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1. Abstract

This study, in collaboration with the South African National Biodiversity Institute (SANBI) and the Western
Cape Government, used NASA Earth observations to develop a geospatial tool for estimating the extent of
woody riparian vegetation across South Africa. SANBI currently lacks comprehensive GIS datasets on these
wetlands, hindering effective conservation planning and management of these critical ecosystems. Our
approach involved delineating potential riparian zones using path distance analysis and classifying woody
vegetation within those zones using NDVI thresholds for each watershed area. This methodology was
performed across the entire nation to obtain a national woody riparian vegetation map. Additionally, a more
complex methodology centered around a Random Forest classification was performed on a few regions of
interest. The results of this classification were very similar to the simpler NDVI threshold method. These
results provide SANBI with an estimate of woody riparian vegetation distribution, supporting more informed
conservation decisions. While limitations exist, the project enhances efforts to protect South Africa's riparian
ecosystems and mitigate climate change impacts on biodiversity. The simplified methodology enabled timely
completion of a nationwide dataset, though further refinements are possible with additional computational
resources.
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2. Introduction

Riparian zones, the transitional areas between riverine and terrestrial ecosystems, are critical for global
biodiversity. This is particulatly true in water-scarce but biodiverse regions like South Africa. South Africa
relies heavily on riparian ecosystems to maintain ecological balance and support both aquatic and terrestrial
life. However, these ecosystems face mounting pressures from urbanization, deforestation, water diversion,
and invasive species (O’Connor, 2010, Tockner & Stanford, 2002;). Their degradation threatens biodiversity
and reduces vital ecosystem services such as flood regulation, water purification, and habitat provisioning,
which are economically and ecologically vital(Riis et al., 2020). Addressing these challenges requires accurate
mapping and a thorough understanding of riparian ecosystem distribution (Gonzalez et al., 2017).
Unfortunately, the lack of geospatial data on ripatian zones in South Africa hinders effective conservation
planning. Developing a precise geospatial inventory is essential to protect these ecosystems and their
functions amid climate change and land-use transformations.

Due to the variability of riparian zones across different landscapes, it is often challenging to outline and
classify them. Their highly dynamic nature is shaped by hydrological regimes, soil properties, and local
topography, making it difficult to establish an exact and all-encompassing definition of riparian. Riparian
zones are also often conflated with other ecosystems, such as wetlands, due to their proximity to water and
similar vegetation types. As Naiman & Décamps (1997) observed, riparian zones can be defined specifically as
ecotones—transitional areas where water, soil, and plant communities interact to form complex habitats. This
transitional nature has led to a lack of consensus on their boundaries, which complicates efforts to conserve
and manage these critical areas (Ward et al., 1999). The variability and intricate boundaries of riparian zones
pose challenges for geospatial tools, making it difficult to accurately delineate and classify these areas
(Sweeney et al., 2002).

In South Africa, the lack of comprehensive GIS-based datasets for riparian areas presents significant
challenges for organizations like the South African National Biodiversity Institute (SANBI). SANBI plays a
critical role in protecting the country's biodiversity by conducting research, maintaining biodiversity
databases, and supporting conservation planning. However, the absence of detailed riparian mapping has
limited SANBI’s ability to identify, classify, and prioritize these ecosystems for protection. Currently, SANBI
relies on limited field data and expert judgment for decision-making, which can be inconsistent and less
effective without a comprehensive spatial framework. As a result, a more detailed and geospatially informed



understanding of riparian zones is essential for SANBI’s work, particularly as climate and land use changes
continue to threaten these ecosystems (Capon et al., 2013).

To address these challenges, our team partnered with SANBI to conduct a feasibility study aimed at
improving the methods used to delineate and classify riparian zones. We also partnered with the Western
Cape Government Department of Environmental Affairs and Developmental Planning, who provided us
with feedback on our methodology and local expertise. Our primary objective was to determine if we could
create a robust, scalable geospatial tool to estimate the extent of woody riparian vegetation across the entire
nation using open-source Earth observation data. The use of open-source data is crucial in this context
because it allows for widespread access, transparency, and the ability to build and refine the tool
collaboratively, all while minimizing costs for SANBI and other stakeholders. These products will inform
SANBI’s conservation strategies, enabling them to better target conservation priorities and guide future land
management decisions. This partnership will ultimately support SANBI’s efforts to protect these critical
ecosystems and help mitigate the impacts of climate change on South Africa’s biodiversity.

We built upon the work of the summer 2024 NASA DEVELOP South Africa Ecological Conservation
project, which developed a GIS-based protocol in partnership with SANBI to estimate the extent of riparian
areas in two study sites: the Northwest Province and a smaller region northeast of Cape Town. Their work
laid a critical foundation for delineating riparian areas, but the complexity and variability of South Africa’s
landscapes required a more comprehensive and scalable approach. Our team aimed to expand and refine their
efforts by creating a model capable of delineating woody riparian vegetation across the entire country,
providing SANBI with a comprehensive estimate of the distribution and location of these ecosystems
nationwide.

Our methodology, informed by Weissteiner et al. (20106), involved generating a potential riparian zone layer
based on proximity to river systems. We then clipped Harmonized Landsat and Sentinel-2 imagery to this
riparian zone layer and performed a Random Forest classification to identify woody riparian vegetation. The
results were further refined using a land cover map from SANBI to assess the likelihood of woody vegetation
and the Normalized Difference Vegetation Index (NDVI) to filter out sparse vegetation. We applied this
analysis to each of South Africa's 22 catchments individually, using imagery from April 2023 as a
representative month for average annual precipitation (Figure 1). To reduce computational demand, we split
the nation into these catchments, and the results were later combined into a national dataset. This new
approach builds on previous work, supporting SANBI’s goal of better identifying and conserving ripatian
ecosystems across South Africa.



Study Location: South Africa
Study Period: April 2023*

*representative month for
 average annual precipitation
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Figure 1. Study area map of South Africa divided into primary catchments.

3. Methodology

3.1 Data Acquisition

3.1.1 Satellite Imagery

To determine potential riparian zones, we first needed to establish the location of river systems across South
Africa. SANBI provided us with their National Rivers Dataset (2018 version), which contained all major
rivers but lacked smaller tributaries and streams. To address this limitation, we incorporated topogtraphical
data from NASA’s Shuttle Radar Topography Mission (SRTM) Version 3 Digital Elevation Models (DEMs)
to estimate the location of smaller water features (Table 1). We obtained the SRTM Level 2 products through
NASA’s Earth Data Portal, providing 30-meter resolution elevation data with vertical accuracy of +16 meters,
collected by the Space Shuttle Endeavour during an 11-day mission in February 2000.

For our classification of woody riparian vegetation, we utilized Harmonized Landsat and Sentinel-2 (HLS)
Level-2H surface reflectance products (Table 1). From the HLS 30-meter resolution dataset, we specifically
selected bands 3 (green, 0.53-0.59 pm), 5 (NIR, 0.85-0.88 pm), and 7 (SWIR, 2.11-2.29 um). Through
comparative analysis, these bands demonstrated optimal performance in distinguishing woody vegetation
within the potential riparian zone layer, outperforming other combinations including true color composites.
We acquired the HLS data through NASA’s Earth Data Portal, selecting only images with less than 5% cloud
covet.

Table 1
Earth observations used in this study
Sensor & Spectral Bands & Spatial Processing | Date Use
Platform Features Resolution Level Range
Harmonized HLS Band 3 (Green): | 30 m Level-2A March — | Supervised
Landsat 8 OLI & | 0.53-0.59 um, Surface May Classification of
Landsat 9 OLI-2 Reflectance | 2023 Woody Riparian
Sentinel-2 MSI HLS Band 5 (NIR): Vegetation
0.85-0.88 um




HLS Band 7 (SWIR):
2.11-2.29 um

Shuttle Radar

Topography
Mission (SRTM)

Elevation (DEM)

30 m

Version 3 February | DEM for Stream
Vertical 2000 Order Analysis
Accuracy

+16m

The timing of imagery acquisition proved critical for accurate woody riparian vegetation detection due to
South Africa’s pronounced seasonal precipitation patterns. These patterns create significant temporal
variability in both vegetation density and surface water presence across the country’s diverse geographic
regions. To minimize seasonal bias in our analysis, we selected imagery from April 2023, when the mean
monthly precipitation (21.23 mm) closely matched the national annual average (20.6 mm) over the most
recent 30-year climate average from 1991 to 2020. When imagery from April with less than 5% cloud
coverage was not available, we also obtained tiles from March and May. This strategic timing helped ensure
our analysis captured typical climatic conditions rather than seasonal extremes that could confound riparian
zone identification and delineation.

3.1.2 Ancillary Data

Additionally, we used non-Earth observing data in our analysis. This included a Major Rivers shapefile
provided by SANBI, and a South Africa Land Cover map and Primary Catchments Shapefile both obtained
from the South African government, available via internet download (Table 2).

Table 2
Ancillary data used in this project
Name Product Data Data Provider Use Cases
Type Type
The South African Land Use Raster, Republic of South Africa: | Water feature
National L.and Cover Land Cover | 20 meters | Department of Forestry, | extraction, agriculture
map map Fisheries, and the mask, likelihood
Environment analysis
Major Rivers’ Centerline Vector SANBI Used to estimate river
(NBA2018MajorRivers) | Shapefile systems for potential
riparian zone
Primary Catchments Polygon Vector Republic of South Africa: | Used to clip rivers and
Shapefile Department of Water elevation data to

and Sanitation

specific catchments

3.2 Data Processing

3.2.1 DEM Processing and Clipping
We processed the SRTM DEM data using ENVI 6.0 image analysis software to create a seamless country-
wide elevation model. The mosaicking process merged individual SRTM tiles while eliminating edge effects.
Following the mosaic creation, we clipped both the DEM and the SANBI major river dataset to our study
catchment boundaries using ArcGIS Pro 3.4. To prepare the DEM for hydrological analysis, we applied the
Fill tool to correct terrain depressions and data voids that could impede accurate flow modeling.

3.2.2 Stream Order Analysis

To estimate and classify woody riparian vegetation across the country, we first had to determine the possible
geographic location of riparian zones. Due to their definition as ecotones between riverine and terrestrial
ecosystems (Naiman & Décamps, 1997), we determined potential riparian zones by using a combination of




the major rivers’ dataset provided by SANBI (Table 2) as well as a stream order raster layer using the SRTM
DEM. This stream order analysis estimates the location of smaller streams not included in the major rivers’
dataset provided to us by SANBI and classify streams based on expected flow accumulation. Without
including this stream order analysis, potential riparian zone wouldn’t include many smaller riparian areas that
exist along tributaries to larger rivers, leading to an underestimation of woody riparian vegetation.

We obtained flow accumulation and flow direction using the filled and clipped DEM. To exclude streams
with low flow accumulation, we reclassified the flow accumulation values, setting a threshold to filter out
smaller streams that were unlikely to be considered riparian zones. This step was necessary to prevent the
misidentification of small streams that may have existed historically but are no longer present due to
landscape alterations. Next, we performed a Strahler stream order analysis, which classifies streams based on
their position in the drainage network. In this analysis, streams are assigned an order: the smallest streams are
designated as first-order, and streams of higher orders are formed when smaller streams merge. Using the
reclassified flow accumulation and direction layers, this analysis produced a raster stream order layer.

3.2.3 Buffer Creation

The stream order raster layer was converted to a vector polygon to enable buffer creation. Buffers were
applied to streams based on their order, with larger rivers receiving wider buffers and smaller streams
receiving narrower ones. The buffer sizes were determined by stream order, with each increase in stream
order corresponding to a proportionally larger buffer. Specifically, the buffer size increased in a linear fashion,
with first-order streams receiving a 50-meter buffer, second-order streams receiving a 100-meter buffer, and
so on. Additionally, a 30-meter buffer was applied to the major rivers layer to account for their typically
broader riparian zones.

To refine the potential riparian zones, the national river layer was processed into a raster using the Euclidean
distance function and then merged with the stream order layer. The merged raster, which combined both the
Euclidean distance and stream order features, was analyzed using the path distance tool to identify areas
within 30 meters of these features. These potential riparian areas were reclassified and converted into a
polygon for classification modeling. Finally, the buffer polygons from the stream order layer were merged
with the path distance results to ensure comprehensive coverage of riparian zones, incorporating both small
streams and major rivers.

3.2.4 Composited Raster RGB Imagery

To enhance vegetation analysis, we created a composite raster using the green, near infrared, and short-wave
infrared bands from the HLS imagery. This combination was selected because SWIR and NIR bands are
highly sensitive to moisture and vegetation structure, helping distinguish vegetation types, while the green
band enhances visual clarity for training purposes, making it easier to differentiate between woody and non-
woody vegetation in the classification (Rahaman et al., 2017). After generating this composite, we clipped it to
the potential riparian zone within the catchment area. This clipping step ensures that the analysis focuses
solely on riparian areas directly adjacent to water bodies, excluding other regions within the catchment.

3.2.5 Reclassification of the South African National Land Cover map

Using the 2022 South African National Land Cover map (SANLC), we reclassified cultivated agricultural and
urbanized areas into a separate layer to remove them from the woody riparian vegetation analysis. By isolating
these human-developed land cover types, we avoid misclassification of woody vegetation, which can be
misclassified in agricultural areas located adjacent to rivers and streams in particular. This layer is important to
ensure that the woody riparian vegetation is identified correctly.

3.2.6 Random Forest Woody Riparian 1V egetation Classification

Using the Random Forest classification algorithm in ArcGIS Pro, we applied a machine learning model
trained with sample data representing both woody and non-woody areas from within the buffer zones in a
smaller catchment area. This classification method segments the data by evaluating multiple decision trees,



enhancing the model’s ability to identify woody vegetation, which is often mixed with other vegetation types
in riparian zones. We created the training samples from field data collected in collaboration with SANBI,
ensuring that the model learned patterns specific to woody vegetation in South Africa’s diverse landscapes.
This process enabled the model to accurately differentiate woody vegetation from other vegetation types,
improving classification accuracy.

We clipped the classified output to the potential riparian zone generated in the previous step, restricting the
analysis to areas directly adjacent to water bodies. Next, we excluded agricultural and urbanized areas using
the reclassified 2022 SANLC, detailed in Section 3.2.5. This exclusion step is crucial, as agricultural and urban
lands may contain vegetation that could mislead the classification, especially in edge areas where woody
vegetation might intermingle with non-natural land uses. By isolating natural or semi-natural areas within the
potential riparian zone, this step focuses the layer on ecologically significant woody vegetation that is of
interest to SANBI.

The final step involved calculating NDVI (Kriegler et al., 1969) using NIR and Red bands (Equation 1) from
the HLS imagery and filtering out all values below 0.5 to ensure that only dense vegetation was captured,
reducing noise from sparse or low-biomass plants that might otherwise be classified as woody. NDVI values
above 0.5 typically indicate healthier, denser vegetation in terms of green leaf area or biomass (Tucker, 1979),
which aligns well with the characteristics of woody vegetation in riparian settings. Finally, we combined the
Random Forest classification and NDVI results into a single, cohesive layer using the Merge Rasters tool.
This integration produced a refined map of woody riparian vegetation by incorporating both structural and
spectral vegetation information, yielding a more accurate and ecologically meaningful representation of
woody vegetation within riparian zones.

NIR - Red

NDVI = ——
NIR + Red

M
3.2.7 Simplified Methodology

Due to time and processing power constraints, we simplified the methodology to create the woody riparian
vegetation (WRV) map for the entirety of South Africa. This approach, which relied on NDVI thresholds
rather than Random Forest classification, allowed for the completion of a nationwide assessment within
computational and time constraints. Validation showed that results from this simplified approach closely
matched those from the Random Forest classification method.

The simplitied methodology filtered NDVI values within the potential riparian zone (PRZ). NDVI thresholds
ranging from 0.4 to 0.65 were applied based on regional vegetation characteristics, with higher thresholds
used in forested areas to distinguish woody riparian vegetation from other vegetation types. Following the
masking of agricultural and urban areas (detailed in section 3.2.5), a likelihood analysis validated the results
(section 3.3).

3.2.8 Surface Water Body Classification

In addition to classifying woody riparian vegetation, we classified surface water bodies by calculating the
Normalized Difference Water Index (NDWI) of HLS and selecting values that represent water bodies. The
NDWI uses the reflectance characteristics of water in the green and near-infrared bands, where water bodies
typically have higher reflectance in the green band and lower reflectance in the near-infrared band (Equation
2). By using the full NDWI range from 0 to 1, we captured areas with a high likelihood of representing
surface water, helping to differentiate water bodies from surrounding land cover (McFeeters, 1996). This
classification will assist SANBI in identifying water features within the riparian zone, which are critical for
accurately delineating riparian zones and supporting water-dependent vegetation analyses. In our expanded
methodology (section 3.2.6), we used this classification to clip out water bodies. However, we noticed that



our NDVI thresholds were already removing surface water bodies. In order to streamline our methodology
for the national dataset (section 3.2.7) we decided to remove this step.

Green- NIR

NDWI = ————
Green+NIR
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3.3 Data Analysis
3.3.1 Potential Riparian Zones - Patlh Distance Analysis
We estimated PRZs using ArcGIS Pro’s Path Distance tool, applied to the major rivers’ dataset. Prior to this,
we ran the Euclidean distance tool on the Major Rivers Map with a 30-meter distance to rasterize it. The Path
Distance tool calculates the minimum cumulative travel distance from water sources to each raster cell,
considering both horizontal and vertical movement across the landscape. We chose path distance analysis
over Huclidean distance because it accounts for topographical variations, which significantly affect the extent
of riparian zones. The analysis produced distance values that reflected actual surface traversal costs, allowing

for a more accurate, topographically informed delineation of potential riparian zones.

The path distance analysis generated potential riparian zones that adapted to local terrain characteristics:
narrower zones in steep valleys and wider zones in flat landscapes. This approach yielded more accurate
riparian zone boundaries compared to traditional fixed-width buffers, as it responded to natural topographic
constraints. After completing the path distance calculation, we reclassified the output to isolate areas
proximate to water features, converted the reclassified raster to a polygon format, and merged it with our
buffer polygon to create the final potential riparian zone delineation.

3.3.2 Woody Riparian V'egetation 1ikelihood Analysis

To refine the accuracy of the woody riparian vegetation layer, we performed a likelihood analysis by
intersecting the WRYV results with woodland areas identified in the SANLC. This step served to validate and
assign confidence levels to areas classified as woody vegetation. Specifically, areas classified as “woody” in
both the Random Forest-NDVI layer and the SANLC woodland class were labeled as “High Confidence”.
This high-confidence category represents regions where multiple datasets consistently identify woody
vegetation, making them highly reliable for riparian management and restoration purposes.

Conversely, we classified areas flagged as woody in the Random Forest-NDVI analysis but not identified as
woodland in the SANLC as “Low Confidence.” These areas might represent transitional or mixed vegetation
zones where the presence of woody vegetation is less certain. By distinguishing between high and low-
confidence areas, this step improves the layet's accuracy (rather than precision) and allows end usets to
ptioritize high-confidence zones for critical ecological assessments, while also flagging low-confidence areas
for further ground validation if needed.

3.3.3 Woody Riparian Zone Analysis

We clipped the NDVI raster layer to the PRZs found in section 3.2.2. NDVI values <0 often associated with
non-vegetated surfaces such as water bodies, urban areas, or batren land have mostly been clipped out.
Higher NDVI values (>0.5) are generally associated with dense, healthy vegetation, whereas lower values (<0)
suggest bare soil, sparse vegetation, or non-vegetated areas. NDVI values <0 often associated with non-
vegetated surfaces such as water bodies, urban atreas, or barren land have mostly already been clipped out.
NDVI thresholds for each province were selected to be above the mean value, taking into account the
different distributions of NDVI values for each province and ground truthing using SANLC and aerial
imagery. We graphed the distribution of all of the NDVI pixels for validation (section 4.2). Once we had the
pixel count of areas with WRV we used equation 3 to find the total amount of land under riparian vegetation
(Table B1).

Area (km?) = (Number of Pixels)x (30)%+(1,000,000)
©)



4. Results and Discussion

4.1 Potential Riparian Zone

4.1.1 Analysis of Results

As outlined in our methodology, PRZs are areas adjacent to water bodies that may support riparian
ecosystems. These zones were identified using geospatial analysis, considering factors such as proximity to
water, stream order, and topographical features. The PRZ layer served as a filter for identifying potential
woody riparian vegetation, dramatically narrowing down the area we needed to classify. Our analysis revealed
that PRZs cover approximately 120,801 km?, or 9.9% of South Africa’s total land area (Figure 2). As shown
in Tables Al and A2, PRZs are consistently distributed across hydrological and administrative divisions, with
most catchments and provinces showing similar proportional coverage. This suggests a relatively uniform
distribution of potentially riparian-beating rivers and streams across South Africa's diverse landscape.
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Figure 2. PR”Zs identified across South Africa

4.1.2 Errors & Uncertainties

The PRZ methodology contains several sources of uncertainty that could have led to over- or under-
estimation of woody riparian vegetation later in our methodology. The stream order analysis used for PRZ
delineation is based purely on elevation data and may have captured historical or ephemeral streams that no
longer support active riparian ecosystems or have been substantially modified by human intervention.
Additionally, given the complexity of mapping riparian zones across an entire nation, it was impossible to
verify the accuracy of PRZ boundaries at every location, introducing inherent limitations to the
comprehensive mapping approach. Accordingly, the methodology could have captured non-riparian
vegetation if buffer zones were drawn too broadly, or conversely, excluded small but ecologically significant
riparian areas if the zones were too narrow. The complexity of these uncertainties underscores the
importance of treating the PRZ mapping as an approximation of geographic location rather than a definitive
representation of riparian ecosystems.

4.2 Woody Riparian Vegetation

4.2.1 Analysis of Results

WRYV is our estimate of the location of this type of vegetation within the PRZ layer. WRYV was identified
across the country using the simplified methodology explained in section 3.3.3, yielding 19,733 km?, about
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1.6% of South Africa’s total surface area (Table B1). Out of this 19,733 km?, almost 60% was deemed high
confidence WRYV based on the likelihood analysis performed using SANBI’s national land cover map. Table
B2 shows the provincial precipitation ranges and the corresponding WRV proportions (SAEON, 2020).
Interestingly, although provinces that receive more rainfall on average generally had a greater amount of
WRYV identified than those that receive less, this was not always the case. For example, on average
Mpumalanga receives the 2nd most precipitation annually, but less of the province was classified as WRV
than in the case of other, more arid provinces.

For the Western Cape Province, a significant portion of pixels (57%) fall in the range of NDVI values from
0.1 to 0.3, indicating moderate vegetation cover and modified areas impacted by urbanization (Figure 6).
Higher NDVI values (0.4-0.9) represent about 31% of the data, showing substantial areas of healthy
vegetation. In the North West Province, vegetation showed higher NDVI ranges (0.4-0.7), with about 72%
of the pixels in this category (Figure 6). Very high NDVI values (0.7—1) were sparse, suggesting fewer areas
with extremely dense vegetation compared to the Western Cape. The Western Cape showed significant
vegetation even in very high NDVI ranges (e.g., 0.8—1), which might correspond to riparian zones with robust
vegetation. In the North West, extremely high NDVI values (>0.8) were rarely observed, potentially reflecting
a less lush riparian environment.
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Figure 3. Western Cape Province Potential Riparian Zone Distribution of NDVI Values

The Western Cape's higher NDVI values in the 0.8—1 range could be due to a Mediterranean climate, with
more rainfall supporting lush vegetation. The North West is drier and showed most pixels clustering in the
0.4-0.6 range, reflecting vegetation adapted to semi-arid conditions (Figure 7). Areas with lower NDVI values
(<0.1) in both provinces, and nationwide, could be targets for riparian restoration efforts. The Western
Cape's mix of high and low NDVI values in particular indicates areas with potential for improvement
alongside naturally healthy zones. To supplement these findings, field surveys can be used to confirm
vegetation health and identify specific stressors in low NDVI areas.
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Figure 4. North West Province Potential Riparian Zone Distribution of NDVI Values

4.2.2 Errors & Uncertainties

We encountered several challenges and limitations while using the supervised classification-based
methodology for identifying WRYV that impacted the accuracy and precision of the results. One of the
primary challenges was the moderate 30-meter resolution of HLS imagery, which limited our ability to
capture narrow riparian zones. Riparian zones can sometimes be as narrow as just two or three trees wide,
and the coarse resolution of the imagery may have missed these smaller riparian areas, especially in
fragmented or narrow corridors. While the methodology performed well for larger riparian zones, it
sometimes struggled to detect finer-scale features that are crucial for biodiversity preservation and effective
conservation management.

Another significant difficulty arose from the training data used for the Random Forest classification. This
data, created by our team using satellite imagery, introduced potential uncertainties due to our limited
expertise in identifying riparian vegetation. Although we validated the results with the SANLC map, the
classification remained approximate. The uncertainty in the training data, compounded by our inexperience
with riparian vegetation types in South Africa, led to some misclassification, which may have prevented the
model from fully capturing the complexity of riparian vegetation across different regions.

Additional complexities arose from South Aftrica’s diverse precipitation patterns, which have a direct impact
on vegetation dynamics and, consequently, the classification accuracy. Due to data constraints, we used
imagery from March to May 2023 instead of April 2023, which is most representative of the country’s annual
average precipitation. This timing introduced variability, as the rainy season differs dramatically across South
Africa’s climatic regions. In some areas, the imagery corresponded to the start of the rainy season, while in
others, it marked the end. This resulted in regions towards the end of the rainy season likely displaying more
abundant vegetation, potentially leading to an overestimation of woody riparian vegetation compared to other
areas where the rainy season was just beginning. This seasonal effect impacted both the supervised
classification and simplified methods and highlights the complexity of using remote sensing data to monitor
vegetation in regions with such diverse rainfall patterns.

Finally, the use of NDVI thresholds in the simplified methodology introduced challenges in densely vegetated
regions, such as Limpopo. While NDVI is effective for distinguishing vegetated from non-vegetated areas, it
faces limitations in regions with dense, homogeneous vegetation. In areas like Limpopo, the uniform NDVI
values within PRZs made it difficult to differentiate woody riparian vegetation from the surrounding tree
cover. This limitation is particularly evident in forested areas where the NDVI values for both riparian and
non-riparian vegetation closely resemble one another. This challenge emphasizes the need for higher-
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resolution data or more advanced methods to improve the accuracy of ripatian zone delineation in densely
vegetated regions.

5. Conclusion

5.1 Interpretation of Results

This study successfully demonstrates the potential of using Earth observation data to map and estimate the
distribution of WRYV across South Africa. By combining open-source satellite imagery, such as HLS, with
sophisticated geospatial analysis techniques, we were able to identify and classify riparian zones at a national
scale. The results show a significant extent of potential riparian zones across the country, taking up around
9.9% of the nation's land area. Our simplified methodology, based on NDVI thresholds, proved to be
effective for providing nationwide coverage while remaining computationally feasible. However, the
methodology encountered challenges such as resolution limitations and variability in vegetation due to
seasonal effects. These factors underscore the need for more advanced approaches to improve accuracy in
complex, densely vegetated regions.

5.2 Feasibility & Partner Implementation

The methods developed during this project are feasible and effective for use by SANBI and the Western
Cape Government in their decision-making processes regarding riparian zone conservation. The PRZ
methodology provides a reliable way to estimate the geographic locations of potential riparian zones, and it is
reproducible across the entire nation. While the results are not without uncertainty, this project offers a solid
foundation for future efforts. The simplified WRYV classification using NDVI thresholds proved effective and
feasible for use by our partners, although the methodology contains some uncertainty as described above.
WRYV provides valuable insights for SANBI in monitoring and conserving critical riparian ecosystems across
South Africa. By identifying and classifying WRYV at a national scale, SANBI can better assess the health of
riparian zones and prioritize conservation efforts, contributing to the protection of biodiversity and water
resources. Moving forward, SANBI and the Western Cape Government can continue to refine these
methods, incorporating more field data, conducting ground validation, and possibly integrating additional
temporal datasets to enhance the accuracy and utility of the riparian zone maps.
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7. Glossary

Earth Observation (EO) — The process of collecting information about the Earth's surface using satellite
sensors, aircraft, and other technologies. EO data are crucial for environmental monitoring, including land
use, vegetation, and climate patterns.

Geospatial Analysis — The process of using geographic data to analyze spatial patterns and relationships

between features on the Earth's surface. This can include mapping, modeling, and analyzing data related to
land cover, vegetation, and other environmental factors.
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Harmonized Landsat Sentinel-2 (HLS) — A dataset that combines Landsat OLI and Sentinel-2 satellite
imagery to provide high-quality observations of the Earth's surface. This data is used for monitoring land
cover, vegetation, and environmental changes at a resolution of 30 meters.

Multi-Temporal Imagery — Satellite imagery collected at different times to capture changes in the Earth's
surface over a period. This is essential for understanding dynamic features like vegetation growth, seasonal
changes, and the impact of human activities.

Normalized Difference Vegetation Index (NDVI) — A remote sensing index that measures vegetation
health based on the difference between near-infrared and red-light reflectance. NDVI values range from -1 to
+1, with higher values indicating healthier and denser vegetation.

Normalized Difference Water Index (NDWI) — An index similar to NDVI but focused on identifying
water bodies by measuring the difference in reflectance between the near-infrared and shortwave infrared
bands of light. NDWI is commonly used to map water bodies and distinguish them from surrounding land.

Path Distance Analysis — A spatial analysis technique that calculates the minimum travel distance between
each raster cell and a specified feature, such as a river. This method accounts for topography and other
landscape features, providing more accurate representations of areas like floodplains or riparian zones.

Potential Riparian Zones (PRZ) — Areas identified as likely to support riparian vegetation based on
proximity to water bodies. PRZs are delineated using various geospatial analysis techniques to guide
conservation efforts and identify regions that may require further ecological management.

Random Forest Classification — A machine learning technique that uses multiple decision trees to classify
data. Each tree provides a "vote," and the most common outcome is chosen. This method is often used in
remote sensing to classify land cover types like vegetation or water.

Riparian Zones — Transitional areas between riverine and terrestrial ecosystems, typically characterized by
distinct vegetation that is adapted to petiodic or permanent flooding. Riparian zones are crucial for
biodiversity, water purification, and flood regulation.

Satellite Imagery — Images of the Earth’s surface captured by satellites equipped with sensors. These images
provide a comprehensive view of the landscape and are used for various environmental monitoring
applications, including land use, vegetation mapping, and disaster management.

Stream Order — A classification system that ranks streams based on their size and the number of tributaries.
First-order streams are the smallest, and higher-order streams are formed when smaller streams merge.

Woody Riparian Vegetation (WRYV) — The type of vegetation in riparian zones composed of woody plants,

including trees and shrubs, which are important for stabilizing riverbanks, providing wildlife habitat, and
filtering water.
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9. Appendix
Appendix A: Potential Riparian Zone Surface Analysis

Table Al
Potential Riparian Zone Surface Area Analysis (by catchment)
Catchment* PRZ Area (km?) ,}.)Eizle r;);; Catchment Area (km?) (Ij)ae:(flfrri:e(:lf;
A 9,433 7.81% 109,581 8.61%
B 6,650 5.50% 73,516 9.05%
C 19,105 15.82% 196,299 9.73%
D 38,905 32.21% 409,420 9.50%
E 4,829 4.00% 49,065 9.84%
F 2,095 1.73% 28,586 7.33%
G 2,268 1.88% 25,299 8.96%
H 1,442 1.19% 15,520 9.29%
] 4,234 3.51% 45,134 9.38%
K 530 0.44% 7,216 7.35%
L 4,523 3.74% 34,730 13.02%
M 180 0.15% 2,628 6.86%
N 2,186 1.81% 21,225 10.30%
P 551 0.46% 5,357 10.29%
Q 3,330 2.76% 30,227 11.01%
R 808 0.67% 7,928 10.19%
S 2,317 1.92% 20,481 11.31%
T 5,093 4.22% 46,623 10.92%
U 1,838 1.52% 18,310 10.04%
\Y 2,791 2.31% 29,040 9.61%
W 5,332 4.41% 59,006 9.04%
X 2,360 1.95% 31,155 7.58%

*Link to the South African Primary Drainage Regions (top-level catchments) dataset provided by the
Republic of South Africa Department of Water and Sanitation:
https://www.dws.gov.za/iwgs /wms/data/000key2data.asp
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Table A2
Potential Riparian Zone Surface Area Analysis (by province)

Province* Pl?lfmAz;ea Percent of Total PRZ Province Area (km?2) I;e:;e,:irrlltczf
Eastern Cape | 18,255 15.1% 168,966 10.8%
Free State 12,268 10.2% 129,825 9.45%
Gauteng 1,494 1.24% 18,178 8.22%
KwaZulu-Natal | 10,220 8.46% 94,361 10.8%
Limpopo 11,205 9.28% 125,754 8.91%
Mpumalanga 6,613 5.47% 76,495 8.65%
North West 9,217 7.63% 104,882 8.79%
Nothern Cape | 38,863 32,00 372,889 10.4%
Western Cape | 12,664 10.5% 129,462 9.78%
South Africa | 120,800.67 100% 1,220,813 9.90%

*Link to province dataset used in this study: https://geo.btaa.org/catalog/061d4492-56e8-458c-a3fb-
€7950991adf0 Provided by Humanitarian Data Exchange under Attribution 3.0 IGO.
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Appendix B: Woody Riparian Vegetation Analysis

Table B1
Woody Riparian V'egetation Surface Area Analysis (by province)
. Percent of
e | 0 [ WU i || ri
Area (km?) Area (km?) Area (km?) Confidence WRY)
Eastern Cape 2,214 2,856 5,071 56.3% 3.00%
Free State 450 165 615 26.9% 0.47%
Gauteng 100 89 189 47.1% 1.04%
KwaZulu-Natal 1,030 2,147 3,177 67.6% 3.37%
Limpopo 187 2,066 2,253 91.7% 1.79%
Mpumalanga 154 632 785 80.5% 1.03%
North West 1,167 1,564 2,731 57.3% 2.60%
Nothern Cape 755 922 1,677 55.0% 0.45%
Western Cape 1,817 905 2,723 33.2% 2.10%
South Africa 7,975 11,758 19,733 59.6% 1.62%

Figure B1. Results of Woody Riparian Vegetaon classification, shown in the light green pixels (high
likelihood in dark green, low likelihood in light green), over the Orange River riparian zone in Northern Cape
Province
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Figure B2. Results of Woody Riparian Vegetation classification, shown in the light green pixels (high
likelihood in dark green, low likelihood in light green), in agricultural areas of North West Province




Figure B3. Results of Woody Riparian Vegetation classification, shown in the light green pixels (high
likelihood in dark green, low likelihood in light green), around Brandvleidam and along Breerivier in Western

Table B2

Cape Province

Woody Riparian 1 egetation and Precipitation (by province)

Province Percent of Province Surface Average Precipitation Range

Area (all WRYV) (1983-2020)
Eastern Cape 3.00% 400-800 mm
Free State 0.47% 400-600 mm
Gauteng 1.04% 600-800 mm

KwaZulu-Natal 3.37% 800-1,200 mm
Limpopo 1.79% 400-800 mm

Mpumalanga 1.03% 700-1,200 mm
North West 2.60% 300-500 mm
Nothern Cape 0.45% 100—200 mm
Western Cape 2.10% 350-500 mm
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