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1. Abstract 
This study, in collaboration with the South African National Biodiversity Institute (SANBI) and the Western 
Cape Government, used NASA Earth observations to develop a geospatial tool for estimating the extent of 
woody riparian vegetation across South Africa. SANBI currently lacks comprehensive GIS datasets on these 
wetlands, hindering effective conservation planning and management of these critical ecosystems. Our 
approach involved delineating potential riparian zones using path distance analysis and classifying woody 
vegetation within those zones using NDVI thresholds for each watershed area. This methodology was 
performed across the entire nation to obtain a national woody riparian vegetation map. Additionally, a more 
complex methodology centered around a Random Forest classification was performed on a few regions of 
interest. The results of this classification were very similar to the simpler NDVI threshold method. These 
results provide SANBI with an estimate of woody riparian vegetation distribution, supporting more informed 
conservation decisions. While limitations exist, the project enhances efforts to protect South Africa's riparian 
ecosystems and mitigate climate change impacts on biodiversity. The simplified methodology enabled timely 
completion of a nationwide dataset, though further refinements are possible with additional computational 
resources. 

Key Terms 
remote sensing, woody riparian vegetation, GIS, Earth observation, Random Forest classification, riparian 
zones, SANBI, land use change 
 

2. Introduction 
Riparian zones, the transitional areas between riverine and terrestrial ecosystems, are critical for global 
biodiversity. This is particularly true in water-scarce but biodiverse regions like South Africa. South Africa 
relies heavily on riparian ecosystems to maintain ecological balance and support both aquatic and terrestrial 
life. However, these ecosystems face mounting pressures from urbanization, deforestation, water diversion, 
and invasive species (O’Connor, 2010, Tockner & Stanford, 2002;). Their degradation threatens biodiversity 
and reduces vital ecosystem services such as flood regulation, water purification, and habitat provisioning, 
which are economically and ecologically vital(Riis et al., 2020). Addressing these challenges requires accurate 
mapping and a thorough understanding of riparian ecosystem distribution (González et al., 2017). 
Unfortunately, the lack of geospatial data on riparian zones in South Africa hinders effective conservation 
planning. Developing a precise geospatial inventory is essential to protect these ecosystems and their 
functions amid climate change and land-use transformations. 

 
Due to the variability of riparian zones across different landscapes, it is often challenging to outline and 
classify them. Their highly dynamic nature is shaped by hydrological regimes, soil properties, and local 
topography, making it difficult to establish an exact and all-encompassing definition of riparian. Riparian 
zones are also often conflated with other ecosystems, such as wetlands, due to their proximity to water and 
similar vegetation types. As Naiman & Décamps (1997) observed, riparian zones can be defined specifically as 
ecotones—transitional areas where water, soil, and plant communities interact to form complex habitats. This 
transitional nature has led to a lack of consensus on their boundaries, which complicates efforts to conserve 
and manage these critical areas (Ward et al., 1999). The variability and intricate boundaries of riparian zones 
pose challenges for geospatial tools, making it difficult to accurately delineate and classify these areas 
(Sweeney et al., 2002).  
 
In South Africa, the lack of comprehensive GIS-based datasets for riparian areas presents significant 
challenges for organizations like the South African National Biodiversity Institute (SANBI). SANBI plays a 
critical role in protecting the country's biodiversity by conducting research, maintaining biodiversity 
databases, and supporting conservation planning. However, the absence of detailed riparian mapping has 
limited SANBI’s ability to identify, classify, and prioritize these ecosystems for protection. Currently, SANBI 
relies on limited field data and expert judgment for decision-making, which can be inconsistent and less 
effective without a comprehensive spatial framework. As a result, a more detailed and geospatially informed 
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understanding of riparian zones is essential for SANBI’s work, particularly as climate and land use changes 
continue to threaten these ecosystems (Capon et al., 2013). 

 
To address these challenges, our team partnered with SANBI to conduct a feasibility study aimed at 
improving the methods used to delineate and classify riparian zones. We also partnered with the Western 
Cape Government Department of Environmental Affairs and Developmental Planning, who provided us 
with feedback on our methodology and local expertise. Our primary objective was to determine if we could 
create a robust, scalable geospatial tool to estimate the extent of woody riparian vegetation across the entire 
nation using open-source Earth observation data. The use of open-source data is crucial in this context 
because it allows for widespread access, transparency, and the ability to build and refine the tool 
collaboratively, all while minimizing costs for SANBI and other stakeholders. These products will inform 
SANBI’s conservation strategies, enabling them to better target conservation priorities and guide future land 
management decisions. This partnership will ultimately support SANBI’s efforts to protect these critical 
ecosystems and help mitigate the impacts of climate change on South Africa’s biodiversity. 
 
We built upon the work of the summer 2024 NASA DEVELOP South Africa Ecological Conservation 
project, which developed a GIS-based protocol in partnership with SANBI to estimate the extent of riparian 
areas in two study sites: the Northwest Province and a smaller region northeast of Cape Town. Their work 
laid a critical foundation for delineating riparian areas, but the complexity and variability of South Africa’s 
landscapes required a more comprehensive and scalable approach. Our team aimed to expand and refine their 
efforts by creating a model capable of delineating woody riparian vegetation across the entire country, 
providing SANBI with a comprehensive estimate of the distribution and location of these ecosystems 
nationwide. 
 

 
Our methodology, informed by Weissteiner et al. (2016), involved generating a potential riparian zone layer 
based on proximity to river systems. We then clipped Harmonized Landsat and Sentinel-2 imagery to this 
riparian zone layer and performed a Random Forest classification to identify woody riparian vegetation. The 
results were further refined using a land cover map from SANBI to assess the likelihood of woody vegetation 
and the Normalized Difference Vegetation Index (NDVI) to filter out sparse vegetation. We applied this 
analysis to each of South Africa's 22 catchments individually, using imagery from April 2023 as a 
representative month for average annual precipitation (Figure 1). To reduce computational demand, we split 
the nation into these catchments, and the results were later combined into a national dataset. This new 
approach builds on previous work, supporting SANBI’s goal of better identifying and conserving riparian 
ecosystems across South Africa. 
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Figure 1. Study area map of South Africa divided into primary catchments. 

 

3. Methodology 
3.1 Data Acquisition  
3.1.1 Satellite Imagery 
To determine potential riparian zones, we first needed to establish the location of river systems across South 
Africa. SANBI provided us with their National Rivers Dataset (2018 version), which contained all major 
rivers but lacked smaller tributaries and streams. To address this limitation, we incorporated topographical 
data from NASA’s Shuttle Radar Topography Mission (SRTM) Version 3 Digital Elevation Models (DEMs) 
to estimate the location of smaller water features (Table 1). We obtained the SRTM Level 2 products through 
NASA’s Earth Data Portal, providing 30-meter resolution elevation data with vertical accuracy of ±16 meters, 
collected by the Space Shuttle Endeavour during an 11-day mission in February 2000. 
 
For our classification of woody riparian vegetation, we utilized Harmonized Landsat and Sentinel-2 (HLS) 
Level-2H surface reflectance products (Table 1). From the HLS 30-meter resolution dataset, we specifically 
selected bands 3 (green, 0.53–0.59 µm), 5 (NIR, 0.85–0.88 µm), and 7 (SWIR, 2.11–2.29 µm). Through 
comparative analysis, these bands demonstrated optimal performance in distinguishing woody vegetation 
within the potential riparian zone layer, outperforming other combinations including true color composites. 
We acquired the HLS data through NASA’s Earth Data Portal, selecting only images with less than 5% cloud 
cover. 
 
Table 1 
Earth observations used in this study 

Sensor & 
Platform 

Spectral Bands & 
Features 

Spatial 
Resolution 

Processing 
Level 

Date 
Range 

Use 

Harmonized 
Landsat 8 OLI & 
Landsat 9 OLI-2  
Sentinel-2 MSI  

HLS Band 3 (Green): 
0.53–0.59 µm,  
 
HLS Band 5 (NIR): 
0.85–0.88 µm 

30 m Level-2A 
Surface 
Reflectance 

March – 
May 
2023 

Supervised 
Classification of 
Woody Riparian 
Vegetation 
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HLS Band 7 (SWIR): 
2.11–2.29 µm 
 

Shuttle Radar 
Topography 
Mission (SRTM)  

Elevation (DEM)
  

30 m Version 3 
Vertical 
Accuracy 
±16 m 

February 
2000 

DEM for Stream 
Order Analysis 

 
The timing of imagery acquisition proved critical for accurate woody riparian vegetation detection due to 
South Africa’s pronounced seasonal precipitation patterns. These patterns create significant temporal 
variability in both vegetation density and surface water presence across the country’s diverse geographic 
regions. To minimize seasonal bias in our analysis, we selected imagery from April 2023, when the mean 
monthly precipitation (21.23 mm) closely matched the national annual average (20.6 mm) over the most 
recent 30-year climate average from 1991 to 2020. When imagery from April with less than 5% cloud 
coverage was not available, we also obtained tiles from March and May. This strategic timing helped ensure 
our analysis captured typical climatic conditions rather than seasonal extremes that could confound riparian 
zone identification and delineation. 
 
3.1.2 Ancillary Data 
Additionally, we used non-Earth observing data in our analysis. This included a Major Rivers shapefile 
provided by SANBI, and a South Africa Land Cover map and Primary Catchments Shapefile both obtained 
from the South African government, available via internet download (Table 2).  
 
Table 2  
Ancillary data used in this project  

Name  
Product 

Type 
Data 
Type 

Data Provider  Use Cases 

The South African 
National Land Cover 
map  

Land Use 
Land Cover 
map 

Raster, 
20 meters 

Republic of South Africa: 
Department of Forestry, 
Fisheries, and the 
Environment 

Water feature 
extraction, agriculture 
mask, likelihood 
analysis 

Major Rivers’ 
(NBA2018MajorRivers) 

Centerline 
Shapefile 

Vector SANBI Used to estimate river 
systems for potential 
riparian zone 

Primary Catchments Polygon 
Shapefile 

Vector Republic of South Africa: 
Department of Water 
and Sanitation 

Used to clip rivers and 
elevation data to 
specific catchments 

 
3.2 Data Processing 
3.2.1 DEM Processing and Clipping  
We processed the SRTM DEM data using ENVI 6.0 image analysis software to create a seamless country-
wide elevation model. The mosaicking process merged individual SRTM tiles while eliminating edge effects. 
Following the mosaic creation, we clipped both the DEM and the SANBI major river dataset to our study 
catchment boundaries using ArcGIS Pro 3.4. To prepare the DEM for hydrological analysis, we applied the 
Fill tool to correct terrain depressions and data voids that could impede accurate flow modeling. 
 
3.2.2 Stream Order Analysis  
To estimate and classify woody riparian vegetation across the country, we first had to determine the possible 
geographic location of riparian zones. Due to their definition as ecotones between riverine and terrestrial 
ecosystems (Naiman & Décamps, 1997), we determined potential riparian zones by using a combination of 
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the major rivers’ dataset provided by SANBI (Table 2) as well as a stream order raster layer using the SRTM 
DEM. This stream order analysis estimates the location of smaller streams not included in the major rivers’ 
dataset provided to us by SANBI and classify streams based on expected flow accumulation. Without 
including this stream order analysis, potential riparian zone wouldn’t include many smaller riparian areas that 
exist along tributaries to larger rivers, leading to an underestimation of woody riparian vegetation.  
 
We obtained flow accumulation and flow direction using the filled and clipped DEM. To exclude streams 
with low flow accumulation, we reclassified the flow accumulation values, setting a threshold to filter out 
smaller streams that were unlikely to be considered riparian zones. This step was necessary to prevent the 
misidentification of small streams that may have existed historically but are no longer present due to 
landscape alterations. Next, we performed a Strahler stream order analysis, which classifies streams based on 
their position in the drainage network. In this analysis, streams are assigned an order: the smallest streams are 
designated as first-order, and streams of higher orders are formed when smaller streams merge. Using the 
reclassified flow accumulation and direction layers, this analysis produced a raster stream order layer. 
 
3.2.3 Buffer Creation 
The stream order raster layer was converted to a vector polygon to enable buffer creation. Buffers were 
applied to streams based on their order, with larger rivers receiving wider buffers and smaller streams 
receiving narrower ones. The buffer sizes were determined by stream order, with each increase in stream 
order corresponding to a proportionally larger buffer. Specifically, the buffer size increased in a linear fashion, 
with first-order streams receiving a 50-meter buffer, second-order streams receiving a 100-meter buffer, and 
so on. Additionally, a 30-meter buffer was applied to the major rivers layer to account for their typically 
broader riparian zones. 
  
To refine the potential riparian zones, the national river layer was processed into a raster using the Euclidean 
distance function and then merged with the stream order layer. The merged raster, which combined both the 
Euclidean distance and stream order features, was analyzed using the path distance tool to identify areas 
within 30 meters of these features. These potential riparian areas were reclassified and converted into a 
polygon for classification modeling. Finally, the buffer polygons from the stream order layer were merged 
with the path distance results to ensure comprehensive coverage of riparian zones, incorporating both small 
streams and major rivers. 
 
3.2.4 Composited Raster RGB Imagery 
To enhance vegetation analysis, we created a composite raster using the green, near infrared, and short-wave 
infrared bands from the HLS imagery. This combination was selected because SWIR and NIR bands are 
highly sensitive to moisture and vegetation structure, helping distinguish vegetation types, while the green 
band enhances visual clarity for training purposes, making it easier to differentiate between woody and non-
woody vegetation in the classification (Rahaman et al., 2017). After generating this composite, we clipped it to 
the potential riparian zone within the catchment area. This clipping step ensures that the analysis focuses 
solely on riparian areas directly adjacent to water bodies, excluding other regions within the catchment. 
 
3.2.5 Reclassification of the South African National Land Cover map  
Using the 2022 South African National Land Cover map (SANLC), we reclassified cultivated agricultural and 
urbanized areas into a separate layer to remove them from the woody riparian vegetation analysis. By isolating 
these human-developed land cover types, we avoid misclassification of woody vegetation, which can be 
misclassified in agricultural areas located adjacent to rivers and streams in particular. This layer is important to 
ensure that the woody riparian vegetation is identified correctly. 
 
3.2.6 Random Forest Woody Riparian Vegetation Classification 
Using the Random Forest classification algorithm in ArcGIS Pro, we applied a machine learning model 
trained with sample data representing both woody and non-woody areas from within the buffer zones in a 
smaller catchment area. This classification method segments the data by evaluating multiple decision trees, 
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enhancing the model’s ability to identify woody vegetation, which is often mixed with other vegetation types 
in riparian zones. We created the training samples from field data collected in collaboration with SANBI, 
ensuring that the model learned patterns specific to woody vegetation in South Africa’s diverse landscapes. 
This process enabled the model to accurately differentiate woody vegetation from other vegetation types, 
improving classification accuracy. 
  
We clipped the classified output to the potential riparian zone generated in the previous step, restricting the 
analysis to areas directly adjacent to water bodies. Next, we excluded agricultural and urbanized areas using 
the reclassified 2022 SANLC, detailed in Section 3.2.5. This exclusion step is crucial, as agricultural and urban 
lands may contain vegetation that could mislead the classification, especially in edge areas where woody 
vegetation might intermingle with non-natural land uses. By isolating natural or semi-natural areas within the 
potential riparian zone, this step focuses the layer on ecologically significant woody vegetation that is of 
interest to SANBI. 
 
The final step involved calculating NDVI (Kriegler et al., 1969) using NIR and Red bands (Equation 1) from 
the HLS imagery and filtering out all values below 0.5 to ensure that only dense vegetation was captured, 
reducing noise from sparse or low-biomass plants that might otherwise be classified as woody. NDVI values 
above 0.5 typically indicate healthier, denser vegetation in terms of green leaf area or biomass (Tucker, 1979), 
which aligns well with the characteristics of woody vegetation in riparian settings. Finally, we combined the 
Random Forest classification and NDVI results into a single, cohesive layer using the Merge Rasters tool. 
This integration produced a refined map of woody riparian vegetation by incorporating both structural and 
spectral vegetation information, yielding a more accurate and ecologically meaningful representation of 
woody vegetation within riparian zones. 

 

NDVI = 
NIR - Red

NIR + Red
     

(1) 
 
3.2.7 Simplified Methodology 
Due to time and processing power constraints, we simplified the methodology to create the woody riparian 
vegetation (WRV) map for the entirety of South Africa. This approach, which relied on NDVI thresholds 
rather than Random Forest classification, allowed for the completion of a nationwide assessment within 
computational and time constraints. Validation showed that results from this simplified approach closely 
matched those from the Random Forest classification method. 

The simplified methodology filtered NDVI values within the potential riparian zone (PRZ). NDVI thresholds 
ranging from 0.4 to 0.65 were applied based on regional vegetation characteristics, with higher thresholds 
used in forested areas to distinguish woody riparian vegetation from other vegetation types. Following the 
masking of agricultural and urban areas (detailed in section 3.2.5), a likelihood analysis validated the results 
(section 3.3). 

3.2.8 Surface Water Body Classification 
In addition to classifying woody riparian vegetation, we classified surface water bodies by calculating the 
Normalized Difference Water Index (NDWI) of HLS and selecting values that represent water bodies. The 
NDWI uses the reflectance characteristics of water in the green and near-infrared bands, where water bodies 
typically have higher reflectance in the green band and lower reflectance in the near-infrared band (Equation 
2). By using the full NDWI range from 0 to 1, we captured areas with a high likelihood of representing 
surface water, helping to differentiate water bodies from surrounding land cover (McFeeters, 1996). This 
classification will assist SANBI in identifying water features within the riparian zone, which are critical for 
accurately delineating riparian zones and supporting water-dependent vegetation analyses. In our expanded 
methodology (section 3.2.6), we used this classification to clip out water bodies. However, we noticed that 
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our NDVI thresholds were already removing surface water bodies. In order to streamline our methodology 
for the national dataset (section 3.2.7) we decided to remove this step.  
 

NDWI = 
Green- NIR 

Green+NIR 
 

(2) 
3.3 Data Analysis 
3.3.1 Potential Riparian Zones - Path Distance Analysis 
We estimated PRZs using ArcGIS Pro’s Path Distance tool, applied to the major rivers’ dataset. Prior to this, 
we ran the Euclidean distance tool on the Major Rivers Map with a 30-meter distance to rasterize it. The Path 
Distance tool calculates the minimum cumulative travel distance from water sources to each raster cell, 
considering both horizontal and vertical movement across the landscape. We chose path distance analysis 
over Euclidean distance because it accounts for topographical variations, which significantly affect the extent 
of riparian zones. The analysis produced distance values that reflected actual surface traversal costs, allowing 
for a more accurate, topographically informed delineation of potential riparian zones. 
 
The path distance analysis generated potential riparian zones that adapted to local terrain characteristics: 
narrower zones in steep valleys and wider zones in flat landscapes. This approach yielded more accurate 
riparian zone boundaries compared to traditional fixed-width buffers, as it responded to natural topographic 
constraints. After completing the path distance calculation, we reclassified the output to isolate areas 
proximate to water features, converted the reclassified raster to a polygon format, and merged it with our 
buffer polygon to create the final potential riparian zone delineation. 
 
3.3.2 Woody Riparian Vegetation Likelihood Analysis 
To refine the accuracy of the woody riparian vegetation layer, we performed a likelihood analysis by 
intersecting the WRV results with woodland areas identified in the SANLC. This step served to validate and 
assign confidence levels to areas classified as woody vegetation. Specifically, areas classified as “woody” in 
both the Random Forest-NDVI layer and the SANLC woodland class were labeled as “High Confidence”. 
This high-confidence category represents regions where multiple datasets consistently identify woody 
vegetation, making them highly reliable for riparian management and restoration purposes. 
 
Conversely, we classified areas flagged as woody in the Random Forest-NDVI analysis but not identified as 
woodland in the SANLC as “Low Confidence.” These areas might represent transitional or mixed vegetation 
zones where the presence of woody vegetation is less certain. By distinguishing between high and low-
confidence areas, this step improves the layer's accuracy (rather than precision) and allows end users to 
prioritize high-confidence zones for critical ecological assessments, while also flagging low-confidence areas 
for further ground validation if needed. 
 

3.3.3 Woody Riparian Zone Analysis 
We clipped the NDVI raster layer to the PRZs found in section 3.2.2. NDVI values <0 often associated with 
non-vegetated surfaces such as water bodies, urban areas, or barren land have mostly been clipped out. 
Higher NDVI values (>0.5) are generally associated with dense, healthy vegetation, whereas lower values (<0) 
suggest bare soil, sparse vegetation, or non-vegetated areas. NDVI values <0 often associated with non-
vegetated surfaces such as water bodies, urban areas, or barren land have mostly already been clipped out. 
NDVI thresholds for each province were selected to be above the mean value, taking into account the 
different distributions of NDVI values for each province and ground truthing using SANLC and aerial 
imagery. We graphed the distribution of all of the NDVI pixels for validation (section 4.2). Once we had the 
pixel count of areas with WRV we used equation 3 to find the total amount of land under riparian vegetation 
(Table B1). 

 

Area (km2) = (Number of Pixels)×(30)2÷(1,000,000)    
(3) 
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4. Results and Discussion 
4.1 Potential Riparian Zone 
4.1.1 Analysis of Results  
As outlined in our methodology, PRZs are areas adjacent to water bodies that may support riparian 
ecosystems. These zones were identified using geospatial analysis, considering factors such as proximity to 
water, stream order, and topographical features. The PRZ layer served as a filter for identifying potential 
woody riparian vegetation, dramatically narrowing down the area we needed to classify. Our analysis revealed 
that PRZs cover approximately 120,801 km², or 9.9% of South Africa’s total land area (Figure 2). As shown 
in Tables A1 and A2, PRZs are consistently distributed across hydrological and administrative divisions, with 
most catchments and provinces showing similar proportional coverage. This suggests a relatively uniform 
distribution of potentially riparian-bearing rivers and streams across South Africa's diverse landscape. 

 

 
Figure 2. PRZs identified across South Africa 

 
4.1.2 Errors & Uncertainties 
The PRZ methodology contains several sources of uncertainty that could have led to over- or under-
estimation of woody riparian vegetation later in our methodology. The stream order analysis used for PRZ 
delineation is based purely on elevation data and may have captured historical or ephemeral streams that no 
longer support active riparian ecosystems or have been substantially modified by human intervention. 
Additionally, given the complexity of mapping riparian zones across an entire nation, it was impossible to 
verify the accuracy of PRZ boundaries at every location, introducing inherent limitations to the 
comprehensive mapping approach. Accordingly, the methodology could have captured non-riparian 
vegetation if buffer zones were drawn too broadly, or conversely, excluded small but ecologically significant 
riparian areas if the zones were too narrow. The complexity of these uncertainties underscores the 
importance of treating the PRZ mapping as an approximation of geographic location rather than a definitive 
representation of riparian ecosystems. 
 
4.2 Woody Riparian Vegetation 
4.2.1 Analysis of Results 
WRV is our estimate of the location of this type of vegetation within the PRZ layer. WRV was identified 
across the country using the simplified methodology explained in section 3.3.3, yielding 19,733 km², about 
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1.6% of South Africa’s total surface area (Table B1). Out of this 19,733 km², almost 60% was deemed high 
confidence WRV based on the likelihood analysis performed using SANBI’s national land cover map. Table 
B2 shows the provincial precipitation ranges and the corresponding WRV proportions (SAEON, 2020). 
Interestingly, although provinces that receive more rainfall on average generally had a greater amount of 
WRV identified than those that receive less, this was not always the case. For example, on average 
Mpumalanga receives the 2nd most precipitation annually, but less of the province was classified as WRV 
than in the case of other, more arid provinces. 
 
For the Western Cape Province, a significant portion of pixels (57%) fall in the range of NDVI values from 
0.1 to 0.3, indicating moderate vegetation cover and modified areas impacted by urbanization (Figure 6). 
Higher NDVI values (0.4–0.9) represent about 31% of the data, showing substantial areas of healthy 
vegetation. In the North West Province, vegetation showed higher NDVI ranges (0.4–0.7), with about 72% 
of the pixels in this category (Figure 6). Very high NDVI values (0.7–1) were sparse, suggesting fewer areas 
with extremely dense vegetation compared to the Western Cape. The Western Cape showed significant 
vegetation even in very high NDVI ranges (e.g., 0.8–1), which might correspond to riparian zones with robust 
vegetation. In the North West, extremely high NDVI values (>0.8) were rarely observed, potentially reflecting 
a less lush riparian environment. 
 

Figure 3. Western Cape Province Potential Riparian Zone Distribution of NDVI Values 
 
The Western Cape's higher NDVI values in the 0.8–1 range could be due to a Mediterranean climate, with 
more rainfall supporting lush vegetation. The North West is drier and showed most pixels clustering in the 
0.4–0.6 range, reflecting vegetation adapted to semi-arid conditions (Figure 7). Areas with lower NDVI values 
(<0.1) in both provinces, and nationwide, could be targets for riparian restoration efforts. The Western 
Cape's mix of high and low NDVI values in particular indicates areas with potential for improvement 
alongside naturally healthy zones. To supplement these findings, field surveys can be used to confirm 
vegetation health and identify specific stressors in low NDVI areas. 
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Figure 4. North West Province Potential Riparian Zone Distribution of NDVI Values 

4.2.2 Errors & Uncertainties 
We encountered several challenges and limitations while using the supervised classification-based 
methodology for identifying WRV that impacted the accuracy and precision of the results. One of the 
primary challenges was the moderate 30-meter resolution of HLS imagery, which limited our ability to 
capture narrow riparian zones. Riparian zones can sometimes be as narrow as just two or three trees wide, 
and the coarse resolution of the imagery may have missed these smaller riparian areas, especially in 
fragmented or narrow corridors. While the methodology performed well for larger riparian zones, it 
sometimes struggled to detect finer-scale features that are crucial for biodiversity preservation and effective 
conservation management. 
  
Another significant difficulty arose from the training data used for the Random Forest classification. This 
data, created by our team using satellite imagery, introduced potential uncertainties due to our limited 
expertise in identifying riparian vegetation. Although we validated the results with the SANLC map, the 
classification remained approximate. The uncertainty in the training data, compounded by our inexperience 
with riparian vegetation types in South Africa, led to some misclassification, which may have prevented the 
model from fully capturing the complexity of riparian vegetation across different regions. 
  
Additional complexities arose from South Africa’s diverse precipitation patterns, which have a direct impact 
on vegetation dynamics and, consequently, the classification accuracy. Due to data constraints, we used 
imagery from March to May 2023 instead of April 2023, which is most representative of the country’s annual 
average precipitation. This timing introduced variability, as the rainy season differs dramatically across South 
Africa’s climatic regions. In some areas, the imagery corresponded to the start of the rainy season, while in 
others, it marked the end. This resulted in regions towards the end of the rainy season likely displaying more 
abundant vegetation, potentially leading to an overestimation of woody riparian vegetation compared to other 
areas where the rainy season was just beginning. This seasonal effect impacted both the supervised 
classification and simplified methods and highlights the complexity of using remote sensing data to monitor 
vegetation in regions with such diverse rainfall patterns. 
  
Finally, the use of NDVI thresholds in the simplified methodology introduced challenges in densely vegetated 
regions, such as Limpopo. While NDVI is effective for distinguishing vegetated from non-vegetated areas, it 
faces limitations in regions with dense, homogeneous vegetation. In areas like Limpopo, the uniform NDVI 
values within PRZs made it difficult to differentiate woody riparian vegetation from the surrounding tree 
cover. This limitation is particularly evident in forested areas where the NDVI values for both riparian and 
non-riparian vegetation closely resemble one another. This challenge emphasizes the need for higher-
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resolution data or more advanced methods to improve the accuracy of riparian zone delineation in densely 
vegetated regions. 
 

5. Conclusion 
5.1 Interpretation of Results 
This study successfully demonstrates the potential of using Earth observation data to map and estimate the 
distribution of WRV across South Africa. By combining open-source satellite imagery, such as HLS, with 
sophisticated geospatial analysis techniques, we were able to identify and classify riparian zones at a national 
scale. The results show a significant extent of potential riparian zones across the country, taking up around 
9.9% of the nation's land area. Our simplified methodology, based on NDVI thresholds, proved to be 
effective for providing nationwide coverage while remaining computationally feasible. However, the 
methodology encountered challenges such as resolution limitations and variability in vegetation due to 
seasonal effects. These factors underscore the need for more advanced approaches to improve accuracy in 
complex, densely vegetated regions. 

  
5.2 Feasibility & Partner Implementation 
The methods developed during this project are feasible and effective for use by SANBI and the Western 
Cape Government in their decision-making processes regarding riparian zone conservation. The PRZ 
methodology provides a reliable way to estimate the geographic locations of potential riparian zones, and it is 
reproducible across the entire nation. While the results are not without uncertainty, this project offers a solid 
foundation for future efforts. The simplified WRV classification using NDVI thresholds proved effective and 
feasible for use by our partners, although the methodology contains some uncertainty as described above. 
WRV provides valuable insights for SANBI in monitoring and conserving critical riparian ecosystems across 
South Africa. By identifying and classifying WRV at a national scale, SANBI can better assess the health of 
riparian zones and prioritize conservation efforts, contributing to the protection of biodiversity and water 
resources. Moving forward, SANBI and the Western Cape Government can continue to refine these 
methods, incorporating more field data, conducting ground validation, and possibly integrating additional 
temporal datasets to enhance the accuracy and utility of the riparian zone maps. 
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7. Glossary 
Earth Observation (EO) – The process of collecting information about the Earth's surface using satellite 
sensors, aircraft, and other technologies. EO data are crucial for environmental monitoring, including land 
use, vegetation, and climate patterns. 

  
Geospatial Analysis – The process of using geographic data to analyze spatial patterns and relationships 
between features on the Earth's surface. This can include mapping, modeling, and analyzing data related to 
land cover, vegetation, and other environmental factors. 
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Harmonized Landsat Sentinel-2 (HLS) – A dataset that combines Landsat OLI and Sentinel-2 satellite 
imagery to provide high-quality observations of the Earth's surface. This data is used for monitoring land 
cover, vegetation, and environmental changes at a resolution of 30 meters. 

  
Multi-Temporal Imagery – Satellite imagery collected at different times to capture changes in the Earth's 
surface over a period. This is essential for understanding dynamic features like vegetation growth, seasonal 
changes, and the impact of human activities. 

  
Normalized Difference Vegetation Index (NDVI) – A remote sensing index that measures vegetation 
health based on the difference between near-infrared and red-light reflectance. NDVI values range from -1 to 
+1, with higher values indicating healthier and denser vegetation. 

  
Normalized Difference Water Index (NDWI) – An index similar to NDVI but focused on identifying 
water bodies by measuring the difference in reflectance between the near-infrared and shortwave infrared 
bands of light. NDWI is commonly used to map water bodies and distinguish them from surrounding land. 

  
Path Distance Analysis – A spatial analysis technique that calculates the minimum travel distance between 
each raster cell and a specified feature, such as a river. This method accounts for topography and other 
landscape features, providing more accurate representations of areas like floodplains or riparian zones. 

  
Potential Riparian Zones (PRZ) – Areas identified as likely to support riparian vegetation based on 
proximity to water bodies. PRZs are delineated using various geospatial analysis techniques to guide 
conservation efforts and identify regions that may require further ecological management. 

  
Random Forest Classification – A machine learning technique that uses multiple decision trees to classify 
data. Each tree provides a "vote," and the most common outcome is chosen. This method is often used in 
remote sensing to classify land cover types like vegetation or water. 

  
Riparian Zones – Transitional areas between riverine and terrestrial ecosystems, typically characterized by 
distinct vegetation that is adapted to periodic or permanent flooding. Riparian zones are crucial for 
biodiversity, water purification, and flood regulation. 

  
Satellite Imagery – Images of the Earth’s surface captured by satellites equipped with sensors. These images 
provide a comprehensive view of the landscape and are used for various environmental monitoring 
applications, including land use, vegetation mapping, and disaster management. 

  
Stream Order – A classification system that ranks streams based on their size and the number of tributaries. 
First-order streams are the smallest, and higher-order streams are formed when smaller streams merge. 

  
Woody Riparian Vegetation (WRV) – The type of vegetation in riparian zones composed of woody plants, 
including trees and shrubs, which are important for stabilizing riverbanks, providing wildlife habitat, and 
filtering water. 
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9. Appendix 
Appendix A: Potential Riparian Zone Surface Analysis 

 
Table A1 
Potential Riparian Zone Surface Area Analysis (by catchment) 

Catchment* PRZ Area (km2) 
Percent of 
Total PRZ 

Catchment Area (km2) 
Percent of 
Catchment 

A 9,433  7.81% 109,581  8.61% 

B  6,650  5.50%  73,516  9.05% 

C  19,105  15.82%  196,299  9.73% 

D  38,905  32.21%  409,420  9.50% 

E  4,829  4.00%  49,065  9.84% 

F  2,095  1.73%  28,586  7.33% 

G  2,268  1.88%  25,299  8.96% 

H  1,442  1.19%  15,520  9.29% 

J  4,234  3.51%  45,134  9.38% 

K  530  0.44%  7,216  7.35% 

L  4,523  3.74%  34,730  13.02% 

M  180  0.15%  2,628  6.86% 

N  2,186  1.81%  21,225  10.30% 

P  551  0.46%  5,357  10.29% 

Q  3,330  2.76%  30,227  11.01% 

R  808  0.67%  7,928  10.19% 

S  2,317  1.92%  20,481  11.31% 

T  5,093  4.22%  46,623  10.92% 

U  1,838  1.52%  18,310  10.04% 

V  2,791  2.31%  29,040  9.61% 

W  5,332  4.41%  59,006  9.04% 

X  2,360  1.95%  31,155 7.58% 

*Link to the South African Primary Drainage Regions (top-level catchments) dataset provided by the 
Republic of South Africa Department of Water and Sanitation: 
https://www.dws.gov.za/iwqs/wms/data/000key2data.asp  
 
 
 
 
 
 
 
 
 
 

https://www.dws.gov.za/iwqs/wms/data/000key2data.asp
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Table A2 
Potential Riparian Zone Surface Area Analysis (by province) 

Province* 
PRZ Area 

(km2) 
Percent of Total PRZ Province Area (km2) 

Percent of 
Province 

Eastern Cape 18,255  15.1% 168,966  10.8% 

Free State 12,268  10.2% 129,825  9.45% 

Gauteng 1,494  1.24% 18,178  8.22% 

KwaZulu-Natal 10,220  8.46% 94,361  10.8% 

Limpopo 11,205  9.28% 125,754  8.91% 

Mpumalanga 6,613  5.47% 76,495  8.65% 

North West 9,217  7.63% 104,882  8.79% 

Nothern Cape 38,863  32.2% 372,889  10.4% 

Western Cape 12,664  10.5% 129,462  9.78% 

South Africa 120,800.67  100%  1,220,813  9.90% 

*Link to province dataset used in this study: https://geo.btaa.org/catalog/061d4492-56e8-458c-a3fb-
e7950991adf0 Provided by Humanitarian Data Exchange under Attribution 3.0 IGO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

https://geo.btaa.org/catalog/061d4492-56e8-458c-a3fb-e7950991adf0
https://geo.btaa.org/catalog/061d4492-56e8-458c-a3fb-e7950991adf0
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Appendix B: Woody Riparian Vegetation Analysis 
 
Table B1 
Woody Riparian Vegetation Surface Area Analysis (by province) 

Province 
WRV Low 
Confidence 
Area (km2) 

WRV High 
Confidence 
Area (km2) 

WRV Total 
Area (km2) 

Percent High 
Confidence 

Percent of 
Province (all 

WRV) 

Eastern Cape 2,214  2,856  5,071  56.3% 3.00% 

Free State  450   165   615  26.9% 0.47% 

Gauteng 100   89  189 47.1% 1.04% 

KwaZulu-Natal  1,030   2,147   3,177  67.6% 3.37% 

Limpopo  187   2,066   2,253  91.7% 1.79% 

Mpumalanga  154   632   785  80.5% 1.03% 

North West  1,167   1,564   2,731  57.3% 2.60% 

Nothern Cape  755   922   1,677  55.0% 0.45% 

Western Cape  1,817   905   2,723  33.2% 2.10% 

South Africa 7,975 11,758 19,733 59.6% 1.62% 

 

Figure B1. Results of Woody Riparian Vegetation classification, shown in the light green pixels (high 
likelihood in dark green, low likelihood in light green), over the Orange River riparian zone in Northern Cape 
Province 
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Figure B2. Results of Woody Riparian Vegetation classification, shown in the light green pixels (high 
likelihood in dark green, low likelihood in light green), in agricultural areas of North West Province 
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Figure B3. Results of Woody Riparian Vegetation classification, shown in the light green pixels (high 
likelihood in dark green, low likelihood in light green), around Brandvleidam and along Breerivier in Western 

Cape Province 

 
Table B2 
Woody Riparian Vegetation and Precipitation (by province) 

Province 
Percent of Province Surface 

Area (all WRV) 
Average Precipitation Range 

(1983-2020) 

Eastern Cape 3.00%  400–800 mm  

Free State 0.47%  400–600 mm  

Gauteng 1.04% 600–800 mm  

KwaZulu-Natal 3.37%  800–1,200 mm  

Limpopo 1.79%  400–800 mm  

Mpumalanga 1.03% 700–1,200 mm  

North West 2.60%  300–500 mm  

Nothern Cape 0.45%  100–200 mm  

Western Cape 2.10%  350–500 mm  

Contains public sector information licensed under the Open Government License v3.0. For more 
information, please see the terms and conditions: https://www.nationalarchives.gov.uk/doc/open-
government-licence/version/3/ 
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