In addition, the
fast computation speed of the relative trajectories is enabled by the use of STT dynamics in QIST
rather than the traditional on-line numerical integration of the relative trajectories. When combined
with LinCov techniques, these simulations found the optimal locations for two TCMs under a class
of objective functions consisting of a convex combination of the position dispersion at NRI and the
total 3σ delta-v needed, taking into account an operationally representative sensor model.

The QIST model results are found to be in-family with the ground-truth model, while providing an
order of magnitude timing improvement over legacy methods. Over the period used in optimization,
QIST introduces no more than 10% error, with most of the time period examined showing negligi-
ble difference between the ground-truth model and QIST. In all cases examined, QIST-propagated
trajectories outperformed a linear equivalent.

These performance metrics are found to be in competition with each other, showing that mini-
mizing delta-v led to an increase in dispersion and vice versa. The range of delta-vs for optimal
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trajectories was between 77.0 and 93.9 m/s. The range of dispersions for optimal trajectories was
between 1.4 and 11.7 km. In addition, the optimal delta-v and optimal dispersion solutions represent
a 1.6% and 85% improvement, respectively, over the baseline case.

The QIST framework is demonstrated to enable acceptable dispersions for GW rendezvous. This
paper presents the first application of kernel relative motion to an operational problem, but the
applications of QIST and models like it are broader. The capability to contribute in a robust context
is especially relevant for missions wit human crew where safety is paramount. A pure relative
motion problem such as the one presented here is the driving design case for QIST, but applications
to targeting problems, analysis, and optimization of the SPICE kernel trajectory itself are abundant,
such as covariance analysis and rapid on board guidance in ephemeris dynamics models.
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